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1. Introduction
In the western Palearctic, the genus Erinaceus is currently 
represented by three species: the west European hedgehog 
(E. europaeus) distributed in western Europe, the northern 
white-breasted hedgehog (E. roumanicus) distributed 
in eastern Europe and Ponto-Mediterranean regions, 
and the southern white-breasted hedgehog (E. concolor) 
distributed in Asia Minor and the Levant (Hutterer, 2005; 
Bolfíková and Hulva, 2012). In the scientific literature, 
until recently, E. roumanicus was listed mostly as E. 
concolor (Sommer, 2007). Studies based on morphological 
data (Kryštufek, 2002) and mitochondrial and nuclear 
genetic data (Santucci et al., 1998; Seddon et al., 2001, 2002; 
Schaschl et al., 2002; Berggren et al., 2005; Bannikova et 
al., 2014) indicated a deep split between E. roumanicus 
and E. concolor, suggesting them as sister species with a 
divergence time of approximately 1–2 Myr (Bannikova 
et al., 2014). The phylogeography of hedgehogs is well 
studied and represents a known example of postglacial 
colonization routes in the western Palearctic (Hewitt, 

2000). A deep split between hedgehogs and their east-
west and north-south subdivisions based on genetic data 
(Santucci et al., 1998; Suchentrunk et al., 1998; Seddon 
et al., 2001, 2002) suggests the strong effects of climate 
on the current distribution of their genetic variation and 
indicates different refugia history and expansion patterns 
(Berggren et al., 2005). The Balkans has been identified 
as the most likely refugium of E. roumanicus (Seddon et 
al., 2002; Bolfíková and Hulva, 2012). The northward 
expansion route of E. roumanicus from the Balkans into 
central Europe followed a pattern of vegetation expansion; 
however, previous studies found a slightly divergent lineage 
in Austria, Hungary, and western Russia, which indicated 
that there may have been more than one route from the 
Balkans to the north (Seddon et al., 2002). Seddon et al. 
(2001) indicated that refugia populations existed rather as a 
series of small isolated populations due to spatial variability 
in climate, as suggested by pollen data (Huntley, 1999). 

The Pleistocene climatic oscillations had a strong 
influence on the patterns of genetic and geographical 
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distribution and demography dynamics of thermophilic 
species, forcing them into major latitudinal and/or 
altitudinal range shifts (Hewitt, 1999, 2004; Schmitt, 
2007). The glacial survival in the southern refugia 
(Iberian, Apennine, and Balkan peninsulas), followed 
by postglacial recolonization of northern Europe, seems 
to be a general model (Hewitt, 2001), suggesting that 
populations from different refugia responded individually 
to habitat availability during the interglacial periods, as well 
as at the end of the last glaciations, therefore expanding 
their distribution ranges and different genetic lineages 
northwards (Taberlet et al., 1998; Hewitt, 1999, 2004). It is 
noteworthy that recent genetic analyses revealed that typical 
Mediterranean species could also survive glacial phases in 
extra-Mediterranean refugia in some climatically favorable 
but geographically limited areas, such as the Carpathians 
or even north of the Alps (Schmitt and Varga, 2012). In 
the Balkan Peninsula, which is recognized as one of the 
hotspots of biodiversity, genetic studies of several mammal 
species (wild boars, gray wolves, brown hares) have proved 
the existence of high genetic diversity and provided signs 
of population structuring, with southerly biased gene pools 
(Djan et al., 2014; Veličković et al., 2015). The increase of 
genetic diversity toward the southern part of the peninsula 
and phylogeographic analyses, specifically for wild boars 
and brown hares, support a leading-edge colonization 
hypothesis (Hewitt, 1999), because recolonization was only 
based on the gene pool present in the northern areas of each 
peninsula during the last glacial maximum. 

While the phylogeography of hedgehogs has been 
well studied (Santucci et al., 1998; Seddon et al., 2001, 
2002; Berggren et al., 2005), information on the genetic 
variability of E. roumanicus is scarce. Previous studies 
were mostly based on wide samples from central and 
eastern Europe (Seddon et al., 2001, 2002; Bolfíková and 
Hulva, 2012), and even though these studies did include 
some samples from the Balkan countries, there were no 
hedgehog specimens from the Central Balkan region. In 
response to ever-increasing anthropogenic changes to 
natural ecosystems, genetic monitoring through the usage 
of different molecular markers is the best estimator of 
natural populations’ sustainability, since genetic variability 
underpins populations’ long-term potential for survival 
and adaptation (Palsbøll et al., 2007; Schwartz et al., 2007). 
Mitochondrial DNA is one of the most extensively used 
molecular markers in determining molecular diversity 
and phylogeography of many species (e.g., Castor fiber 
(Durka et al., 2005), Cervus elaphus (Zachos and Hartl, 
2011), Sus scrofa (Alexandri et al., 2012; Veličković et al., 
2015), Ursus actros (Hirata et al., 2013)), given the high 
evolutionary rate and lack of recombination (Avise, 2004). 
Even though analyses based solely on mtDNA have their 
own limitations due to mtDNA being a single locus marker 
with an effective population size of one-fourth of nuclear 

autosomal sequences, it is still a choice in preliminary 
analyses of genetic variability of wild populations. The 
main aim of this study is to estimate the genetic diversity 
and structuring of E. roumanicus individuals from the 
Central Balkans based on the variability of mtDNA control 
region sequences, but also to complement an already 
proposed phylogeographic scenario of this species with 
more comprehensive sampling across the Central Balkans.

2. Materials and methods
Tissue samples of 108 road-killed northern white-breasted 
hedgehogs were collected across Central Balkan countries: 
Serbia (74), Montenegro (9), Bosnia and Herzegovina (9), 
and Macedonia (16) (Figure 1).

Total DNA was extracted using a slightly modified 
approach as published by Kocher et al. (1989). The 
5’ segment of the mitochondrial control region was 
amplified following the procedure published by Seddon 
et al. (2001) with the primer pair Prol-He and DLH-He. 
The PCR products were purified following the ExoSAP 
protocol (Thermo Fisher Scientific, Waltham, MA, USA), 
and sequencing was conducted using the forward primer 
given above. 

Sequences were aligned using the Clustal W algorithm 
(Thompson et al., 1994) implemented in BioEdit 7.0.9.0. 
(Hall, 1999), and final adjustments were done by eye. The 
dataset consisted of 108 sequences with the full length of 
alignment of 420 bp (419 bp excluding sites with gaps).

DNA polymorphism parameters for all sequences (h 
- haplotype diversity, π - nucleotide diversity, k - mean 
number of pairwise differences) were calculated in DnaSP 
v.5 (Librado and Rozas, 2009), not considering sites with 
gaps. The neutrality tests (Fu’s Fs and Tajima’s D test), as 
well as the mismatch analysis, were done in ARLEQUIN 
3.5.1.2 (Excoffier and Lischer, 2010), also not considering 
sites with gaps. The significance of the fit of the observed 
mismatch distribution to the expected was estimated by 
means of the sum of the squared deviations (SSD). In 
order to avoid any possible bias in prior sample groupings 
and loss of real structure patterns, spatial clustering of 
individuals was performed using Geneland 3.0 (Guillot 
et al., 2005). The model based on the multinomial 
distribution of genotypes conditionally based on allele 
frequencies, population memberships, and linkage 
equilibrium was used with a total of 5,000,000 iterations in 
5 independent runs and number of clusters (k) from 1 to 
10, with sampling every 100 steps and discarding the first 
20% as burn-in. 

DNA polymorphism parameters, neutrality tests, and 
mismatch analysis were also calculated for each detected 
spatial group using DnaSP and ARLEQUIN. The analysis 
of molecular variance (AMOVA) among and within 
detected groups, as well as calculation of FST pairwise 
differences, was done using ARLEQUIN.
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Poor sampling and/or missing information in 
previously published studies did not allow us to include all 
available control region mtDNA sequences of hedgehogs 
from the Central Balkans. One sequence from Serbia 
was submitted to GenBank (Acc. No. AF379754), but the 
exact sampling locality was not available in the original 
reference (Seddon et al., 2001); it is marked in the figure 
map somewhere between the border of Croatia and 
Slovenia. In addition, one sequence was published from 
the Bulgarian city of Asenovgrad (Acc. No. HM462028), 
located in the central southern part of Bulgaria, but we 
did not include it since it is not a clear representation of 
the Central Balkan region. Finally, five sequences were 
available from Greece, two of which were represented by 
samples from the European part of Turkey and Crete, and 
we did not include those either.

Having in mind the recent problematic taxonomic 
situation of E. concolor vs. E. roumanicus, but also in order 
to complement an already proposed phylogeographic 
scenario for E. roumanicus, obtained sequences in this 
study were combined with all available E. roumanicus 
and E. concolor sequences present in GenBank (Seddon 
et al., 2001, 2002; Bolfíková and Hulva, 2012) (see 
Supplementary Table S1). For each of those downloaded 
haplotype sequences, respective numbers of individuals 
per haplotype were taken from the original reference. 
Erinaceus concolor haplotype sequences obtained from 
GenBank were regarded as E. roumanicus if the locality 
information in the original references was in accordance 

with the revised distribution ranges of these species. 
The combined set consisted of 225 sequences with a full 
alignment length of 385 bp (further analyses were done 
considering sites with gaps). A median-joining (MJ) 
network (Bandelt et al., 1999) was calculated using Network 
v.4.6.1.3 (available at http://www.fluxus-engineering.com/
sharenet.htm), applying the default settings (ɛ = 0 and 
the variable sites weighted equally = 10), with additional 
postprocessing with the maximum parsimony (MP) 
option. The relationships among haplotypes were also 
assessed by Bayesian inference using MrBayes v.3.2.2 
(Ronquist et al., 2012) via CIPRES Science Gateway v.3.3 
(Miller et al., 2010). Four Markov chains (one cold and 
three heated) were run simultaneously for 30 million 
generations, with trees sampling every 100 generations. 
The HKY model was used, following the best nucleotide 
evolution model determined by MEGA6 (Tamura et al., 
2013). The first 30% of sampled trees were discarded as 
a burn-in, while the remaining trees were used to build 
a 50% majority-rule consensus tree rooted using the 
sequence of Erinaceus europaeus (Acc. No.: X88898.2) as 
an outgroup.

3. Results
In the dataset of 108 control region mtDNA sequences 
from the hedgehogs in the Central Balkans, 13 different 
haplotypes were detected (Table 1). The total number of 
polymorphic sites was 13; 12 of them were parsimoniously 
informative transitions, with 1 singleton. Haplotype 

Table 1. List of control region mtDNA haplotypes of E. roumanicus revealed in the present study.

f Locality Accession number

ErB1 5 MNE (7, 9); SR (21, 25, 26) KY366248

ErB2 3 MNE (13); SR (38, 42) KY366249

ErB3 35 BH (1, 2); MNE (8, 13); SR (14, 16, 17, 18, 19 (7), 20 (3), 23, 28, 32, 33, 34(4), 38, 41, 46); 
MAC (49, 50, 51, 52, 53, 58) KY366250

ErB4 12 BH (3); MNE (11, 12); SR (19 (3), 20, 31, 34 (2), 37, 39) KY366251

ErB5 14 BH (2); MNE (10); SR (15, 19 (2), 20, 22, 24, 33 (2), 34 (2), 36 (2)) KY366252

ErB6 4 SR (15, 35, 37 (2)) KY366253

ErB7 7 SR (15, 19, 20 (2), 28, 32, 40) KY366254

ErB8 3 SR (27, 29, 30) KY366255

ErB9 5 BH (6); SR (37, 45, 48), MAC (54) KY366256

ErB10 4 SR (43, 44), MAC ( 53, 58) KY366257

ErB11 1 SR (25) KY366258

ErB12 8 BH ( 4, 5, 6 (2)); MNE (9); SR (32, 34, 47) KY366259

ErB13 7 MAC (55, 56 (2), 57, 58 (3)) KY366260

Locality numbers of individuals sampled in this study correspond to those in Figure 1 (if more than one individual was sampled per 
locality, its number is denoted in parentheses following locality number). Sampling countries are denoted as SR (Serbia), Bosnia and 
Herzegovina (BH), Montenegro (MNE), and Macedonia (MAC).
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diversity value was 0.851 ± 0.023, while nucleotide diversity 
(π) was 0.00443 and the average number of nucleotide 
differences (k) was 1.855. Nine of 13 haplotypes detected 
in this study were new and not present in the GenBank. 

The majority of haplotypes in the total sample of 
108 individuals were represented with low frequencies, 
ranking from 2.77% to 6.48%, while only one haplotype 
(ErB11) was unique and represented with one individual. 
The most common haplotype was ErB3, occurring in 
32.4% of analyzed individuals (Table 1).

Geneland analysis revealed the presence of four spatial 
groups, which are named after the approximate sampling 
localities: northwestern-central (NWC), northeastern 
(NE), southwestern (SW), and southeastern (SE) groups 
(Figures 1 and 2; Figure S1). The observed differentiation 
in the four groups is further supported by significant 
pairwise ΦST values (Supplementary Table S2). Analysis of 
molecular variance between defined groups also supported 
a genetic differentiation with a statistically significant ΦST 
value (0.210; P < 0.001), even though most of the genetic 
variability was due to differences among individuals within 
groups (78.98%).

The haplotype diversity was highest in the NE group, 
while nucleotide diversity and average number of nucleotide 
differences was highest in the SE group (Table 2).

Overall mismatch distribution was unimodal, and SSD 
values were not statistically significant, confirming the 
hypothesis of sudden expansion. None of the performed 
neutrality tests were significant, but Tajima’s D was 
negative for the total sample and the NWC group, while 
Fu’s Fs value was only positive in the SE group.

The dataset comprising E. roumanicus and E. concolor 
sequences contained 30 different haplotypes (Table S1). 
Results of MJ network and Bayesian inference analyses 
(Figure 3) clearly indicated the existence of two main 
clades that correspond to the abovementioned species. 
All previously published concolor sequences from Europe 
clustered together with E. roumanicus. The E. concolor 
cluster in the Bayesian tree showed further subdivision into 
“eastern” and “western” Asia Minor groups. Only forward 
sequencing used in this study resulted in shorter alignment 
and caused some of the previously published haplotypes to 
collide together, but the general phylogeographic scenario 
was not affected. In fact, after the alignment with the 
sequences obtained in this study, some of the previously 
published haplotypes collided together, but the majority of 
them were haplotypes from the same geographic region. In 
the constructed MJ network, haplotypes from Vojvodina 
(a northern Serbian province) were marked as being from 
the Central European group according to Vojvodina’s 

Figure 1. Geographic position of sampled localities of E. roumanicus from the Central Balkans in this 
study. Numbers of localities correspond to those shown in Table 1, where the number of individuals 
sampled for each locality is also given. Localities were organized in four groups as suggested by 
Geneland analysis (NWC – black circles; NE – red squares; SE – green polygons; SW – blue triangles).
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Figure 2. Distribution of haplotype frequencies in four detected 
groups of E. roumanicus from the Central Balkans. The size of pie 
charts is proportional to sample size. The numbers on the x and y 
axes correspond to longitude and latitude decimal degrees. 

Table 2. Molecular diversity indices and neutrality tests in four detected Northern white-breasted hedgehogs groups in the Central 
Balkans.

NWC
(northwest-central)

NE
(northeast)

SW
(southwest)

SE
(southeast) Total

n 67 9 10 22 108

h 8 5 5 5 13

S 7 4 4 7 13

Tr 7 3 4 6 11

Tv 0 1 0 1 2

Hd 0.777 ± 0.033 0.833 ± 0.098 0.755 ± 0.129 0.779 ± 0.046 0.851 ± 0.023

π 0.00342 0.00358 0.00419 0.00518 0.00443

k 1.431 1.500 1.755 2.169 1.855

SSD (P) 0.002 (0.33) 0.034 (0.19) 0.074 (0.20) 0.040 (0.19) 0.002 (0.36)

Tajima’s D (P) –0.238 (0.47) 0.078 (0.56) 0.927 (0.82) 0.414 (0.70) –0.668 (0.26)

Fu’s Fs (P) –1.202 (0.30) –1.505 (0.07) –0.901 (0.20) 1.079 (0.75) –3.187 (0.11)

n – Number of individuals; h – number of haplotypes; S – number of polymorphic sites; Tr – number of transitions; Tv – number of 
transversions, Hd – haplotype diversity; π – nucleotide diversity; k – average number of nucleotide differences.
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geographic position north of the Sava and Danube river 
streams (upper boundary of the Balkan Peninsula), 
while sequences of individuals south of the Danube and 
Sava river streams were considered as the Balkans group 
(Figure 3).

4. Discussion 
The Balkan Peninsula, through the variety of its regions, 
complex geological history, and interactions between 
populations, species, and ecosystems, represents a region 
with remarkable genetic diversity, shaped by historical 
as well as contemporary evolutionary forces (Kryštufek 
and Reed, 2004; Savić, 2008). Keeping in mind the 
limited sampling in previous studies and the absence of 
information on the genetic structure of E. roumanicus in 
the Balkans, we used control region mtDNA sequences in 
the present study with the main aim of exploring genetic 
diversity and structuring of this species in the Central 
Balkans.

The results of this study indicate a moderate level of 
haplotype diversity of northern white-breasted hedgehogs 
from the Balkans. The nucleotide diversity revealed in this 
study was similar to that determined in the previous study 
by Seddon et al. (2001), which was based on the analysis 
of mitotypes consisting of a partial control region and 
cytochrome b sequences of 22 individuals from Turkish 
Thrace and Greece, northward through Austria and Hungary 
to Estonia. In comparison with the genetic diversity of central 
Europe (Bolfíková and Hulva, 2012), E. roumanicus from the 
Balkans showed higher genetic diversity indices. In the study 
of E. roumanicus individuals predominantly from the Czech 
and Slovak republics, haplotype and nucleotide diversity were 
0.289 ± 0.077 and 0.00182, respectively (Bolfíková and Hulva, 
2012). The first analysis of genetic variability in E. roumanicus 
from a limited sampling region in Serbia indicated a high level 
of genetic diversity (Stefanović et al., 2016), while broader 
sampling from the Balkans in this study confirmed higher 
genetic diversity as compared to that of central Europe.

Figure 3. a) Median-joining network of the mtDNA control region haplotypes of E. roumanicus and E. concolor. Circle sizes are 
proportional to haplotype frequencies, while circle colors correspond to defined regions as shown in the legend. Each branch represents 
one mutational step; if more than one mutation step is present, it is denoted by the numbers. The MJ network is presented as the shortest 
tree, while lost connections between haplotypes after MP processing are shown with dashed lines. Black circles represent median vectors 
(unsampled or ancestral haplotypes). b) Bayesian phylogenetic tree showing relationships among 30 haplotypes of E. roumanicus and E. 
concolor. The trees were rooted using E. europaeus as an out-group. Haplotype names correspond to those given in Table 1 and Table S1.
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Even though the variety of landscapes and ecological 
factors across the Balkans could indicate a strong 
population structure, our results point to a rather moderate 
genetic structuring of hedgehogs from the Central 
Balkans, based on mtDNA control region sequences. 
Spatial analysis indicated the presence of four significantly 
genetically differentiated groups. Since genetic structuring 
of populations is not obligatory based on the members’ 
geographic vicinity, an a priori definition of populations 
can overestimate or hide the real structuring pattern. 
Spatially explicit Bayesian clustering models can help 
in delimiting individuals based on genetic information 
into three possible major types of genetic structuring 
patterns (genetic clusters, clines, and patterns of isolation-
by-distance), possibly at different geographical scales 
(François and Durand, 2010). Even though we used an 
mtDNA control region, which is considered a selectively 
neutral molecular marker, the observed spatial gradients 
in molecular diversity parameters in hedgehogs from the 
Central Balkans could be a consequence of adaptations 
along an environmental gradient or a consequence of 
secondary contact of groups being separated by climatic 
or geological changes. Kryštufek et al. (2009) showed that 
pattern of size variation in E. roumanicus across Europe 
is a smooth cline along a latitudinal gradient, correlated 
positively with seasonality. On the other hand, the 
observed patterns of genetic variability somewhat support 
the previously postulated general pattern of south-north 
decrease of genetic variability parameters in the Balkans 
as a consequence of past expansions during postglacial 
recolonization. Although we found a lower value of 
haplotype diversity in the defined SE group, its nucleotide 
diversity and average number of nucleotide differences 
were higher than those of any other group. 

It is noteworthy to mention that single marker usage 
limits in-depth population structure analysis; therefore, 
further genetic studies should use more informative 
molecular markers (e.g., microsatellites, SNPs). In 
the landscape analysis of nuclear and mtDNA data 
in individuals from central Europe, similar patterns 
were revealed between the markers used, where two 
subpopulations with an abrupt transition zone were 
detected (Bolfíková and Hulva, 2012).

Among all the observed spatial groups, the SW group 
showed the highest genetic differentiation (Table S2) and 
the lowest number of migrants interchanged with any other 
group, even compared to gene flow between all the other 
groups. Even though the existence of physical landscape 
barriers in northern Montenegro could have resulted in 
reduced gene flow, it is noteworthy to mention that the SW 
group mainly consisted of samples from the coastal region 
of the Adriatic Sea. This group is therefore under different 
ecological and climatic influences, which could have 
resulted in differentiation of this locally adapted group. 

Demographic analyses suggested a recent population 
expansion, which has also been demonstrated for E. 
roumanicus in central Europe (Bolfíková and Hulva, 
2012). Furthermore, the expansion signal is stronger 
in the groups occurring in northern latitudes, while the 
Fu’s Fs and Tajima D values were positive, although not 
significant, in the SE group. This pattern further supports 
the existence of older and more stable groups in the south, 
while a leading bottleneck was more observable along the 
colonization routes toward the north.

The observed population structure in the Central 
Balkans remains less pronounced in analyses of the dataset 
comprising E. roumanicus and E. concolor sequences. The 
MJ network and Bayesian phylogenetic tree display two 
clusters that clearly correspond to E. roumanicus and E. 
concolor. None of the sequences obtained in this study had 
an unexpected phylogenetic position, which completely 
supported the previously suggested split between 
roumanicus and concolor sequence types. Furthermore, 
the E. concolor cluster showed a slight subdivision into 
two geographically different groups, which corresponds 
to the previous findings of Seddon et al. (2002). The 
central position of the E. roumanicus haplotypes from the 
Balkans in the MJ network supports a proposed role of 
this population as the source for the postglacial northward 
expansion. Seddon et al. (2001) showed the existence of 
two higher level clades in the Balkans, based on mtDNA 
data, one with a northern extension to Poland (Clade 
3 – 3) and one to Austria (Clade 3 – 2). The position of 
central European and eastern European haplotypes in the 
network supports the proposed phylogeographic scenario 
(Santucci et al., 1998; Hewitt, 1999, 2000; Seddon et al., 
2001, 2002) and may indicate the existence of two different 
mtDNA lineages originating from the Balkans. In order to 
completely support the present phylogeographic routes, 
wider sampling is necessary, specifically in eastern Europe 
and the region north of the Black Sea. This proposed wider 
sampling would also contribute to a better understanding 
of the influence of extra-Mediterranean refugia on 
phylogeographic patterns of hedgehogs, especially those in 
the Carpathian Basin, since recent studies have indicated 
its importance in ice age survival of European temperate 
species (Schmitt and Varga, 2012). 

In conclusion, a moderate level of genetic diversity 
in northern white-breasted hedgehogs from the Central 
Balkans is revealed, with clinal latitudinal structuring of 
genetic variability in the south-north direction. The central 
position of Balkan haplotypes indicates their role as a 
primary source during postglacial recolonization of central 
and eastern Europe. The subsequent expansions from the 
northern parts of the Balkans may have acted as a bottleneck, 
leading to the observed decrease of genetic diversity towards 
central and eastern Europe, and might support the leading 
edge recolonization pattern proposed for other mammalian 
species in the Balkans (Veličković et al., 2015).
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Figure S1. Median-joining network shows the distribution of 13 Erinaceus roumanicus 
haplotypes from the Central Balkans, with pie chart area proportional to haplotype 
frequencies in relation to the four detected subpopulations. 
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Table S1. List of control region mtDNA haplotypes of E. concolor and E. roumanicus downloaded from GenBank and used in this study.

Original name
of haplotype N Locality Region of Europe

in MJ network*

Abbreviation in 
MJ network and 
Bayesian tree

Reference AN

C1 - 1 7 Russia, Estonia EE H3 Seddon et al., 2001 AF379750

C1 - 2 2 Hungary CE H3 Seddon et al., 2001 AF379751

C1 - 3 2 Austria CE H4 Seddon et al., 2001 AF379752

C1 - 4 1 Austria CE H3 Seddon et al., 2001 AF379753

C1 - 5 6 Austria, Serbia, Hungary CE H12 Seddon et al., 2001 AF379754

C1 - 6 1 Greece BL H14 Seddon et al., 2001 AF379755

C1 - 7 4 Italy CE H12 Seddon et al., 2001 AF379756

C1 - 8 1 Greece BL H14 Seddon et al., 2001 AF379757

C1 - 9 1 Greece BL H11 Seddon et al., 2001 AF379758

C1 - 10 4 Austria, Hungary CE H10 Seddon et al., 2001 AF379759

C1 - 11 1 Poland CE H10 Seddon et al., 2001 AF379760

C1 - 12 1 Croatia BL H9 Seddon et al., 2001 AF379761

C1 - 13 4 Greece, Turkey BL H5 Seddon et al., 2001 AF379762

C2 - 1 4 Turkey CO2 Seddon et al., 2001 AF379763

C2 - 2 3 Israel CO3 Seddon et al., 2001 AF379764

C2 - 3 2 Israel CO4 Seddon et al., 2001 AF379765

C2 - 4 1 Turkey CO1 Seddon et al., 2001 AF379766

C1 1 Moscow, Russia EE H6 Seddon et al., 2002 AF481501

C2 1 Riazan, Russia EE H6 Seddon et al., 2002 AF481502

C3 1 Briansk, Russia EE H3 Seddon et al., 2002 AF481503

C4 1 Belgorod region, Russia EE H10 Seddon et al., 2002 AF481504

C5 1 Belgorod region, Russia EE H13 Seddon et al., 2002 AF481505

C6 1 Keherson region, Ukraine EE H8 Seddon et al., 2002 AF481506

C7 1 Stavropol, Russia EE H6 Seddon et al., 2002 AF481507

C8 1 Stavropol, Russia EE H7 Seddon et al., 2002 AF481508

C9 1 Dagestan, Russia EE H6 Seddon et al., 2002 AF481509

C10 1 Abkhazia, Georgia CO6 Seddon et al., 2002 AF481510

C11 1 Abkhazia, Georgia CO6 Seddon et al., 2002 AF481511

C12 1 Abkhazia, Georgia CO6 Seddon et al., 2002 AF481512

C13 1 Abkhazia, Georgia CO6 Seddon et al., 2002 AF481513

C14 1 Khosrov reservation, Armenia CO7 Seddon et al., 2002 AF481514

C15 1 Karabah, Azerbaijan CO7 Seddon et al., 2002 AF481515

ER1 45 Slovakia, Poland, Czech Republic CE H3 Bolfíková and Hulva, 2012 HM462024

ER2 1 Czech Republic CE H2 Bolfíková and Hulva, 2012 HM462025

ER3 1 Czech Republic CE H1 Bolfíková and Hulva, 2012 HM462026

ER4 1 Czech Republic CE H12 Bolfíková and Hulva, 2012 HM462027

ER5 1 Bulgaria BL H11 Bolfíková and Hulva, 2012 HM462028

ER6 3 Slovakia CE H10 Bolfíková and Hulva, 2012 HM462029

ER7 3 Slovakia, Czech Republic CE H10 Bolfíková and Hulva, 2012 HM462030

EC1 1 Lebanon CO3 Bolfíková and Hulva, 2012 HM462031

EC2 1 Turkey CO5 Bolfíková and Hulva, 2012 HM462032

*CE – Central Europe; EE – eastern Europe; BL – Balkans.
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Table S2. Pairwise ΦST values between four detected spatial groups in northern white-
breasted hedgehogs from the Central Balkans below the diagonal and its correspond-
ing P-value above the diagonal.

NWC NE SW SE

NWC 0.01802 0.00000 0.00000

NE 0.11284 0.01802 0.00901

SW 0.26924 0.28396 0.00000

SE 0.18620 0.20496 0.33018

NWC – Northwest-central; NE – northeast; SW – southwest; SE – southeast.


