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1. Introduction
Insects are the largest group of invertebrates and very 
diverse; however, only a few neurohormones regulate all 
of their living processes. Neurohormones are synthesized 
mainly in neurosecretory neurons (NSNs) of the insect 
brain, and several peripheral neurons make up less than 
1% of all neurons in the nervous system.

The type of NSNs can be distinguished by greatest 
diameter, staining affinities,  neurosecretory granule size, 
and protocerebral location (Raab, 1982). In the Lymantria 
dispar brain the majority of NSNs are located in the medial 
and dorsolateral part of the protocerebrum. Based on 
morphological characteristics and protocerebral location, 
we divided the medial group of NSNs into groups A1, A1’, 
and A2 and the dorsolateral group into L1, L2, and L2’ 
(Perić Mataruga et al., 2001; Perić Mataruga and Lazarević, 
2003).

Neurohormones play an important role in regulating 
insect development (McBrayer et al., 2007), physiology 
(Kim and Rulifson, 2004), and behavior (Renn et al., 
1999). The synthesis of ecdysone, a major morphogenetic 
hormone, is regulated by prothoracicotropic 

neurohormones (PTTHs), which play a central role in 
postembryonic development. The structure of PTTHs is 
known for several insect species (Kelly et al., 1991; Kim 
et al., 1997; Ishizaki, 2004). Ishizaki and Suzuki (1988) 
revealed that PTTHs are peptides present in several 
isoforms in the silkmoth (Bombyx mori).

In Lepidoptera, lateral NSNs are known to produce 
a large form of PTTHs (Mizoguchi and Gilbert, 1994), 
while a pair of medial NSNs produces a small, insulin-like 
form (Dai et al., 1994). In Lymantria dispar caterpillars we 
detected PTTH-immunoreactive molecules in L2’ type 
dorsolateral NSNs (Ilijin et al., 2012), while bombyxin-like 
material was found in the A2 type medial protocerebral 
NSNs (Ilijin et al., 2011). Axons from both pairs of NSNs 
terminate in the corpus allatum, a specialized secretory 
gland of the neuroendocrine system (Mizouchi et al., 1990; 
Dai et al., 1994).

Once released from the corpora allata into the 
hemolymph, PTTHs target the prothoracic gland 
and regulate the production and release of ecdysone 
(Rybczynski, 2005). The small form of PTTH is released 
from the corpus allatum into the hemolymph (Ishizaki 
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and Suzuki, 1992). This insulin-like protein (bombyxin) 
is active in carbohydrate mobilization and provides 
the energy necessary for metamorphosis and other 
developmental processes by releasing it from glycogen 
energy depots.

Neurosecretory neurons in insect brains known 
to synthesize PTTHs (small and large form) receive 
stressogenic stimuli or environmental stimuli 
(photoperiod, high temperature, plant allelochemicals, 
etc.) through receptor systems (Perić Mataruga et al., 1999; 
Mizoguchi et al., 2001, 2002; Gäde and Goldsworthy, 2003). 
Changes in the titer of PTTHs correlate with alterations in 
the ecdysteroid titer in circulation as well as morphological 
and behavioral changes typical for metamorphosis or the 
metabolic response to stress (Gu et al., 2000). Under some 
environmental conditions decreased levels of PTTHs and 
ecdysone are an adjustment. Environmental signals inform 
the organism of unfavorable conditions and postpone 
ecdysis to the next larval stage until favorable conditions 
return.

Insects are very sensitive to high temperature. Heat 
from the sun or an artificial source increases the body 
temperature of small poikilotherms to a lethal level very 
quickly. In addition, there is the problem of maintaining 
water balance in the organism (Denlinger et al., 1991). 
Temperature also affects phytophagous insect species 
directly or indirectly by influencing host plant metabolism. 
This can lead to disturbed development and qualitative and 
quantitative changes in the chemical composition of the 
host plant. Moreover, elevated temperature as a stressor 
raised the level of allatotropins and altered the juvenile 
hormone endocrine system in Drosophila (Gruntenko et 
al., 2000). In some lepidopteran species high temperature 
increased mortality, shortened development time, and 
reduced the size of individuals, consequently decreasing 
the number of eggs laid (Reynolds and Nottingham, 
1985; Ochieng-Odero, 1992). Thermal sensitivity of the 
metabolic rate is a significant characteristic of different 
insect species (Berrigan, 1997).

Stress activates numerous physiological processes 
and mechanisms necessary to overcome negative effects. 
The insect neuroendocrine system is a primary activator 
of stress response mechanisms in cases of environmental 
stress. Our goal was to analyze underlying neurosecretory 
mechanisms that react to short-term exposure to 
high temperature in order to better understand the 
mechanisms of neurosecretory stress responses in insects. 
We examined the morphometric characteristics of NSNs, 
which synthesize the large and small form of PTTH, 
and differences in the intensity of brain protein bands 
in the region of their molecular masses in fourth instar 
caterpillars of gypsy moths exposed to 35 °C for 1, 12, 

or 24 h, as well as in caterpillars allowed to recover after 
exposure (12 h at 35 °C and then 1 h at 23 °C).

2. Materials and methods
2.1. Insect rearing
Lymantria dispar is a widespread polyphagous herbivorous 
insect with a host range of more than 500 plant species 
(Lance, 1983). Optimal habitats are oak forests (Janković, 
1958), but larvae were also collected from different hazelnut 
trees in the Black Sea region of Turkey (Demir et al., 2012). 
This pest defoliates forest complexes in North Africa, Asia, 
North Europe, and America during population outbreaks. 
Scientists are currently trying to supplement hazardous 
chemical pesticides with biological control agents (Demir 
et al., 2009).

Gypsy moth egg masses were collected in a poplar forest 
(locality: Opovo; 20°25′49″E, 45°3′8″N; altitude, 67 m; 30 
km from Belgrade) and kept in a refrigerator at 4 °C from 
October to March, when they were set for hatching at 23 
°C with a 16 h light:8 h dark photoperiod. After hatching, 
L. dispar caterpillars were reared on a synthetic, high wheat 
germ (HWG) diet (O’Dell et al., 1985) in transparent 
plastic containers (V = 200 mL) at 23 °C and a 16 h light:8 
h dark photoperiod. Caterpillars were randomly assigned 
to 5 experimental groups for histochemistry (n = 15) and 
5 groups for brain sodium dodecyl sulfate polyacrylamide 
gel electrophoresis (SDS PAGE) (n = 15).
2.2. Thermal stress
Caterpillars were reared at 23 °C until entry into the fourth 

instar when they were exposed to high temperature stress 
in a thermostat with constant humidity. The first group was 
kept at 35 °C for 1 h (1h), the second for 12 h (12h), the 
third group for 12 h followed by transfer to 23 °C (12/12h), 
and the fourth group was exposed to the high temperature 
for 24 h (24h). The control group was reared at 23 °C (C).
2.3 Histological techniques
Caterpillars were sacrificed on the third day of the fourth 
instar by decapitation, and head capsules were fixed for 24 
h in Bouin’s solution (Merck, Darmstadt, KgaA, 64271, 
Germany). Brain complexes were dissected, dehydrated in 
a graded series of ethanol, impregnated in xylol (Hemos, 
Belgrade, Serbia), and embedded in paraffin wax (59 
°C; Merck, Darmstadt, KgaA, 64271, Germany). For 
histochemistry 3.5-µm serial sections were cut on an 820 
Spencer microtome and collected on 0.2% gelatin/0.05% 
chrome alum- (Sigma Aldrich, GmbH, Taufkirchen, 
Germany) coated slides. Sections were stained by a 
paraldehyde fuchsin technique (Ewen, 1962) modified by 
Panov (1980). In all NSNs, neurosecretory material was 
stained different shades of purple in the cytoplasm, while 
nucleoli were observed as light pink spheres in the nuclei 
(Panov, 1980). The activity of both types of NSNs was 
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determined by monitoring the size of NSNs and their nuclei 
(in micrometers), calculated as means of the shortest and 
longest diameters of each measured NSN or nucleus. Data 
were evaluated by one-way analysis of variance (ANOVA) 
and a post-hoc multiple range test [Fisher’s least significant 
difference (LSD)] using STATISTICA version 6.0. The 
parameters were analyzed and measurements made using 
an image processing and analysis system (QWin image 
analysis tool kit) linked to a Leica DMLB light microscope 
(Leica, Wetzlar, Germany).
2.4. SDS PAGE electrophoresis
Caterpillar brains were dissected on ice, homogenized in 
cold distilled water (200 mg brain/mL distilled water, i.e. 
3–4 brains/sample), and then centrifuged at 10,062 × g for 
10 min at 4 °C. In each experimental group 15 samples 
were analyzed. The supernatant was collected, and SDS 
PAGE electrophoresis was performed on 16.5% gels 
according to Laemmli (1970) using a MINI PROTEAN II 
system (Bio-Rad, USA). The gels were then stained with 
Coomassie Brilliant Blue R 250 (Serva Electrophoresis 
GmbH, Heidelberg, Germany), followed by destaining 
in a 50% methanol (Lach-Ner, Neratovice, Czech 
Republic)/10% acetic acid solution (Merck, Darmstadt, 
KgaA, 64271, Germany). The molecular weight (Mr) of the 
proteins was estimated using commercial standards (Mr: 
2.51–16.95 kDa) (Sigma Aldrich). Protein band intensities 
in the molecular mass regions of bombyxin Mr (4–6 kDa) 
and PTTH (11–15 kDa) were analyzed densitometrically 
using Photo-Capt software version 12.4 (Vilber Lourmat, 
France).

3. Results
3.1. A2 NSNs after acute thermal stress
A2 NSNs from all experimental groups are presented 
in Figure 1. After acute exposure to a temperature of 35 
°C for 1, 12, and 24 h, the cytoplasm of A2 NSNs was 
filled with a considerable amount of large granulated 
neurosecretory material. In the group allowed to recover 
at 23 °C after exposure to 35 °C, the same type and amount 
of neurosecretory material was observed. The number 
of NSNs increased after exposure to high temperature 
(Figure 2a), but this was statistically significant only in the 
group allowed to recover, in comparison with the control 
group and all other experimental treatments (LSD). The 
size of A2 NSNs did not change significantly after exposure 
to acute thermal stress (Figure 2b). However, there was a 
decrease in the size of A2 nuclei (Figure 2c) in caterpillars 
returned to 23 °C in comparison to all other experimental 
treatments except the control group (LSD). Acute exposure 
to high temperature induced an increase in A2 nuclei size 
in comparison to the control group (one-way ANOVA F 
4,168 = 2.794; P < 0.01).

3.2. L2’ NSNs after acute thermal stress
After acute exposure to high temperatures, large-grained 
neurosecretory material was visible in the cytoplasm of 
L2’ NSNs (Figure 3). The number of these neurons and the 
size of their nuclei were similar in all groups (Figures 4a 
and c). On the other hand, significant changes in the size 
of L2’ NSNs (Figure 4b) were observed after exposure to 
high temperature, in comparison with the control group 
(one-way ANOVA F 4,86 = 4.804; P < 0.01). Fisher’s LSD 
test revealed significant increases in the size of these NSNs 
both after 1 h of exposure to 35 °C and in the group of 
caterpillars allowed to recover for 12 h after 12 h of stress, 
in comparison to the other experimental groups.
3.3. Densitometry and quantitative assessment of PAGE 
profiles
Analysis of SDS PAGE electropherograms (Figure 5a) 
and densitograms (Figure 5b) showed quantitative and 
qualitative differences in protein band intensity among the 
treatments. The number of protein peaks increased after 
exposure of caterpillars to 35 °C in all cases, compared 
to the control group. In the densitograms (Figure 5b) we 
shaded the bands in the regions of PTTH (11–15 kDa) 
and bombyxin (4–6 kDa) molecular masses (Kelly et al., 
1991). Using Photo-Capt software these protein bands 
were quantified, and the results are presented in Figure 
6. A protein band of Mr 11–12 kDa was detected in all 
experimental groups (Figure 6a), and the volume (the sum 
of all intensities included in the defined area) of this band 
decreased in the groups exposed to the high temperature 
for 12 h and 24 h and the group returned to 23 °C for 12 h, 
compared to the control group and the group exposed to 
35 °C for 1 h. The second band, with Mr around 13–15 kDa 
(Figure 6a), was detected only in the control group and 
groups 12h and 12/12h. High environmental temperature 
and recovery from this acute stressor increased the size of 
this protein band in comparison to the control group. The 
observed changes suggest that prolonged exposure to this 
temperature may have induced a decrease in the amount of 
PTTH together with the appearance of increased amounts 
of the second PTTH isoform. Quantification of protein 
bands from the Mr region of bombyxin are presented 
in Figure 6b. In the control group and the groups of 
caterpillars exposed to a high temperature for 1 h and 12 
h, a band was detected at Mr 3–4 kDa. This band increased 
in size with duration of exposure to the high temperature. 
A second band (Mr 4–5 kDa) was present only in the 
groups exposed to the acute stressor for 1 h or 24 h and 
then allowed to recover for 12 h. In the group exposed for 
1 h this band was faint, but in the other 2 groups (12 h and 
24 h) it was several times more intense.
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4. Discussion
High temperature disrupts the normal synthesis and 
release of neurosecretory material from NSNs (Ivanović 
et al., 1975), thereby disturbing the hormonal balance 
and normal development and metamorphosis (Ivanović 
and Janković-Hladni, 1991). Highnam (1958) reported 
increased activity of type A lepidopteran NSNs in Mimas 
tiliae after exposure to high temperature, while Clark 

(1966) observed an intensive influx of neurosecretory 
material in Locusta migratoria corpus cardiacum upon 
exposure to the same stressor. Using the same temperature 
treatments as in the present study, the increased cytological 
parameters of dorsomedial A1’ NSNs and large amounts 
of observed neurosecretory material in the neuron body, 
led us to conclude that in A1’ NSN synthetic activity 
increased (Ilijin et al., 2013). Analyzing some cytological 

Figure 1. Brain transverse cross-sections of Lymantria dispar fourth instar caterpillars after exposure to 35 °C 
for 1 h (1h), 12 h (12h), and 24 h (24h). The 12/12h group of caterpillars was transferred for 12 h recovery at 23 
°C after 12 h exposure to 35 °C. The control group was reared at 23 °C (C). Arrows indicate the protocerebral A2 
neurosecretory neurons (NSNs). The bar represents 10 µm.

Control
 

A2 

1h 

A2  

12h  

   A2  

12/12 h  

 
A2  

24 h 

A2  



ILIJIN et al. / Turk J Biol

161

parameters of A2 NSNs, located in the medial part of 
the L. dispar protocerebrum and previously found to be 
bombyxin immunopositive (Ilijin et al., 2011), we detected 
increased activity after exposure to thermal stress (Figures 
1 and 2). An increased ambient temperature of 35 °C for 
a short time (1 h, 12 h, or 24 h) stimulated the release of 
bombyxin immunopositive material from A2 NSNs. In 
most insect species carbohydrate metabolism provides 
energy for activation of the compensatory mechanisms 
that enable survival under stress, including increased 
ambient temperature (Ivanović et al., 1992; Đorđević 
et al., 1995). Trehalose is the principal energy source in 
the hemolymph, and energy is released by enzymatic 
hydrolysis to glucose. Insect carbohydrate metabolism is 
regulated by neurohormones including bombyxin, which 
increases the level of trehalose utilization in hemolymph. 
In stressful conditions, bombyxin synthesis is intensive and 
followed by increased trehalase activity that accelerates 
trehalose hydrolysis to glucose. Trehalase also improves 
glucose transport to target tissues and cells to provide the 

energy necessary for activation and maintenance of stress 
defense mechanisms (Satake et al., 1997).

The increased activity of A2 NSNs was obvious from 
the band densities in regions of bombyxin molecular mass. 
After exposure of the caterpillars to 35 °C, a new protein 
band with a slightly higher molecular mass was detected 
(4–5 kD instead of 3–4 kD). The band density of both 
protein isoforms increased upon exposure to this acute 
stressor (Figure 6b). All analyzed parameters, cytological 
and densitometric, indicated that short-term exposure of 
fourth instar gypsy moth caterpillars to a temperature of 35 
°C stresses bombyxin immunopositive neurons. Activation 
of carbohydrate metabolism could be the end result of 
this short-time exposure to high temperature. After the 
exposure of caterpillars to the same temperature regimes, 
protein bands with molecular masses corresponding to 
those of members of heat-shock protein (HSP) families 
were detected, indicating that short-time exposure to this 
temperature probably induces synthesis of HSP (Ilijin et 
al., 2013).
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Figure 2. Changes in the number of A2 NSNs in Lymantria dispar fourth instar caterpillars after exposure to 35 °C (a), their size 
(b), and the size of their nuclei (c). Caterpillars were exposed to 35 °C for 1 h (1h), 12 h (12h), and 24 h (24h). The 12/12h group of 
caterpillars was transferred for 12 h recovery at 23 °C after 12 h exposure to 35 °C. The control group was reared at 23 °C (C). Error 
bars indicate the standard error of the mean (SEM) (n = 15). Different letters (a,b) indicate significant differences between groups 
(LSD test, P < 0.05).
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In the dorsolateral part of the gypsy moth 
protocerebrum, L2’ type NSNs were immunopositive to the 
large form of PTTH (Ilijin et al., 2012). This form of PTTH 
has a multifunctional role in stress-protective mechanisms, 
stimulating ecdysone synthesis through increased Ca2+ 
influx in the protothoracic gland cells (Dedos et al., 2005). 
Under some environmental conditions a decrease in PTTH 
level is adjustable, i.e. normal development is postponed in 
an unfavorable environment. The components of this signal 
transduction cascade are not fixed but vary depending on 
the stressogenic conditions to which insects are exposed 

during development (Rybczynski and Gilbert, 2003).
In our experiment acute exposure to a high 

environmental temperature led to intensified synthetic 
activity but a low level of secretion (much of the 
neurosecretory material was present in the cytoplasm) 
of L2’ NSNs in gypsy moth caterpillars (Figures 3 and 
4).  Besides L2’ NSNs in the dorsolateral part of the 
protocerebrum, L2 NSNs are found too. Upon exposure 
to the same short-term temperature regimes used in this 
experiment, changes in morphometric characteristics and 
retention of neurosecretory material in the cytoplasm 

L2 ’  
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12 / 12 h

   L2’  

24 h

L2’  

Figure 3. Brain transverse cross-sections of Lymantria dispar fourth instar caterpillars after exposure to 35 
°C. All abbreviations are the same as in Figure 1. Arrows indicate the protocerebral L2’ NSNs. The bar 
represents 10 µm.
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pointed to decreased secretory activity in gypsy moth 
caterpillars (Ilijin et al., 2013).

Densitometric analysis (Figure 5b) revealed that high 
temperatures probably induced a switch-off of PTTH 
isoforms synthesized in L2’ NSNs. The new isoform was 
detected only upon exposure of caterpillars to this stressor. 
Moreover, the amount of this isoform increased with 
prolonged exposure to high temperatures and remained 
after a 12 h recovery at the control temperature (Figure 6). 
The isoform detected in the control group was also present 
in the groups exposed to 35 °C for 1 h and 12 h.

All our results revealed that PTTH immunopositive 
L2’ NSNs increase synthetic activity, but decrease secretory 
activity after acute exposure to thermal stress. This is 
probably due to a low level of PTTH and ecdysone in 
hemolymph. In a previous work we found that short-term 
acute temperature stress did not disturb normal synthesis 
and release of the neurohormones responsible for the 
synthesis of allatotropic neurohormones (Jeon and Lee, 
1999) in L. dispar A1 NSNs (Ilijin, 2009). Allatotropins 
directly stimulate the synthesis and release of juvenile 

hormones in the corpora allata, which represses PTTH 
and ecdysone secretion. When the juvenile hormone 
disappears, a PTTH/ecdysone endocrine cascade is 
initiated, and the insect can reach its final body size 
(Nijhout, 2003).

Several stimuli are known to stimulate the synthesis of 
PTTH and cue from stretch receptors and photoperiod. 
In Lepidopteran species PTTH synthesis is controlled 
by critical weight gain and photoperiod. Nijhout (1981) 
showed that achieving critical weight is a major stimulation 
factor for PTTH release. However, there are several check 
points for caterpillars before they attain critical weight. 
After the minimal viable weight, they continue feeding 
until starvation no longer affects the time of pupation 
(Nijhout, 2003). In feeding insects, the nervous system 
synthesizes and releases bombyxin (Satake et al., 1997; 
Masumura et al., 2000).

A second stimulus for PTTH secretion is photoperiod. 
PTTH can be released only during a specific 8-h window 
each day (Truman and Riddiford, 1974). If caterpillars 
do not achieve critical weight before this time, feeding 
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Figure 4. Changes in the number of L2’ NSNs in Lymantria dispar fourth instar caterpillars after exposure to 35 °C (a), their size (b), 
and the size of their nuclei (c). All abbreviations are the same as in Figure 2. Error bars indicate the standard error of the mean (SEM) 
(n = 15). Different letters (a,b) indicate significant differences between groups (LSD test, P < 0.05).
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continues until the next photoperiod gate. Feeding 
stimulates the synthesis and release of neurosecretory 
material (Dogra and Gillott, 1971). McBrayer et al. (2007) 
indicate that the final insect body size is determined by a 
balance between insulin-like hormones, which are growth 

regulators, and PTTH-like neurohormones, the role of 
which is to set the duration of the feeding interval.

Our results led us to conclude that brief, 1-h to 24-h 
exposure of L. dispar caterpillars to a temperature of 35 °C 
represents a stressor. The synthesis and release of bombyxin 

  

b

 

a

Figure 5. SDS PAGE profiles of brain homogenates of the fourth instar Lymantria dispar caterpillars obtained by 
16.5% SDS PAGE (a) and their densitograms (b). The volume is the sum of all intensities included in the defined 
area, and it is displayed for each line. Patches show the differences in volume in the region of PTTH and bombyxin 
molecular masses. All abbreviations are the same as in Figure 1.
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is increased, which usually means that trehalose hydrolysis 
is augmented, and larvae are in a continuous feeding phase. 
This indicates that environmental conditions are not 
favorable and that the caterpillars have not reached their 
critical weight. Therefore, 2 important signal gates for the 
synthesis and release of prothoracicotropic neurohormones 
are not reached, and PTTH immunopositive NSNs are 
secretorily inactive. Our findings may contribute to the 

body of knowledge regarding coherency between these 2 
insect neurohormones and their function in normal and 
stressogenic environments.
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