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Abstract 

Lignins and lignin-derived compounds are known to have antibacterial properties. The wound 

healing agents in the form of dressings produce faster skin repair and decrease pain in 

patients. In order to create an efficient antimicrobial agent in the form of dressing in the 

treatment of chronic wounds, a composite hydrogel of bacterial cellulose (BC) and 

dehydrogenative polymer of coniferyl alcohol (DHP), BC-DHP, was designed. Novel 

composite showed inhibitory or bactericidal effects against selected pathogenic bacteria, 

including clinically isolated ones. The highest release rate of DHP was in the first hour, while 

after 24 h there was still slow release of small amounts of DHP from BC-DHP during 72 h 

monitoring. High-performance liquid chromatography coupled with mass-spectrometry 

showed that BC-DHP releases DHP oligomers, which are proposed to be antimicrobially 

active DHP fractions. Scanning electron microscopy and atomic force microscopy 

micrographs proved a dose-dependent interaction of DHP with BC, which resulted in a 

decrease of the pore number and size in the cellulose membrane. The Fourier-transform 

infrared absorption spectra of the BC-DHP showed that DHP was partly bound to the BC 

matrix. The swelling and crystallinity degree were dose-dependent. All obtained results 

confirmed BC-DHP composite as a promising hydrogel for wounds healing. 

 

Keywords 

lignin model polymer; bacterial cellulose; antimicrobial activity.  
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1. Introduction 

Bacterial cellulose (BC) is a natural polymer synthesized by different acetic acid- and other 

bacteria, accomplished by the presence of carbon (fructose, glucose, sucrose, and xylose) and 

nitrogen sources in fermentation medium [1]. BC polymer as hydrogel displays high water 

content (up to 99%), good sorption of liquids, high wet strength, high chemical purity and can 

be safely sterilized without any change of its structure and properties [2]. BC as 

biocompatible material [3-5] increase interest in developing of wide range biomedical 

applications [6-8] and one of them is wound healing [9-11]. In this complex process, the 

moisture in wound provided by different dressings produces faster skin repair and decreases 

pain in patients. Capability to absorb exudate, but also to inhibit or stop the growth of 

microorganisms present in that kind of environment are an important characteristics of a good 

wound healing agent. It was already shown that BC provides rapid tissue regeneration and 

significant capillary formation in the wound area [12, 13], but without antibacterial effect. 

Novel composites assume adding the antimicrobial agents in BC to provide better wound 

healing agents. Some of those different agents are: benzalkonium chloride [14] copper, silver 

and ZnO nanoparticles [15-18], silver sulfadiazine [19], polyhexamethylene guanidine 

hydrochloride [20] etc. Recent studies reported composites of BC with organic natural 

materials, such as silk sericin [21, 22], chitosan [23] and propolis [24, 25] with antibacterial 

activity in wound healing.  

BC porous structure allows high accessibility of compounds in the 3D network. The hydroxyl 

groups on the surface of BC provide the possibility of interaction by chemical bonds and 

electrostatic adsorption [26, 27]. In spite of growing number of publications about BC 

modifications for wound healing, there is a limiting application of BC composites as drug-

delivery systems [28]. 
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Lignin as the second most abundant biopolymer and lignin-derived compounds have been 

proposed to be a very good candidate in medicine and health maintenance as antimicrobials 

[29-32]. They are attractive candidate in hydrogels as multipurpose materials for extensive 

applications in different fields [33, 34]. In our recent work, we have shown that 

dehydrogenative polymer of coniferyl alcohol (DHP), enzymatically synthesized lignin 

model compound from coniferyl alcohol (CA), in a hydrogel with alginate showed a strong 

antibacterial activity, peculiarly against Pseudomonas aeruginosa, Listeria monocytogenes, 

Staphylococcus aureus and Salmonella typhimurium [35]. P. aeruginosa is the most common 

multi-drug resistant pathogen present in chronic wounds that may account for 10% of all 

hospital-acquired infections, and is also found in burns, post-surgical wounds, pressure 

injuries and diabetic foot wounds. Secretions of this microorganism form a biofilm, which 

protects the bacteria from antibiotics and the immune system, making it challenging to 

eradicate these bacteria [36, 37]. Biofilm-forming bacteria are recognized as a major 

impediment to wound healing. The efficacy of traditional wound care against biofilm-

infected wounds is low, and there is a need to improve the design of the formulations of long-

term release systems. 

In this study we report the characterization of the BC-DHP hydrogel as the formulation of 

long-term release of DHP and its antimicrobial activity against P. aeruginosa and other 

detrimental biofilm-forming bacteria. This composite is proposed to be healing agent suitable 

for application in a form of dressing with prolonged effect on wounds. 

2. Materials and Methods   

2.1. Synthesis of BC, DHP, and preparation of the BC-DHP composite hydrogel 

The bacteria culture Komagataeibacter intermedius IMBG180 (the collection of 

microorganisms of the Institute of Molecular Biology and Genetics, Kyiv, Ukraine) was used 

for the cellulose-based pellicle production. The culture was grown in HS medium [38] for 5 
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days at 30 °C. After incubation, the bacterial cellulose synthesized on the surface of the 

medium was harvested and purified with the method described in details by Kukharenko et 

al. [20].  

The DHP of coniferyl alcohol (CA; Sigma Aldrich, Germany) was synthesized according to 

the procedure described in detail in [35]. Briefly, the reaction mixture of CA, H2O2, and 

horseradish peroxidase (Sigma Aldrich, Germany) was prepared in phosphate buffer, pH 7.3. 

After mixing and shaking the resulting suspension of DHP was centrifuged and washed in 

doubly distilled water. Finally, the precipitate was air-dried and dissolved in 5% dimethyl 

sulfoxide (DMSO) water solution. 

It was shown that BC pellicles pre-treated with 100% DMSO better bound DHP (see the 

Results section 3.3). In all here reported analyses, sterile purified BC membranes were used, 

pre-soaked in 100% DMSO for 24 h and then in different DHP solutions (0.5, 1 and 5 

mg/mL; BC-DHP0.5, BC-DHP1, and BC-DHP5, respectively) for 48 h. The BC hydrogels 

treated only with 100% DMSO were used as the control.  

2.2. Fourier Transform Infrared (FT-IR) absorption spectroscopy 

To assess the structural differences in BC-DHP0.5 and BC-DHP5 composite hydrogels in 

comparison with control BC the vibrational modes spectroscopy was used. Each sample was 

air dried on a glass slide in the form of a thin film. The film thickness was 0.025 - 0.03 mm. 

The IR absorption analysis was carried out with a Bruker-113v Fourier transform IR 

spectrometer. The measurements were performed at room temperature in the range of 500 – 

4000 cm
−1

 with a spectral resolution of 1.0 cm
–1

. 

2.3. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) imaging 

The control BC and BC-DHP0.5, BC-DHP1 and BC-DHP5 composite samples (untreated and 

treated with 100% DMSO prior DHP impregnation) were coated with gold and studied using 

a ZEISS EVO 50XVP scanning electron microscope, equipped with INCA450 X-ray energy 
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spectrum analyzer with INCAPentAFETx3 detector and HKL CHANNEL-5 system for 

diffraction of reflected electrons produced by Oxford Instruments (Witney, United Kingdom).  

Detailed information on the surface topography of all samples was obtained using the Atomic 

Force Microscope (NT-MDT Ntegra SPM) in Semicontact Error Mode. The scanning 

frequency was kept at 0.74 Hz, meaning that the step size in the recorded images of 50×50 

and 100×100 nm was 0.20 and 0.39 nm, respectively. The cantilever oscillation amplitude 

(i.e. Set Point) during the measurements was 6.0 V. The recorded images in Height represent 

the surface topography, while the images Mag (Magnitude) represent so-called error signal 

which provides higher contrast for sharp features on the surface. The chosen scanning mode 

enables BC filaments to be more distinct from DHP globules in the recorded images, and 

moreover, it enables precise determination of shape and dimensions of all surface features. 

2.4. X-Ray Diffraction (XRD) 

The phase composition of control BC, BC-DHP0.5, BC-DHP1 and BC-DHP5 composite 

samples was examined by X-ray diffraction (Raguku Ultima IV, Japan). The X-ray beam was 

nickel-filtered CuKα1 radiation (λ = 0.1540 nm, operating at 40 kV and 40 mA). XRD data 

were collected from 3° to 45° (2θ) at a scanning rate of 2°/min. Phase analysis was done by 

using the PDXL2 software (version 2.0.3.0, 2011, Rigaku Corporation, Tokyo, Japan) with 

reference to the patterns of the International Centre for Diffraction Data database version 

2012. The crystallinity (Xc) of all samples was calculated from the relative integrated area of 

the crystalline and amorphous peaks by applying the equation: Xc=(Acr/(Acr+Aam))x100, where 

Acr and Aam were the integrated areas of the crystalline and amorphous peaks after 

deconvolution of experimental patterns [39]. 

2.5. Water holding capacity (swelling degree) of the composite hydrogel 

The control BC, BC-DHP0.5, BC-DHP1 and BC-DHP5 composite samples were cut into 

pieces 3×2×0.3 cm large and lyophilized for 24 h. All samples were weighted and then 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

7 
 

soaked in deionized water for 72 h. The water holding capacity or swelling degree presented 

in percentage was calculated as follows: Swelling degree(%)=((Ws-Wi)/Wi)x100, where Wi 

was the initial weight of the dried sample and Ws was the weight of sample after soaking in 

water. The swelling degree was calculated at time intervals: 15
th

, 30
th

, 45
th

, 60
th

 min, 2
nd

, 3
rd

, 

24
th

, 48
th

 and 72
th

 h. All experiments were performed in triplicate. Kruskal-Wallis H test 

followed by post hoc Dunn’s test was used to evaluate the differences between control and 

composite samples.  

2.6. Antibacterial activity of BC-DHP composite hydrogel 

The following Gram-negative P. aeruginosa (ATCC 27853) and S. typhimurium (ATCC 

13311) and Gram-positive bacteria L. monocytogenes (NCTC 7973) and S. aureus (ATCC 

6538) were used. The organisms were obtained from Mycological Laboratory, Department of 

Plant Physiology, Institute for Biological Research ''Siniša Stanković'', University of 

Belgrade, Serbia. The other bacterial isolates (S. aureus #1*; S. aureus #2*, P. aeruginosa*; 

and Serratia sp.*) were human isolates obtained from patients at the Department of 

Microbiology, Clinical Center of Serbia, Belgrade, Serbia. Bacteria were cultured on Muiller 

Hinton Agar (MHA, Merck, Germany) at 37 ˚C for 24 h. The antibacterial test of BC-DHP 

membranes was carried out by modified microdilution method [40] in bacterial suspensions 

with sterile saline to a concentration of 1.0 x 10
5
 CFU/mL measured on densitometer DEN-

1B (Biosan, Latvia). The minimum inhibitory and bactericidal concentrations (MICs and 

MBCs) were determined using 96-well microtitre plates. The BC-DHP membranes 7 mm in 

diameter were added in Triptic Soy broth (100 μL) with the bacterial inoculum (1.0 x 10
5
 

CFU per well). The concentrations in wells of released DHP from BC-DHP discs, BC-DHP1, 

BC-DHP2.5, and BC-DHP5, were determined by measuring absorbance at 272 nm after 24 

hours and were 0.22, 0.42 and 0.88 mg/mL, respectively. The microplates were incubated at 

rotary shaker (160 rpm) for 24 h at 37 °C. The lowest concentrations without visible growth 
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(at the binocular microscope) were defined as concentrations that completely inhibited 

bacterial growth (MICs). The MBCs were determined by serial sub-cultivation of 5 μL into 

microtiter plates containing 100 μL of broth per well and further incubation for 24 h. The 

lowest concentration with no visible growth was defined as MBC, indicating 99.5% killing of 

the original inoculum. All experiments were performed in triplicate.  

2.7. In vitro release of DHP from the BC-DHP composite hydrogel 

The control BC and BC-DHP1 composite membranes were cut into disks 28 mm in diameter 

and 1 mm average thickness. In vitro release of DHP from the composite samples was 

monitored in 15 mL PBS, pH 7.4. All experiments were performed at 37 ºC with constant 

shaking at 100 rpm. Aliquots of the sample (1 mL) were taken at predetermined time 

intervals (1, 2, 3, 24, 48 and 72 h) and concentration of DHP in dissolution media was 

determined spectrophotometrically (Shimadzu, Kyoto, Japan) at 272 nm. Immediately after 

measuring absorbance, aliquots were poured back into dissolution media, to maintain a 

constant volume. All experiments were performed in duplicate.  

2.8. High-Performance Liquid Chromatography and Mass Spectrometry (HPLC/MS) 

analysis 

Reversed phase HPLC/MS analysis was used for qualitative analysis of dissolved DHP 

samples: bulk DHP solution, released DHP fragments from BC-DHP5 (released DHP 

fraction) and non-adsorbed DHP after removing BC-DHP5 from DHP solution (unbound 

DHP fraction). The analyzed samples were dissolved in methanol and filtered through 0.22 

μm pore-size filters. The samples were injected in Waters HPLC system consisted of 1525 

binary pumps, thermostat and 717+ auto sampler connected to the Waters 2996 diode array 

and EMD 1000 Single quadrupole detector with ESI probe (Waters, Milford, USA). 

Separation was performed on a Symmetry C-18 RP column 125x4 mm size packed with 5 

µm diameter particles (Waters, Milford, MA, USA) connected to appropriate guard column. 
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Two mobile phases, A (0.1% formic acid) and B (acetonitrile) were used at flow of 1 mL 

min
-1

 with the following gradient profile: the first 20 min from 10 to 20% B; next 10 min of 

linear rise up to 40% B, from 30 to 45 min 70% B is reached followed by 5 min reverse to 

initial 10% B and additional 5 min for column equilibration. Post column flow splitter (ASI, 

Richmond, CA, USA) with 5/1 split ratio was used to obtain optimal mobile phase inflow for 

ESI probe. UV signals were recorded in DAD scan mode from 200-650 nm and specific 

chromatograms were extracted at 271 nm. For LC/MS analysis, signals for each compound 

were recorded in negative scan mode with following parameters: capillary voltage 3.0 kV, 

cone voltage -35 V, extractor and RF lens voltages were 3.0 and 0.2 V respectively. Source 

and desolvation temperatures were 120 
o
C and 380 

o
C, respectively, with N2 gas flow of 550 

L\h. The data acquisition and spectral evaluation for peak confirmation were carried out by 

the Waters Empower 2 Software (Waters, Milford, USA).

3. Results and discussion 

3.1. Synthesis of bacterial cellulose-lignin composite hydrogel 

As hydrogels, natural polymers and composite materials, represent both a bandage and a 

matrix for therapeutics in wound healing, the new composite hydrogel based on bacterial 

cellulose and lignin model polymer was designed. K. intermedius synthesizes the pure form 

of BC, which does not require intensive processing to remove bacterial cell and metabolites. 

Sterile purified BC membranes, pre-soaked in 100% DMSO for 24 h and then in different 

DHP solutions (0.5, 1 and 5 mg/mL; BC-DHP0.5, BC-DHP1 and BC-DHP5, respectively) for 

48 h, were characterized and used in antibacterial analysis (Fig. 1).  

3.2. FT-IR absorption spectroscopy 

The absorption spectra for DHP, control BC, BC-DHP0.5 and BC-DHP5 membranes are 

shown in Fig. 2. The BC-DHP0.5 absorption spectrum was insignificant in comparison with 

control BC. Noticeable changes were observed in the spectrum with BC-DHP5. The decrease 
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of the bands characteristic for DHP in the spectrum of BC-DHP on one side and increase of 

certain bands characteristic for BC on the other is an indicator of interaction between DHP 

and BC. Namely, the DHP bands at: 824 and 861 cm
-1

 (C-H out-of-plane vibration in 

positions 2, 5, 6 in G units), 970 cm
-1

 (HC=CH out of plane deformation (trans)), 1035 cm-1 

(aromatic C-H in plane deformation), 1141 cm
-1

 (aromatic C-H in plane deformation), 1220 

cm
-1

 (C-C plus C-O plus C=O stretch, G condensed>G etherified), 1272 cm
-1

 (G ring plus 

C=O stretch), 1420 cm
-1

 (aromatic skeletal vibration combined with C-H in plane 

deformation), 1462 cm
-1

 (C-H deformations; asymmetric in CH3 and CH2) and 1512 cm
-1

 

(aromatic skeletal vibrations) [41, 42] were decreased in the spectrum of BC-DHP. The bands 

at 1602 cm
-1

 (C=C aromatic) and 1660 cm
-1

 (C=C in side chain) in BC-DHP were slightly 

shifted in different directions: 1602 to 1599, and 1660 to 1667. This can testify that the 

vibrations were disturbed by the environment. On the other side, there was an increase in the 

cellulose bands at 1111, 1126 cm
-1

 (C-O, C-C from C-2-O-2) and at 1162 cm
-1

 (C-O-C 

glycoside link, ring) characteristic for BC, while the bands at 1281, 1315 cm
-1

 (CH2 

wagging), 1336, 1362 cm
-1

 (O-H in plane bending), 1372 and 1428 cm
-1

 (CH2 scissoring) 

[43] are not changed considerably. Decrease of the characteristic lignin bands indicates 

changing DHP environments during complexation with cellulose, which is an indicator of 

binding. 

The typical BC bonds were observed in composite spectra, e.g., β-1,4 glycosidic bonds 

absorption band at 897 cm
−1

[44]. When considering the BC-DHP5 spectra in comparison to 

control BC, although a weak interaction, an appearance of a new band at 3293 cm
−1

 could 

serve as a proof of the impregnation of DHP in BC. Deformed S=O sulfoxide group 

vibrations (attributed to DMSO, used as DHP solvent) had been revealed in BC-DHP 

composite samples in 1070 – 1030 cm
−1

 spectral range. DMSO as the electron accepter [45] 

could cause the peak shifts to lower wavenumbers. At the same time, while intensity of 
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absorption bands related to BC were enhanced somewhere in BC-DHP up to 3 times, e.g., at 

1111-1126 cm
-1

 and at 1162 cm
-1

, a vibration mode of the C(1)-H(β)/COC was practically 

undisturbed. This may indicate that cellulose molecules are in different orientations in the 

presence of DHP, comparing to ones of its absence.  

The increase of certain cellulose bands indicates that cellulose molecules are in different 

orientations in the presence of DHP, comparing to the orientations in its absence, which is an 

indication of binding. Based on the absorption spectra, the IR crystallinity index (abs. at 

1427/895 cm
-1

) [46] calculated for all samples showed a dose-dependent increasing of 

crystallinity for BC-DHP composites. The values of IR crystallinity index were 3.4, 4.0 and 

4.25 for control BC, BC-DHP0.5 and BC-DHP5, respectively. Obviously, the changes in BC-

DHP0.5 occurred but they were not observed in absorption spectrum due to the low sensitivity 

of absorption spectroscopy. 

3.3. SEM and AFM imaging 

In Fig. 3, SEM images of control BC and BC-DHP composite samples (BC-DHP0.5, BC-

DHP1, BC-DHP5) untreated and treated with 100% DMSO before impregnation with DHP are 

shown.  

It was found a dose-dependent decrease in the amount of pores in the composite samples 

treated with DMSO. BC-DHP5 was almost completely lacked in pores. The average pore 

sizes were 123.6 nm for BC-DHP0.5 and 52.7 nm for BC-DHP5. This effect was not observed 

in the BC-DHP samples not treated with DMSO. Therefore, it can be assumed that the 

treatment of BC membranes with DMSO significantly increased the ability of DHP to bind to 

BC filaments/fibers. 

In cellulose polymer, glucose chains are forming fibers, which are further aggregating in 

ribbons (3 nm), and these ribbons, aggregating in filaments (30-100 nm), subsequently form a 

web-shaped network structure [47]. The control BC sample in this study showed nanoscale 
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network structure with filaments of size <30 nm, which are smaller than previous published 

[20, 48]. 

The topography of control BC and BC-DHP composite samples is presented in Fig. 4.  

The control BC sample consisting of the interconnected network of BC fibers organized into 

filaments 20 nm in diameter, was porous and with the noticeable smooth texture of 

background areas. All BC-DHP samples exhibited rough multiphase structure, consisting of a 

continuous network of BC fibers/filaments, randomly organized pores and DHP globules. 

The branching interconnected fibers were fairly uniform in width, which was in the range of 

0.7 - 2.7 nm. On the other side, the synthetic analogue of lignin, DHP, is a branched molecule 

with the tendency to form globules organized in an onion like layered structure [49, 50]. In 

BC-DHP samples, depending on the concentration of DHP, AFM topography images showed 

randomly spread or attached to the surface elongated or irregular spherical particles, mostly 

oligomers of low and moderate molecular weights. In BC-DHP0.5 and BC-DHP1 composite 

samples the size of DHP globules was predominantly in the range of 4 – 8 nm. In BC-DHP5 

hydrogel DHP globules were more visible with a tendency to form larger irregular 

architectures in the range of 4 – 12 nm. The size of the globules is mostly in agreement with 

structures previously identified by AFM [51].  

3.4. XRD characterization and water holding capacity (swelling degree) of the composite 

hydrogel 

The XRD patterns of the control BC, BC-DHP0.5, BC-DHP1 and BC-DHP5 composite 

samples are presented in Fig. 5. All the samples were amorphous but showed peaks at 2θ at 

14.2°, 16.7°, and 22.7°, corresponding to the (1-10), (200) and (110) Miller indices of 

microbial cellulose [52]. The lowest intensity of peaks was noticed for the control BC and 

with increasing of the concentration of DHP the intensity of peaks also increased (BC-DHP0.5 

< BC-DHP1 < BC-DHP5). The values of full width at half maximum (FWHM) for control 
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BC, BC-DHP0.5, BC-DHP1 and BC-DHP5 composite samples were 81.97, 9.68, 9.85, 9.64, 

respectively. The degree of crystallinity (Xc, in percentage) for control BC, BC-DHP0.5, BC-

DHP1 and BC-DHP5 composite samples were 62.07, 70.22, 72.26, 74.38, respectively. The 

obtained results of crystallinity degree confirmed diffractograms of the samples presented in 

Fig. 5, clearly indicating dose-dependent crystallinity for BC-DHP composite samples. 

Crystallinity, as a demonstration of hydrophobicity of the material [53] and swelling, as a 

demonstration of hydrophilicity, are in close relation. Swelling ability or the ability of water 

to penetrate into the structure [54] is very important dressings’ characteristic [55]. The results 

of water holding capacity (swelling ability) during 72 h are shown in Fig. 6.  

In the first 15 min of dipping in water, all the samples reached more than 3 times of their 

initial weight. During the monitoring time the swelling degree increased and showed dose-

dependent behavior (control > BC-DHP0.5 > BC-DHP1 > BC-DHP5). The control BC had the 

highest holding capacity in the range of 86 – 97%. The composite samples had a swelling 

degree in the range of 83 – 97%, 78 – 93% and 74 – 88% for BC-DHP0.5, BC-DHP1, and BC-

DHP5, respectively. Kruskall-Wallis and Dunn’s post hoc test showed significant differences 

in water holding capacity between the samples after 48 h (H(4,12)48 h = 9.462 and H(4,12)72 h = 

10.380, p<0.5; where H(number of groups, number of values) - Kruskal-Wallis chi-squared value). 

Obtained results showed that BC-DHP0.5 composite had the best ability to absorb water 

during the whole monitoring time. The crystalline region of cellulose does not allow water to 

enter its region as it caused lower swelling ability of the material [56]. That theory was 

proven by the preceding study [57] showing that the lower the crystallinity of cellulose 

powder, the higher was the moisture sorption. Herein, control BC was the most amorphous 

sample and with the best ability to absorb water (97%) with the crystallinity index of 62%, 

which is similar to previously reported studies [58, 59]. Swelling capacities of the BC-DHP 

composites were predicted from the calculated degree of crystallinity. The crystallinity of 
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composites increased and their swelling ability decreased in a dose-dependent manner. Also, 

the IR crystallinity index revealed an increase in crystallinity for BC-DHP0.5 in 1.26 and for 

BC-DHP5 in 1.43 times. All mentioned characteristics are in coexistence with previously 

reported results where control BC had lower crystallinity than composites with pectin and 

xyloglucan [60]. 

3.5. Antibacterial activity of BC-DHP composite hydrogel 

The antibacterial activity of BC-DHP membranes is shown in Table 1. BC-DHP exhibited 

antibacterial activity on all tested bacteria, with exception of P. aeruginosa and S. aureus 

#1*. The inhibition potential was only obtained towards S. aureus #2* and S. typhimurium, 

while the bactericidal effect was not achieved. Minimal inhibitory and bactericidal 

concentrations of DHP that were effective against L. monocytogenes and Serratia sp.* were 

in the range of 0.22-0.88 mg/mL. Bactericidal activity was observed against P. aeruginosa* 

at all tested concentrations of DHP, while S. aureus was sensitive at MBC 0.88 mg/mL. 

Based on the obtained results, where BC-DHP hydrogel was effective against P. aeruginosa, 

S. aureus, and Serratia sp. isolated from the patients’ chronic wounds, it has a potential to be 

used in  

medical treatments as antibacterial dressing.

3.6. In vitro release of DHP from the composite hydrogel 

Fig. 7A shows release profile of DHP from BC-DHP1 membranes. It is obvious that after an 

initial burst release of 34% in the first hour, BC-DHP membranes allowed slow and 

continuous release of DHP in PBS solution. After 24 hours of faster release rate, BC 

continued to release small amounts of DHP for the next 72 hours. After 72 hours, released 

amount of DHP was 46.2%. The intensive release of DHP in the first hours could be 

beneficial for patients to prevent spreading an infection at the beginning of wound infection 
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therapy, while keeping the constant higher concentration of antimicrobial compound for the 

next 72 h is suitable for maintaining antimicrobial capacity.  

In order to characterize the mechanism of DHP release, the experimental data were fitted into 

different mathematical models, such as: zero-order, first-order, Higuchi and Korsmeyer-

Peppas kinetic model. The highest value of correlation coefficient (R
2
) was obtained for the 

Korsmeyer-Peppas model (with the equation: Mt/M∝=ktn, where n is the release exponent 

related to the mechanism of the release). The n value was smaller than 0.5 (Fig. 7B) 

indicating that the release of DHP from BC-DHP composite can be characterized as a quasi-

Fickian diffusion [61, 62]. All obtained results of in vitro DHP release study also showed that 

it was partially governed by DHP diffusion throughout the BC polymeric mesh and was 

dependent on the high swellability of the BC membranes. Lower water solubility of larger 

oligomers of DHP and their possible electrostatic interactions with BC could be responsible 

for the 50% of unreleased DHP from the membranes. 

3.7. HPLC/MS analysis  

Fig. 8 represents chromatograms recorded at 271 nm, for DHP solution, released DHP 

fraction and unbound DHP fraction. All chromatograms show qualitatively similar peaks but 

with significant quantitative differences in regions characteristic for different size of CA 

oligomers.  

Peak 1 is characterized by the main signal of 327 m/z followed by 195 and 179 m/z 

fragments and low intensity signal of 375 m/z which could be attributed to the 8-O-4 dimer. 

Peak 2 shows the similar fragmentation pattern but with the major signal at 195 m/z and 

lower at 327 and 179 m/z may originate from 8-O-8. The most prominent peak (3) recorded 

at 271 nm has two major MS signals at 339 and 327 m/z, respectively, with low-intensity 

signal recorded at 357 m/z, corresponding to the 8-5 dimer (Fig. 8.S1). Peaks 4 and 5 are 

characterized by the main signal at 327 m/z followed by 179 and 389 m/z which could 
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originate from 8-8 linked dimer moiety. Peaks 6 and 7 have the strongest signal at 357 m/z 

followed by 179 m/z and the weak signal at 537 m/z suggesting trimer structure with 8-8 

linking pattern (Fig. 8.S2).  

In general, most of the DHP peaks gave the signals characteristic for CA dimers, trimers and 

tetramers (327 m/z; 339 m/z; 357 m/z; 535 m/z and 713 m/z) [63]. Since the single 

quadrupole is used, a detailed structural analysis is unreliable but the positive correlation of 

expected longer retention times with CA oligomers size argue in favor of such peak 

evaluation. The HPLC/MS analysis showed that larger oligomers are more abundant in DHP 

solution in comparison with the released DHP fraction and unbound DHP fraction. This 

indicates that BC binds larger oligomers and releases smaller oligomers. These results are in 

accordance with the results of in vitro release of DHP from BC-DHP composite membranes. 

Comparing with the literary data, the most probable types of bonds in the DHP oligomers are 

8-O-4, 8-8 and 8-5, which are typical for this lignin model polymer [64]. The released 

compounds, mostly dimers and trimers, may be antimicrobially active DHP fractions. 

4. Conclusion 

The novel synthesized composite based on bacteria cellulose and lignin model polymer, BC-

DHP, designed in the form of dressing, showed an inhibitory/bactericidal effect against 

clinically isolated biofilm-forming bacteria P. aeruginosa, S. aureus and Serratia sp. and 

laboratory strains ones S. aureus, L. monocytogenes, and S. typhimurium. In vitro release 

analysis showed the intensive release of DHP in the 1
st
 h and keeping the constant higher 

concentration of antimicrobial compounds for the next 72 h. HPLC/MS analysis confirmed 

that released compounds were mostly dimers and trimers of CA. Since BC-DHP composite 

showed high swellability and prolonged release of antibacterial compounds, which could be 

beneficial for patients to firstly prevent spreading an infection and then to maintain 
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antimicrobial capacity, it is suitable for pre-clinical trials as a promising agent for chronic 

wounds healing. 
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Figure captions 

Fig. 1. Schematic presentation of the hydrogels preparation  

Fig. 2 Fragments of the Fourier Transform Infrared absorption spectra (500-4000 cm
-1

) for: 

control bacterial cellulose (BC), dehydrogenate polymer (DHP), BC-DHP0.5 composite and BC-

DHP5 composite. 

Fig. 3. Scanning electron microscopy images of: A - native BC; B - control BC (with 100% 

DMSO), C, E, G – BC-DHP0.5, BC-DHP1, BC-DHP5 composite samples, respectively, untreated 

with 100% DMSO; D, F, H - BC-DHP0.5, BC-DHP1, BC-DHP5 composite samples, respectively, 

treated with 100% DMSO. Scale bars 200 nm. In the insets in D and H pore sizes are denoted. 

Fig. 4. Atomic force microscopy images (Height/Mag –Topography and Error signal, 

respectively) on the 100x100 nm and 50x50 nm sample area of all sample surfaces obtained by 

Semicontact Error Mode: A - control BC, B - BC-DHP0.5 composite, C - BC-DHP1 composite, D 

- BC-DHP5 composite. 

Fig. 5. X-ray diffractograms of control BC and BC-DHP composite samples (BC-DHP0.5, BC-

DHP1 and BC-DHP5) 

Fig. 6. Water holding capacity (swelling degree) in percent of control BC and BC-DHP0.5, BC-

DHP1 and BC-DHP5 composite samples. *p<0.5; **p<0.01 (Kruskall-Wallis H test, Dunn’s post 

hoc test) 

Fig. 7. Release profile of DHP from BC-DHP composite hydrogel (A) and DHP release data 

fitted to Korsmeyer–Peppas kinetic model (B). 

Fig. 8. Overlapped HPLC-UV chromatograms of DHP solution, released DHP fraction and 

unbound DHP fraction recorded at 271 nm. CA stands for monomeric coniferyl alcohol and 

peaks 1-12 represent dominant oligomers in analyzed solutions. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4.  
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Fig. 5. 
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Fig. 6. 
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Fig. 7. 
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Fig. 8. 
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Table 1. Antibacterial activities of BC-DHP composite for the released DHP concentrations. 

MIC - minimum inhibitory concentration; MBC - minimum bactericidal concentration

 BC-DHP membranes 

 (DHP concentrations in wells) 

Bacteria 

 BC-DHP1 

(0.22 mg/mL) 

MIC/MBC 

 BC-DHP2.5 

(0.42 mg/mL) 

MIC/MBC 

 BC-DHP5 

(0.88 mg/mL) 

MIC/MBC 

S. aureus (ATCC 6538) -/- -/- -/+ 

S. aureus #1* -/- -/- -/- 

S. aureus #2* +/- -/- +/- 

L. monocytogenes (NCTC 7973) +/- +/- -/+ 

P. aeruginosa (ATCC 27853) -/- -/- -/- 

P. aeruginosa* -/+ -/+ -/+ 

S. typhimurium (ATCC 13311) -/- +/- +/- 

Serratia sp.* -/- +/+ +/+ 
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Highlights 

 Novel composite BC-DHP in form of dressing showed inhibitory/bactericidal effect 

 BC-DHP showed highest release of the active substance during the first 24 h 

 Released active compounds were oligomers of coniferyl alcohol 

 High swellability of hydrogel confirmed its potential role in chronic wound healing 
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