
INTRODUCTION

The gypsy moth is a folivorous insect species with 
outbreaking population dynamics. Periodic fluc-
tuations in its population density include several 
phases: latency (low density), progradation (increase 
in density), culmination (high density), and retro-
gradation (decrease in density) (E l k i n t o n  and 
L i e b h o l d , 1990). In Serbia, 3-6 years of out-
break periods are followed by latency which may 
last from 2 to 10 years (M a r o v i ć  et al., 1998). 
During outbreaks, this generalist pest causes eco-
nomic damage due to defoliation of forests and 
orchards over large areas. Explaining mechanisms 
underlying the cyclic density changes may help in 
predictive modelling for gypsy moth management. 
Host-plant quality, temperature, humidity, natural 
enemies (parasites, pathogens, predators), and other 
environmental factors affect gypsy moth popula-
tion dynamics (Va l e n t i n  et al., 1983; E l k i n t o n 
and L i e b h o l d , 1990; B e r r y m a n , 1996). 

Overpopulation also depends on gypsy moth qual-
ity, i.e., its biochemical, physiological, developmen-
tal, and behavioral traits, which further influence 
fitness components, stress resistance and tolerance, 
dispersal ability, etc. (R o s s i t e r , 1994). Maternal 
effects as one aspect of population quality have beеn 
incorporated in theoretical and mathematical mod-
els of gypsy moth population dynamics (S h a r o v 
and C o b e r t , 1994).

High density populations of the gypsy moth 
are characterized by shortened development time, 
decreased pupal mass and fecundity, and supernu-
merary molts (L e o n a r d , 1974); decreased egg 
size with unchanged vitellin content (D i s s  et al., 
1996); broadened host-plant range (B a r b o s a , 
1978); decreased proportion of females (M y e r s  et 
al., 1998); increased dispersion of first-instar larvae 
(B a r b o s a  et al., 1981); disturbed circadial feed-
ing rhythm (L a n c e  et al., 1986); increased pro-
portion of dark coloration (P o n o m a r e v, 1994); 
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and changes in resistance to parasites and viruses 
(M a r t e m y a n o v  and B a k h v a l o v, 2007). 

Changes in gypsy moth performance can be 
attributed to changes in leaf quality during defo-
liation, such changes including increased phenol 
content (R o s s i t e r  et al., 1988) and decreased 
water, nitrogen and free sugar content (Va l e n t i n 
et al., 1983). Additionally, periodicity of gypsy moth 
populations strongly depends on the species com-
position of forest stands (J o h n s o n  et al., 2006). 
Since leaf quality affects egg quality (R o s s i t e r  et 
al., 1993), nutritionally-based environmental influ-
ences are expected to transmit to the next generation 
through maternal effects. If this is so, then popula-
tion differences in performance should be revealed 
under laboratory conditions. Such results have been 
obtained in the gypsy moth (Rossiter, 1991 a; Myers 
et al., 1998) and other insects (C a r i s e y  and 
B a u c e , 2002; Z e h e n d e r  and H u n t e r , 2007; 
C h a p i u s  et al., 2008). 

During periodic fluctuations, gypsy moth popu-
lations are exposed to different density-dependent 
selection regimes: r-selection at low density and K-
selection at high density. It is theoretically predicted 
(M a c A r t h u r  and W i l s o n , 1967) that differ-
ent sets of life-history traits will occur under these 
regimes, and that sensitivity of life-history traits to 
density will be subject to genetic variation. Under 
crowded conditions, K selection favors increased 
efficiency in resource use and resistance to starva-
tion, viruses, and other stressors, leading to changes 
in inter-family variance/covariance of life history 
traits. 

This study deals with the question of whether 
maternal nutrition (or environment) affects life-
history traits in the gypsy moth. Life-history traits 
and their variation and covariation were compared 
between  laboratory-reared gypsy moths from egg 
masses collected from low- and medium-density 
populations. 

MATERIAL AND METHODS

Populations and rearing conditions

Gypsy moth egg masses were collected from two 

oak populations with distinctly different population 
densities: a low-density population at the Ražanj 
locality (150 km southeast of Belgrade), with 10 egg 
masses/ha; and a medium-density population at the 
Despotovačke Šume locality (116 km southeast of 
Belgrade), with 100 egg masses/ha. Thus, egg-mass 
density was approximately 10 times higher at the 
Despotovačke Šume than at the Ražanj locality. 
The Ražanj population was in the latency phase, 
while the Despotovačke Šume population was in 
the progradation phase, one year before outbreak. 
The localities were 50 km apart, which exceeds the 
migration distance of gipsy moth. Forests at both 
localities consisted mainly of oak trees as a suitable 
host plant for the gypsy moth. 

Twenty-two egg masses sampled from Ražanj and 
twenty six egg masses sampled from Despotovačke 
Šume were surface–sterilized in 0.1% sodium hypo-
chlorite and set out for hatching. In view of the 
great differences between first- and last-laid eggs 
(R o s s i t e r , 1991 b), only eggs from the central area 
of an egg mass were set out for hatching. The hatched 
larvae were reared under conditions of low density, 
23°C, and 16:8 light:dark photoperiods. They were 
daily supplied with fresh oak leaves (Quercus cerris) 
collected from unattacked sites. Five larvae in the 
first instar and only one or two larvae in the late 
larval instars were cultured in 200-ml plastic cups. 
Pupae were separated by sex and kept individually in 
the same cups until adult eclosion. Plastic cups were 
also used as mating chambers. One male was mated 
with one to three females. 

Determination of life-history traits

The following life-history traits were measured in 
gypsy moths originating from two populations: pre-
adult viability (V), larval duration (LD), pupal dura-
tion (PD), preadult development duration (PAD), 
pupal mass (PM), and adult longevity (L). Preadult 
viability was determined by daily count of dead indi-
viduals and calculation of the percentage of larvae 
which complete their development. Pupal mass was 
measured on the second day of pupal development. 
Pupation, adult eclosion, and adult mortality were 
also recorded daily. As revealed by our previous 
investigations (L a z a r e v i ć , 1994), male longevity 
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was not affected by mating, while mated females 
live significantly longer than virgin ones. Thus, lon-
gevity was determined in males regardless of their 
mating status, but in females only mated individuals 
were taken into account. The analysis included 255 
females and 263 males hatched from 22 egg masses 
collected at the Ražanj locality and 426 females and 
470 males hatched from 26 egg masses collected at 
the Despotovačke Šume locality.

Statistical analyses

Given apparent sexual dimorphism, the mean values 
and standard errors for life-history traits were calcu-
lated for females and males separately. Comparison 
of life-history traits between the two populations 
was carried out by one-way ANOVA (S o k a l  and 
R o h l f , 1981). Following examination of normality 
and homogeneity of the variance assumption, the 
appropriate ANOVA models were applied to arcsin-
square root-transformed viability and log-trans-
formed values of other life-history traits. Broad-
sense heritabilities (h2) were calculated according to 
standard formulae for the unbalanced full-sib design 
(B e c k e r , 1984). Larvae hatched from an egg mass 
represent full-sibs, since gypsy moth females lay a 
single egg mass, which is the product of a single mat-
ing. Significant between-population differences in 
broad-sense heritabilities were revealed by the z-test 
(S o k a l  and R o h l f , 1981). Genetic correlations 
were calculated either as Pearson’s product-moment 

correlations of family means (rm) or as «component» 
correlations (rg), i.e., genetic covariance between 
two traits standardized by the genetic variances 
(V i a , 1984; B e c k e r , 1984). Analysis of covari-
ance involved partition of phenotypic covariance 
into environmental and (broad-sense) genetic com-
ponents. The significance of «component» genetic 
correlation cannot be estimated for the unbalanced 
full-sib design. Family means correlations contain 
not only inter-family, but also intra-family «error» 
variance/covariance. Similar values of rm and rg cor-
relations can be obtained if family size is large (V i a , 
1984). Correlations between populations were com-
pared by the z test.

RESULTS

The data presented in Table 1 show significantly 
lower preadult viability in offspring from the medi-
um-density compared to low-density population. 
The population from the Despotovačke Šume local-
ity is characterized by prolonged pupal duration in 
both females and males, decreased pupal mass and 
longevity in females, and prolonged preadult devel-
opment duration in males.

A significant level of expression of genetic varia-
tion was revealed for most life-history traits within 
both populations (Table 2). With the exception of 
pupal duration, most heritability estimates were 
low in females from the Ražanj population, while 

Table 1. Means (8) and standard errors (±SE) for life-history traits in gypsy moths reared on oak leaves at low density and originated 
from two populations: Ražanj (low density, latency) and Despotovačke Šume (medium density, progradation). The significance of the 
difference between the populations was tested by one-way ANOVA. V - preadult viability, LD - larval duration, PD - pupal duration, 
PAD - preadult development duration, PM - pupal mass and L - longevity * P<0.05, ** P<0.01, *** P<0.001.

Ražanj Despotovačke Šume
Trait 8      ±      SE 8      ±      SE F

V (%) 97.830 0.071 94.920 1.011 4.933*
♀ LD (days) 37.231 0.184 37.000 0.210 0.774

PD (days) 11.545 0.046 12.014 0.053 44.210***
PAD (days) 48.777 0.195 49.014 0.225 0.600
PM (mg) 1347.280 14.410 1306.822 19.310 4.701*
L (days) 8.841 0.085 8.431 0.094 10.420**

♂ LD (days) 32.336 0.194 32.506 0.165 0.533
PD (days) 12.741 0.049 13.229 0.050 24.657***
PAD (days) 45.076 0.205 45.736 0.182 3.503*
PM (mg) 441.762 3.191 449.202 13.051 0.087
L (days) 5.093 0.079 5.355 0.089 2.200
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medium-to-high estimates are characteristic for 
females from Despotovačke Šume. Significantly 
higher broad-sense heritability was noticed for lar-
val and preadult development duration in females 
and pupal duration in males from the medium-den-
sity population. 

Phenotypic correlations (rp) of life-history traits 
are mainly weak, with the exception of moderate cor-
relation between larval/preadult development dura-
tion and pupal mass in females from Despotovačke 
Šume (Table 3). Strong positive environmental cor-
relations (re) between these traits were noticed for 
Ražanj gypsy moths, in both females and males. 
Seven out of 18 comparisons of rp between the 
populations showed significantly higher values in 
the medium-density population, although correla-
tion structures were similar between the populations 
as revealed by product-moment correlation between 
arcsin-square root-transformed rp-values (r=0.7358, 
P<0.001). Ten out of 18 comparisons of re showed a 
significant difference between the populations, and 
there was no similarity between environmental cor-
relation structures at the two densities (r=0.3315, 
P<0.173). Genetic correlations (both «component» 
and Pearson’s) between larval/preadult development 
duration and pupal mass were negative in gypsy 

moths from Ražanj, while an antagonistic correla-
tion (trade-off) was recorded in the Despotovačke 
Šume population. Significant positive genetic cor-
relation between female size and longevity was evi-
dent in both populations. In males, these life-history 
traits were not correlated. Among 18 correlation 
comparisons, five Pearson’s and 13 «component» 
correlations differed significantly between the popu-
lations. Additionally, four Pearson’s and eight «com-
ponent» correlations differed in sign. The structure 
of genetic correlations was sensitive to population 
density in the parental generation only for «com-
ponent» correlations (r=0.4166, P<0.085 for rg and 
r=0.5835, P<0.011 for rm).

DISCUSSION

Many papers have confirmed the dependence of 
insect life-history traits and trade-offs between 
them and both the past and current environment 
(R o s s i t e r  1991a, 1994; M o u s s e a u  and F o x , 
1998; K i m  and T h o r p , 2001; C a r i s e y  and 
B o u c e , 2002; B a l d a l  et al., 2005; C h a p u i s  et 
al., 2008). Environmentally-based maternal effects 
may alter means and variance/covariance in individ-
ual insect performance (M o u s s e a u  and D i n g l e , 
1991).

Table 2. Broad-sense heritabilities (h2±SE) for life history traits in gypsy moths from two populations. Significant heritabity was 
revealed by the t-test. Population differences were examined by applying the t-test to z-transformed values of heritabilities. Other 
abbreviations are explained in Table1. * P<0.05, ** P<0.01, *** P<0.001.

Ražanj Despotovačke Šume
                Trait h2      ±      SE h2      ±      SE t
♀ LD (days) 0.3529 0.1316* 0.7657 0.1729*** 2.162*

PD (days) 0.0054 0.0070 0.1307 0.1015 0.985
PAD (days) 0.3642 0.1334* 0.82584 0.1740*** 2.650*
PM (mg) 0.2131 0.1060* 0.4273 0.1484** 0.911

L (days) 0.2642 0.1166* 0.4515 0.1517** 0.794

♂ LD (days) 0.7144 0.1703*** 0.4612 0.1466** 1.328
PD (days) 0.0057 0.0069 0.4803 0.1486** 2.509*

PAD (days) 0.6658 0.1671*** 0.6022 0.1593*** 0.353

PM (mg) 0.6287 0.1643** 0.2475 0.1172* 1.720
L (days) 0.1384 0.0089 0.1013 0.9009 0.197



LIFE HISTORY TRAITS IN TWO GYPSY MOTH POPULATIONS 623

Table 3. Genetic correlations of life-history traits determined by analysis of covariance (rg) or product-moment correlations of 
family means (rm) in gypsy moths from the Ražanj (R) and Despotovačke Šume (D) localities. Environmental (re) and phenotypic 
correlations (rp) were obtained from analysis of covariance. Population differences were tested by the z-test. Other abbreviations are 
explained in Table1. *P<0.05, ** P<0.01, *** P<0.001. Significant population differences are marked as A (P<0.05), B (P<0.01), and 
C (P<0.001).

rg re rp

rm

Correlation R D R D R D

♀ LD -PD  0.732  1.059  0.041 -0.380 C  0.132*  0.163*
 0.276    0.496**

-PM -0.858  0.659 C  0.626  0.511  0.211***  0.564*** C
-0.236 0.587** B

-L -0.760 -0.010 B -0.029  0.251 C -0.252***  0.084 C
-0.514* 0.010

PD -PAD  0.767  1.053  0.329  0.114 A  0.363***  0.390***
0.411  0.604***

-PM -0.601  0.502 C  0.301  0.279  0.196**  0.316***
-0.100 0.333

-L -0.348 -0.564 -0.040  0.207 B -0.075  0.006
-0.115 -0.229

PAD -PM -0.863  0.643 C  0.682  0.696  0.242***  0.601*** C

-0.248 0.590** B
-L -0.750 -0.064 B -0.035  0.386 C -0.257***  0.081 C

-0.514 -0.025
PM -L  0.986  0.418 C -0.091  0.105 A  0.165*  0.242***

 0.602**  0.499*
♂ LD -PD  0.111  0.789 B  0.110 -0.308 C  0.080  0.208**

0.103 0.560**
-PM -0.669  0.302 C  0.639 -0.047 C -0.240***  0.072 C

-0.469* 0.210 A
-L -0.772  0.050 B -0.125 -0.157 -0.304*** -0.098 A

-0.576** -0.086
PD -PAD  0.191  0.873 C  0.502  0.001 C  0.319***  0.470***

0.257 0.728*** A
-PM  1.029  0.781  0.183  0.018  0.304***  0.281***

 0.573**  0.595**
-L  0.501 -0.156 A -0.205 -0.331 -0.140* -0.261***

-0.010 -0.133
PAD -PM -0.592  0.434 C  0.641 -0.042 C -0.157*  0.144* C

-0.374 0.331 A
-L -0.719  0.001 B -0.192 -0.273 -0.321*** -0.163*

-0.554** -0.107
PM -L  0.526  0.264 -0.197 -0.063  0.044 -0.010

0.205 0.199
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The parental environment influences offspring 
performance directly through the selection of par-
ents that better match  the environment (e.g., resis-
tance to starvation and toxic allelochemicals) or 
through egg provisioning (differential allocation of 
nutrients, defensive agents, hormones, and enzymes 
for egg development). If there is a negative covari-
ance between direct additive genetic effects and 
maternal effects, low food quality of the parental 
generation will be transformed into increased per-
formance of the offspring generation (R o s s i t e r , 
1991a). This negative maternal effect compensates 
for a deteriorating environment and, according to 
Rossiter’s (1994) maternal effects hypothesis, «...
could build gradually over several generations as 
population density (and host damage) moves from 
low to moderate levels». Delayed life-history effects 
and trade-offs between the current and future envi-
ronment can give rise to population variability and 
delayed density dependence, which can further pro-
mote cyclic population dynamics (B e c k e r m a n  et 
al., 2002).

The present study, like some others before (D i s s 
et al., 1996; Ye r g e r  and R o s s i t e r , 1996; M y e r s 
et al., 1998; E r e l l i  and E l k i n t o n , 2000), com-
pares gypsy moth performance between populations 
in different phases of growth. The populations used 
in our experiment were at low and medium (mod-
erate) density, and we therefore expected that the 
medium-density population would express a nega-
tive maternal effect under optimal laboratory con-
ditions. However, we found a weak but statistically 
significant effect of parental density on offspring 
life-history traits, and gypsy moth performance 
was reduced in offspring from the medium-density 
population, contrary to expectations (Table 1). On 
the other hand, R o s s i t e r  (1991a) showed that 
larger female and male pupae were attained if the 
parental generation experienced higher defoliation. 
However, she analyzed the first five females and 
five males pupated from each egg mass, while we 
set out for hatching only a sample of eggs from the 
central area of an egg mass. Faster development and 
larger pupae are characteristic of females hatched 
from larger, first-laid eggs (R o s s i t e r , 1991b). 
Although egg size-number trade-off is predicted 

under stressful conditions (P a r k e r  and B e g o n , 
1986), only first-laid eggs was found to increase size 
in response to high density in Callosobruchus macu-
latus (K a w e c k i , 1995), and vitellogin content of 
only first-laid eggs of the gypsy moth was affected by 
the parental host plant (R o s s i t e r  et al., 1993). It is 
possible that parental density and nutrition (defo-
liation of host plants) have different influence on 
early and late reproduction in such a way that only 
first-laid eggs increase in size and/or quality under 
crowding conditions. 

In any case, we may suppose that maternal effects 
represent a significant component of broad-sense 
genetic variation and covariation of gypsy moth life 
history traits. Estimated heritabilities (Table 2) and 
genetic correlations (Table 3) in full-sib analysis of 
variance and covariance therefore do not give infor-
mation about possible evolutionary responses to selec-
tion. Significant differences of egg-masses (full-sib 
families) were discovered for gypsy moth life-history 
traits in previous investigations (R o s s i t e r , 1987; 
M y e r s  et al., 1998; L a z a r e v i ć  et al., 1998, 2002), 
as well as in the present study (Table 2). Maintenance 
of a significant level of genetic variability is, among 
other factors, made possible by the eruptive popula-
tion dynamics of the gypsy moth. The succession of 
low-, medium-, and high-density phases of popula-
tion growth expose the gypsy moth to different selec-
tion pressures (r and K selection), which may lead to 
differences in expression of genetic variability. Broad-
sense heritabilities for some development duration 
traits were significantly higher in the medium-density 
compared to the low-density population (Table 2). 
Phenotypic plasticity and parental effects modulate 
the expression of genetic variability by changing 
intra- and/or inter-family variance (M o u s s e a u 
and D i n g l e , 1991; Stearns 1992). It has been shown 
that increased broad-sense heritabilities in a medium-
density population of the gypsy moth are the result 
of increased genetic variance (L a z a r e v i ć , 2000), 
which can be attributed to differential gene expression 
and disturbed development canalization in a stressful 
environment (H o f f m a n n  and P a r s o n s , 1991). 
In nagreement with our results, M y e r s  et al. (1998) 
obtained increased inter-family differences in high 
density populations. 
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The succession of r- and K-selection regimes 
requires fast adaptive responses to temporal varia-
tion in the environment. Such responses are facili-
tated by physiological trade-offs between genes 
determining acquisition and allocation of limited 
resources for different functions. Increased density 
favors individuals with fast consumption and molt-
ing at the expense of large body size, leading to a 
positive correlation between development duration 
and body mass. Such a positive genetic correlation 
represents a trade-off, since prolonged development 
is usually associated with reduced fitness, while large 
body size means a higher reproductive potential. 
This was obtained for gypsy moth females hatched 
from egg masses collected from the medium-den-
sity population and reared under optimal laboratory 
conditions (Table 3). Genetic trade-offs contribute 
to the maintenance of genetic variability of life-his-
tory traits in natural populations and are a funda-
mental presumption of their evolution (R e z n i c k , 
1992). No development duration-body size trade-
off was found in previous investigations on gypsy 
moths reared on different host plants (M i l l e r  et 
al., 1991; L a z a r e v i ć  et al., 1998). Moreover, the 
trade-off obtained in the present study (Table 3) 
was lost in the next generation of rearing under 
laboratory conditions (L a z a r e v i ć , 2000), indi-
cating a low additive component in broad-senese 
genetic correlations. Insect species with a fixed 
number of instars usually show negative genetic 
correlation between development time and body 
size under stressful conditions (G e b h a r d t  and 
S t e a r n s , 1993). Plasticity of the number of instars 
in response to high density (L e o n a r d , 1974) may 
account for positive correlations under mild stress, 
since supernumerary molts can enable the insect 
to overcome the harmful effects of stress and attain 
larger body size. On the other hand, maximization 
of the growth rate is a strategy of some outbreaking 
Lepidoptera (Ta m m a r u  et al., 2000). Under opti-
mal conditions, maximal body size can be attained 
in shorter development time. We obtained such a 
negative genetic correlation between larval dura-
tion and pupal mass in males from the low-density 
population (Table 3). Under severe density stress, 
outbreaking lepidoptera had shorter development 

time and attained lower pupal mass (L e o n a r d , 
1974; Ta m m a r u , 1998; Ta m m a r u  et al., 2000).

Although our results do not accord with Rossiter’s 
hypothesis, they emphasize the importance of 
parental nutrition for variation and covariation 
of offspring life-history traits. Increased variation 
under crowded conditions represents the raw mate-
rial that natural selection acts upon, while trade-offs 
facilitate fast adaptive responses to selection.
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Лепидоптере са еруптив­ном популационом 
динамиком су из­ложене раз­личитим селектив­ним 
притисцима током периодичних флуктуација број
ности услед промена у нутритив­ном квалитету 
њихове животне средине. Хипотеза о улози мате
ринског ефекта у појави пренамножења инсеката 
предвиђа пренос ове нутритив­не «информације» 
на следеће генерације и промену особина животног 
циклуса код потомака. Да бисмо тестирали овај 
временски одложен утицај паренталне генерације 
упоредили смо особине животног циклуса, њихову 
варијабилност и међусобне корелације из­међу губа

ра гајених у лабораторији пореклом из популација 
ниске и средње бројности. Потомство пореклом из 
популације средње бројности показало је смањење 
индивидуалне перформансе што указује на редук
цију квалитета јаја са порастом густине популаци
је. Генетичка варијанса и коваријанса су такође 
биле осетљиве на густину родитељске генерације. 
Квантитатив­но-генетичком анализом је добијена 
већа херитабилност у ширем смислу за особине 
трајања раз­вића као и узајамно ограничење из­међу 
трајања раз­вића и масе лутки губара које су поре
клом из популације средње бројности.


