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Authors: B Šošić-Jurjević, D Lütjohann, K Renko, B
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Highlights: 

 We examined whether isoflavones increase hepatic thyroid hormone concentrations and 

affect cholesterol metabolism in middle-aged rats  

 Serum T3 was not affected while hepatic T3 was almost doubled, which supports 

increased local T3 availability. 

 Obtained results are compatible with displacement of TH from TTR, major transport 

protein in rodent blood and human CSF.  

 Hepatic increase of T3 correlated with up-regulated expression of the Cyp7a1 gene and 

elevated 7α-hydroxycholesterol 

 IF also lowered 24-hydroxycholesterol and desmosterol in liver and serum, while the 

total cholesterol levels remained unchanged.  

 

 

 

Abstract  

We examined whether isoflavones interfere with thyroid homeostasis, increase hepatic thyroid 

hormone concentrations and affect cholesterol metabolism in middle-aged (MA) male rats. 

Thirteen-month-old Wistar rats were injected subcutaneously with 35 mg/kg b.w./day of 

genistein, daidzein or vehicle (controls) for four weeks. Hepatic Dio1 gene expression was up-

regulated by 70% (p<0.001 for both) and Dio1 enzyme activity increased by 64% after genistein 

(p<0.001) and 73% after daidzein treatment (p<0.0001). Hepatic T3 was 75% higher (p<0.05 for 

both), while T4 increased only after genistein treatment. Serum T4 concentrations were 31% 

lower in genistein- and 49% lower in dadzein-treated rats (p<0.001 for both) compared with 

controls. Hepatic Cyp7a1 gene expression was up-regulated by 40% after genistein and 32% 

after daidzein treatment (p<0.05 for both), in agreement with a 7α-hydroxycholesterol increase 

of 50% (p<0.01) and 88% (p<0.001), respectively. Serum 24- and 27-hydroxycholesterol were 

30% lower (p<0.05 for both), while only 24-hydroxycholesterol was decreased in the liver by 

45% after genistein (p<0.05) and 39% (p<0.01) after dadzein treatment. Serum concentration of 

the cholesterol precursor desmosterol was 32% (p<0.05) lower only after dadzein treatment 

alone, while both isoflavones elevated this parameter in the liver by 45% (p<0.01). In 

conclusion, isoflavones increased T3 availability in the liver of MA males, despite decreasing 

serum T4. Hepatic increase of T3 possibly contributes to activation of the neutral pathway of 
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cholesterol degradation into bile acids in the liver. While isoflavones obviously have the 

potential to trigger multiple mechanisms involved in cholesterol metabolism and oxysterol 

production, they failed to induce any hypocholesterolemic effect.  

 

Keywords: genistein; daidzein; thyroid homeostasis; liver; cholesterol metabolism; middle -aged 

rats 
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1. Introduction  

Genistein and daidzein are isoflavones (IF) present in largest quantities in plant species of 

the bean family (Leguminosae or Fabaceae), particularly soybean. These are potent bioactive 

compounds with antioxidant, anticarcinogenic, osteoprotective and hormone-like actions [1].  

Despite potential health benefits, consumption of soy and IF-enriched food may not be safe 

for everyone [2]. Supplementing the diet with IF was reported to triple the risk of overt 

hypothyroidism in patients with subclinical hypothyroidism [3]. Isoflavones may interact with 

various molecular targets of the thyroid hormone system: both genistein and daidzein can act as 

competitive substrates for thyroid peroxidase (TPO) [4, 5]; genistein, and with a lower potency 

daidzein, inhibit binding of transthyretin (TTR) to thyroxin (T4) and triiodothyronine (T3) [6], 

while only genistein act as an inhibitor of type 1 deiodinase (Dio1) in vitro [7]. However, the 

goitrogenic potential of IF in vivo depends on numerous factors, including insufficient iodine in 

the diet or co-exposure with other goitrogen [8]. Apart from these factors, the effect of IF on the 

thyroid hormone (TH) status in rodent models depends on animal age and endogenous gonadal 

steroid status [4, 8, 9,10]. Comprehensive analyses of the pituitary-thyroid axis and peripheral 

tissue (liver) in an orchidectomized (Orx) middle-aged (MA) rat model after genistein and 

daidzein treatments revealed decreased intrathyroidal and serum TH concentrations, 

accompanied by higher TSH (indices of systemic hypothyroidism). However, in the liver, 

expression of T3– regulated genes Dio1 and Thrsp was up-regulated, while Dio1 enzyme activity 

increased, indicating local hepatic increase of T3 [9]. The obtained hepatic changes were 

compatible with displacement of TH from TTR, the major carrier protein in rodent blood [6], 

resulting in higher hepatic TH uptake. 
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The liver is the organ where cholesterol homeostasis is maintained by a complex network of 

tightly controlled cellular processes. Most recent data analyses confirmed a hypocholesterolemic 

effect of soy protein isolate and IF-enriched soy, but the effect of IF extracts alone is not 

completely clear [11]. Apart from a well-known interference with estrogen receptors [12], IF 

were shown to regulate farnesoid (FXR) and liver nuclear receptor (LXR) activity, which are the 

key regulators of cholesterol metabolism [13, 14]. A significant amount of work has 

demonstrated effects of IF on expression and activity of various cytochrome P450 enzymes (CYP) 

in the liver, including CYP7A1 [15]. Data regarding changes in concentration of the endpoints of 

these enzyme activities, cholesterol precursors and oxidation products, are scarce. 

TH plays an important role in the regulation of cholesterol metabolism in the liver, mainly 

through its nuclear receptor β actions [16]. T3 mimetics and analogues, which accumulate in the 

liver and mediate metabolic effects of TH, show high efficacy in reducing serum cholesterol and 

liver steatosis [16, 17]. Lifetime exposure to high doses of genistein (250mg/kg) increased 

hepatic Dio1 expression and activity and mildly reduced lipid droplets in the liver of healthy 

young adult male rats [18]. A recent in vitro study of Ariyani et al. [19] demonstrated that high 

doses of genistein and daidzein enhance thyroid receptor (TR)-mediated transcription in the 

absence of T3. However, IF treatments of acyclic middle-aged female rats did not affect serum 

TH status, nor concentrations of total cholesterol, its precursors or oxidative metabolites, except 

27-hydroxycholesterol, which was decreased in serum and liver [10]. However, female rodents, 

unlike humans, are less susceptible to disruption of thyroid homeostasis after exposure to 

xenobiotics in comparison to males [20].  

The aim of this investigation was to directly measure the effect of IF on local tissue 

concentration of TH in the liver of testes-intact MA rats. Moreover, our goal was to examine 
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whether IF, under the same experimental conditions as applied in our previous study with MA 

females, would affect cholesterol metabolism more prominently, and whether supposed changes 

in hepatic T3 correlate with changes of examined steroidal precursors and/or oxidation products 

of cholesterol metabolism. To the best of our knowledge, such investigation had not been 

performed to date. 

Materials and Methods  

2.1. Animals  

Male Wistar rats were housed in the unit for experimental animals at the Institute for biological 

research “Siniša Stanković”. They were kept in groups of two - three per cage at 22 ± 2 ˚C with a 

12:12-h dark-light cycle. Animal experiments were performed in accordance with Directive 

2010/63/EU on the protection of animals used for experimental and other scientific purposes and 

were approved by the Ethical Committee for the Use of Laboratory Animals of the Institute for 

Biological Research ‘‘Siniša Stanković’’, University of Belgrade, Belgrade, Serbia. 

At the age of 13 months, two weeks prior to the experiments, male rats were put on a semi-

purified soy-free diet, to avoid any additional goitrogenic and estrogenic stimulus. This diet was 

prepared in cooperation with the Department of Animal Nutrition and Botany, Faculty of 

Veterinary Medicine, Belgrade, Serbia, exactly as previously described [9, 10].  

After two weeks of adaptation to soy-free diet, rats were randomly divided into three groups 

(n=6/group). Two groups ere subcutaneously (s.c.) injected with 35 mg/kg of genistein 

(Genistein; LC Laboratories, MA, USA) or daidzein (Daidzein; LC Laboratories, MA, USA), 

respectively, daily for four weeks. In a third group, animals received vehicle only (olive oil was 

sterilized and then mixed and absolute ethanol, ratio 9:1) under the same regime and served as 
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controls (Control). The volume injected was 0.2 ml per animal. Animal age, route and duration 

of isoflavone administration, were the same as in a previous study on acyclic ovary-intact MA 

female rats [10]; the s.c. route of administration was chosen to precisely regulate the dosage of IF 

and to avoid metabolism of dietary daidzein to equol by intestinal microflora [21]. All rats were 

decapitated 24h after the last treatment. Livers were perfused with ice cold physiological saline, 

excised and weighed. Blood was collected from the trunk and the serum stored at -80°C. One 

liver portion was immediately frozen in liquid nitrogen and stored at -80°C. Prior to the analyses, 

frozen tissue was pulverized under dry ice (solid CO2) in pre-cooled Teflon containers, using a 

micro – dismembrator (B. Braun Biotech International GmbH, Melsungen, Germany).  

2.2. Quantification of IF in serum 

Analyses of bioactive aglycones and total isoflavones (aglycones + glucuronides) in serum 

samples (200 µl; n=6) were determined by gas chromatography–mass spectrometry (GC-MS) 

and quantitative nuclear magnetic resonance methods, as previously described [22]. In brief, IF 

levels were determined after drying of serum samples using Freeze Dryers Rotational-Vacuum 

Concentrator (GAMMA 1–16 LSC, Germany). 

Prior to GC–MS analysis, glucuronides in an acidified lyophilized sample were enzymatically 

hydrolyzed by a mixture of β-glucuronidase from Escherichia coli (Sigma-Aldrich, Saint Louis, 

MO, USA). Following a usual treatment and extraction of the hydrolysates, the aglycones were 

silylated with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (Sigma-Aldrich, Saint 

Louis, MO, USA) and subsequently analyzed by GC-MS [9]. The initial analyses were run in full 

scan to verify the presence and identity of IF and their metabolites, which was followed by a 

single ion monitoring quantitation. The ions monitored for identification were the following: m/z 
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425, 482 for daidzein, m/z 470, 234 for equol, m/z 555, 612 for genistein and m/z 685 for 3′-

hydroxygenistein. GC–MS analyses were performed on a Hewlett-Packard 6890N gas 

chromatograph equipped with a fused silica capillary column DB-5MS (5% 

phenylmethylsiloxane, 30 m × 0.25 mm, film thickness 0.25 μm, Agilent Technologies, USA) 

and coupled with a 5975B mass selective detector from the same company. The injector and 

interface were operated at 250 °C and 320 °C, respectively. Oven temperature was raised from 

70 to 315 °C at a heating rate of 5 °C/min and then isothermally held for 20 min. As a carrier gas 

helium at 1.0 ml/min was used. The mass selective detector was operated at the ionization energy 

of 70 eV, and in full scan mode in the 35–750 amu range and scanning speed of 0.32 s. 

Quantitative NMR experiments were performed according to a previously described procedure 

[23]. Lyophilized samples of known mass were completely dissolved in dimethyl sulfoxide-d6 

and a known amount of an internal standard - sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 

(0.75%, w/w) was added (upon the addition of the standard compound no changes to the 

appearance of the spectra were noted). 13C-decoupled 1H NMR spectra (a large data set was 

collected; 10 points per Hz digital resolution) were recorded with a signal to noise ratio of at 

least 1000:1. Parameters were as follows: number of points in the time domain=32k, spectral 

width=10 ppm, O1=6.0 ppm, p1=45° 1H transmitter pulse, acquisition time=5 s and number of 

scans=1024. After zero-filling and phase and baseline corrections, integration of signals (0.00 

ppm for the internal standard; non-overlapping signals in the region 6.4–7.3 ppm for IF or IF-

metabolites) was performed. The ratio of the signal integrals was used to calculate the amount of 

IF or IF-metabolites in the samples. 

2.3. Quantitative real-time-PCR (qRT-PCR) 
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Total RNA was extracted from the liver (50mg; n=5 for control, n=6 for treatment groups) using 

the TRIzol reagent (Invitrogen, Karlsruhe, Germany), following the manufacturer’s instructions. 

Quality and quantity of extracted RNA were assessed by measurement of absorbance ratio at 

260:280 nm on Eppendorf BioPhotometar, Hamburg, Germany. Complementary DNA (cDNA) 

was synthesized from 500ng of total RNA, using the cDNA Reverse Transcription kit (High 

Capacity cDNA Reverse Transcription Kit, Applied Biosystems, USA). Reactions were carried 

out under RNase - free conditions at 25 °C for 10 min followed by 37°C for 2 h and final 

denaturation at 85°C for 5 min. The cDNA was diluted (1:10) with RNAase-free water and 

stored at -80°C until further use. Gene specific primers for RT-qPCR were designed using the 

NCBI Primer-BLAST tool (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). The assay was 

performed using the ABI Prism 7000 System (Applied Biosystems, CA, USA) and Power 

SYBR® Green PCR master mix (Applied Biosystems, CA, USA). The program included 3 min 

at 95°C for initial denaturation of cDNA, followed by 40 cycles, each consisting of 15 sec of 

denaturation at 95°C, 30 sec at 69°C for annealing step, and 30 sec at 72°C for elongation step.  

The primer sequences were: Dio 1-f: 5′- f TTTAAGAACAACGTGGACATCAGG-3′; Dio 1-r: 

5′- GGTTTACCCTTGTAGCAGATCCT -3′; Cyp7a1- f: 5′-CACCATTCCTGCAACCTTTT -3′; 

Cyp7a1-r: 5′-GTACCGGCAGGTCATTCAGT -3′; Hprt–f: 5′- 

TATGGACAGGACTGAAAGACTTG -3′; Hprt– r: 5′- 

CAGCAGGTCAGCAAAGAACTTATA -3′. Gene expression was calculated by the delta-delta 

CT method, using Hprt as endogenous control for normalization, based on the previous 

housekeeping gene validation and analysis [9].  

2.4. Dio1 enzyme activity measurement  
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Liver protein samples (40 µg of microsomal proteins; n=5 for control, n=6 for treatment groups) 

were prepared and activity of type 1 Dio assayed exactly as previously described [10, 24].  

2.5. Quantification of thyroid hormones in the liver 

Extraction of TH from liver was performed using a liquid-liquid extraction procedure [25]. Liver 

tissue (n=5 for control, n=6 for treatment groups) was homogenized followed by protein 

precipitation, acidification, and delipidation. For the extraction, ethyl acetate served as organic 

solvent. Samples were subjected to protein precipitation followed by removal of phospholipids 

by transferring the supernatant to HybridSPE-phospholipid cartridge (Sigma-Aldrich Co., 

Munich, Germany). The resulting organic layers of liver extraction were evaporated to dryness 

(Eppendorf concentrator 5301 at 45°C), and reconstituted in 100 μl of 50/50 methanol/water 

(v/v; containing 0.1% formic acid) by vortex-mixing for 20 sec. Samples were then centrifuged 

at 14,000 rpm for 5 min and stored at –20°C until liquid chromatography/mass spectrometry 

(LC-MS/MS) analysis. Identification and quantification of T4 and T3 were performed using a 

binary pump HPLC system (Agilent Technologies GmbH, Waldbronn, Germany) and a QTrap 

6500 (AB SCIEX Germany GmbH, Darmstadt, Germany) fitted with a TurboIonSprayinterface. 

The stable isotope standards were used as internal controls during the extraction procedure: 13 C6-

T4 and 13C6 -T3 , (Isoscience LLC, King of Prussia, Pa., USA).  

2.6. Measurement of total TH and TSH in serum 

Serum total T4 and thyroid-stimulating hormone (TSH) were measured using commercial rat 

ELISA kits according to the manufacturer’s instructions (Cusabio Biotech Co., Wuhan, China 

and IBL International GmbH; Hamburg, Germany, respectively), while total T3 was quantified 

using electrochemiluminescence immunoassay (Roche Diagnostics GmbH, Mannheim, 
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Germany). All samples (n=6/group) were measured in duplicate within one run. The intra-assay 

CV for T4 measurements was <15%, for TSH 10%, while for T3 it was 4%. 

2.7. Quantification of sterols and oxysterols in liver and serum 

Characteristic sterols and oxysterols were quantified in order to describe cholesterol metabolism 

in liver and in serum (n=5 for control, n=6 for treatment groups). The O-trimethylsilylated sterol 

and -di-trimethylsilylated oxysterol ethers were separated by gas chromatography from the same 

lipid liver extract or serum sample in analogy to [26]. Cholesterol was detected by less sensitive 

flame-ionization detection (FID) (5α-cholestane, internal standard, ISTD), the non-cholesterol 

sterols (epicoprostanol, ISTD) and the oxysterols (2Hx-oxysterols, ISTD) by highly specific and 

sensitive mass spectrometry in the selected ion monitoring mode (MS-SIM).  

Gas chromatographic separation and detection of cholesterol and 5α-cholestane (ISTD) was 

performed on a DB-XLB 30 m x 0.25 mm i.d. x 0.25 µm film thickness (J&W Scientific Alltech, 

Folsom, CA, U.S.A.) in an Hewlett-Packard (HP) 6890 Series GC-system (Agilent 

Technologies, Palo Alto, CA, U.S.A), equipped with an FID. 

Authentic sterols and deuterium labeled oxysterols were separated on another DB-XLB column 

(30 m x 0.25 mm i.d. x 0.25 µm film thickness, J&W Scientific Alltech, Folsom, CA, U.S.A.) in 

a HP 6890N Network GC system (Agilent Technologies, Waldbronn, Germany) connected with 

a direct capillary inlet system to a quadruple mass selective detector HP5975B inert MSD 

(Agilent Technologies, Waldbronn, Germany). Both GC systems were equipped with HP 7687 

series auto samplers and HP 7683 series injectors (Agilent Technologies, Waldbronn, Germany). 

To determine the serum and hepatic concentrations of cholesterol, its main steroidal precursors 

as well as oxysterols, 50 μg 5α-cholestane (Serva, Heidelberg, Germany) (50 μl from a stock 

solution of 5α-cholestane in cyclohexane (Merck KGaA, Darmstadt, Germany; 1 mg/ml), one μg 
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epicoprostanol (Sigma, Deisenhofen, Germany) (10 μl from a stock solution epicoprostanol in 

cyclohexane; 100 μg/ml) and 50 ng racemic [23,23,24,25-2H4]24(R,S)-hydroxycholesterol 

(Medical Isotopes Inc., Pelham, NH, USA), 100 ng 26.26.26.27.27.27-[2H6]-7α-

hydroxycholesterol, and 100 ng [16,16,17,20,22-2H5]-(25R)27-hydroxycholesterol (Medical 

Isotopes Inc. Pelham, NH, USA) (50 μl from a stock solution in toluene (Merck KGaA, 

Darmstadt, Germany; 2 μg/ml), respectively, were added as internal standards to 100 μl plasma 

or 100 µl of an chloroform/methanol liver extract (5 ml chloroform/methanol, 2:1, v/v) per 10 

mg dry liver tissue). To avoid autoxidation 50 µl of a 2.6.-di-tert.-butylmethylphenol/methanol 

solution (mg/mL) (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) was added.  

After saponification with 2 mL 1M 95% ethanolic sodium hydroxide solution (Merck KGaA, 

Darmstadt, Germany) at 60°C for one hour, the free sterols and oxysterols were extracted three 

times with 3 mL cyclohexane each. The organic solvent was evaporated by a gentle stream of 

nitrogen at 60°C on a heating block. The residue was dissolved in 80 µL n-decane (Merck 

KGaA, Darmstadt, Germany). An aliquot of 40 µl was incubated (1h at 70°C on a heating block) 

by addition of 20 µl of the trimethylsilylating (TMSi) reagent (chlortrimethylsilane, Merck 

KGaA, Darmstadt, Germany)/1.1.1.3.3.3-Hexamethyldisilasane (Sigma Aldrich, Co., St. Louis, 

MO, U.S.A)/pyridine (Merck KGaA, Darmstadt, Germany), 9:3:1) in a GC vial for GC-MSD 

non-cholesterol and oxysterol analysis. Another aliquot of 40µl was incubated by addition of 40 

µl of the TMSi-reagent and dilution with 300 µl n-decane in a GC vial for GC-FID cholesterol 

analysis [27].  

An aliquot of 2 µl was injected by automated injection in a splitless mode using helium 

(1ml/min) as carrier gas for GC-MS-SIM and hydrogen (1ml/min) for GC-FID analysis at an 

injection temperature of 280°C. The temperature program for GC was as follows: 150°C for 
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three minutes, followed by 20°C/min up to 290°C keeping for 34 minutes. For MSD electron 

impact ionization was applied with 70 eV. SIM was performed by cycling the quadruple mass 

filter between different m/z at a rate of 3.7 cycles/sec. Non-cholesterol sterols were monitored as 

their TMSi-, the oxysterols as their di-TMSi-derivatives using the following masses: 

epicoprostanol m/z 370 (M+-90, M+-OTMSi), lathosterol at m/z 458 (M+), desmosterol at m/z 

441 (M+-15, M+-CH3), lanosterol at m/z 393 (M+-90-15, M+-OTMSi-CH3), 26.26.26.27.27.27-

[2H6]-7α-hydroxycholesterol at m/z 462 (M+-90), 7α-hydroxycholesterol at m/z 456 (M+-90), 

[23,23,24,25-2H4]24(R,S)-hydroxycholesterol at m/z 416 (M+-90-44, M+-OTMSi-CD(CH3)2), 

24(S)-hydroxycholesterol at m/z 413 (M+-90-43, M+-OTMSi-CH(CH3)2, [16,16,17,20,22-2H5]-

(25R)27-hydroxycholesterol at 461 (M+-90), (25R)27-hydroxycholesterol at 456 (M+-90).  

Peak integration was performed manually. Cholesterol was directly quantified by multiplying the 

ratios of the area under the curve of cholesterol to 5α-cholestane by 50 µg (ISTD amount).  Non-

cholesterol sterols and oxysterols were quantified from the ratios of the areas under the curve of 

the respective non-cholesterol sterols/oxysterol after SIM analyses against internal standards 

using standard curves for the listed sterols/oxysterols. Identity of all sterols was proven by 

comparison with the full-scan mass spectra of authentic compounds. Additional qualifiers 

(characteristic fragment ions) were used for structural identification (m/z values not shown). 

2.8. Liver histology 

For histology, liver pieces from each animal (n=6/group) were deparaffinized and rehydrated and 

then dehydrated in graded series of ethanol (30%-100%) and xylene and then embedded in 

Histowax (Histolab Product Ab, Göteborg, Sweden). Serial 5 μm thick sections from each liver 

piece were stained with hematoxylin and eosin and histologically analyzed. Digital images of the 
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liver sections were made on a DM RB Photomicroscope with a DFC 320 CCD Camera (Leica, 

Wetzlar, Germany).  

2.9. Statistical analysis 

Statistical analysis was performed using GraphPad Prism 6 (GraphPad, San Diego, CA, USA). 

Normality of distribution and the equality of variance were tested by Bartlett’s and Brown-

Forsythe test, respectively. Statistical significance of the data was determined by one-way 

ANOVA (Dunnet’s post hoc test), while correlation analysis was performed using Pearson's 

coefficient. Data are presented as mean ± SD. P-values less than 0.05 were considered 

significant.  

3. Results 

3.1. Concentration of IF in serum 

Serum samples of the genistein-treated group contained 5.05  0.11nmol/l of free aglycones and 

47.4  0.8 nmol/l of 3′-hydroxygenistein, while the total amount of genistein (free aglycones plus 

glucuronides) was 116.4  2.1 nmol/l, with marked domination of the conjugated form (>95%).  

The 1H NMR spectra of the serum samples of daidzein-treated animals provided detection of 7-

O-glucuronides and free aglycones, while the presence of equol in the samples was not 

confirmed. The average serum concentration of daidzein was 0.28  0.08 nmol/l and these 

concentrations were lower than those of genistein, while the bound daidzein (plus the low 

amount of the free one) was 121.0  0.7 nmol/l, which was comparable to that of genistein. 

3.2. Body mass and liver weight 
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The body mass and liver weights are shown in Table 1. There was no difference in body mass, 

absolute or relative liver weight between controls and the IF – treated groups.  

3.3. Thyroid status in liver and serum 

In the liver, expression of Dio1 gene was found to be up-regulated in the genistein- and the 

daidzein-treated group (by 70%, p<0.001 for both treatments; Fig. 1A), and Dio1 enzyme 

activity had increased (by 64%, p<0.001 and 73%, p<0.0001, respectively; Fig.1B) in 

comparison to controls. 

Only the genistein-treated group had higher T4 level (by 57%, p<0.05; Fig. 1C), while both IF 

increased concentration of T3 (by 75%, p<0.05; Fig. 1D) in comparison to controls.  

Concentration of total T4 in serum of genistein- and daidzein- treated groups was lower (by 31%, 

p<0.001 and 49%, p<0.0001, respectively), while total T3 and TSH remained unaltered in 

comparison to the corresponding control values (Fig. 2A-C). 

3.4. Cholesterol metabolism in liver and serum 

In the liver, concentration of 7α-hydroxycholesterol was increased in the genistein- and the 

daidzein- treated group (by 50%, p<0.01, and 88%, p<0.001, respectively; Fig. 3A), while 24- 

hydroxycholesterol was decreased (by 45%, p<0.01, and 39%, p<0.05, respectively; Fig. 4C) in 

comparison to controls by both isoflavones.  

Concentration of 7α-hydroxycholesterol in serum was unchanged (Fig.3D), while levels of 27- 

and 24- hydroxycholesterol were lower in the genistein- and the daidzein-treated group (by about 

30%, p < 0.05 for both treatments) in comparison to controls (Fig. 3E-F). 
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There was no difference in concentration of the cholesterol precursors lanosterol and lathosterol 

in the liver (Fig. 4A-B) and hepatic desmosterol decreased after genistein and daidzein 

treatments (by 46% and 43%, p < 0.01 for both, respectively; Fig. 4C) in comparison to controls. 

Serum concentration of lanosterol and lathosterol also remained unchanged (Fig. 4E-F). 

Desmosterol level in serum was decreased only after daidzein treatment (by 32%, p<0.05; Fig. 

4G). However, concentrations of total cholesterol in liver or serum remained unaltered after IF 

treatments (Fig. 4D, H).  

Expression of the Cyp7a1 gene in the liver, which encodes Chol 7 α-hydroxylase, the enzyme 

that catalyzes the first and initial step of the main neutral pathway of Chol degradation to bile 

acids, was higher after genistein and daidzein treatments (by, 40% and 32%, p< 0.05, 

respectively; Fig. 5A).  

Moreover, increases in hepatic T3 correlated positively with hepatic Cyp7a1 gene expression 

(r=0.5190, p<0.05; Fig. 5B) and 7α-hydroxycholesterol (r=0.5093, p<0.05; Fig. 5C).  

3.5. Liver histology 

Liver histology of 13-month-old males was characterized by normal morphology of lobules and 

usual arrangement of hepatocytes surrounding central vein (Fig. 6A1, A2). However, mild 

degenerative changes were clearly visible and included hepatocyte hypertrophy and ballooning, 

being present in all examined animals. Microvesicular steatosis was present in <10% of the 

tissue, which may be considered not significant (n=3/6; Fig. 6А2).  

No evidence of fibrosis, inflammation or other histopathological changes was observed in the 

liver of IF-treated rats (Fig. 6B, C). Both IF reduced the occurrence of hepatocyte hypertrophy, 
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while ballooning was less pronounced in genistein-treated animals. With regard to 

microvesicular steatosis, after IF treatments, its occurrence was even less than in controls. 

Discussion  

In this study, we clearly demonstrated that IF elevated the availability of T3 in the liver, 

despite decreasing serum concentration of T4 in male MA rats. Serum T3 was not affected while 

hepatic T3 was almost doubled, which supports our experimental approach to target hepatic local 

T3 formation and action. Hepatic increase of T3 correlated with up-regulated expression of the 

Cyp7a1 gene and elevated 7α-hydroxycholesterol in the liver of MA males. IF also lowered 24-

hydroxycholesterol and desmosterol in the liver and serum, and decreased 27-hydroxycholesterol 

in serum, while the total cholesterol levels remained unchanged.  

Concentration of IF and their metabolites in serum of genistein- and daidzein- treated males 

were similar to equally treated MA females [10], and conformed to concentrations in blood of 

healthy people upon ingestion of similar doses of purified IF [28] or natural food sources rich in 

IF [5]. Our data confirmed that S(-)-equol was, as expected, not present in the serum because of 

the subcutaneous route of administration which consequently avoided any metabolism of dietary 

daidzein to S(-)-equol by gut microbiota [21]. In contrast to rodents, only 20-30% of human soy 

consumers in Western countries have the possibility to produce S(-)-equol, the most potent 

phytoestrogen and antioxidant of all isoflavones [21].  

T3 concentrations and Dio1 enzyme activity in the liver were higher in both IF-treated groups, 

while T4 was elevated only in genistein-treated rats. The obtained results are in line with 

displacement of both TH from TTR by IF as previously demonstrated in vitro [6]. TTR binding 

of both isoflavones might transiently elevate free TH and make them more easily available for 

peripheral tissues, especially liver [29, 30]. Similar results were also obtained for rats treated 
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with synthetic flavonoid F 21388, which is a highly selective competitor for T4 binding to TTR 

[31, 32]. Increased hepatic Dio1 expression and activity, in the context of decreased or 

unchanged serum T4 and/or T3 concentrations, has been reported in rodents for several conditions 

where endocrine disrupting compounds were administered [8, 33] and is compatible with 

elevated hepatic T3 concentrations observed for both genistein and daidzein.  

Aside from elevated T3 concentration, increased hepatic T4 was detected only in case of 

genistein-treated animals, which might be explained by a higher serum concentration of the 

genistein aglycone and the lower affinity of daidzein in competing for T4 binding to TTR [6]. As 

daidzein is a weaker competitor at TTR and has lower serum concentration in comparison to 

genistein, probably not so much T4 could be accumulated in the liver. Dio1 can function as either 

phenolic ring or tyrosyl ring iodothyronine Dio enzyme, thus contributing to both T3 production 

and, according to substrate affinity, even more to metabolism of TH in peripheral organs such as 

liver and kidney [34]. Moreover, differences in inhibition of TH efflux from the liver may also 

contribute to its increased intracellular availability [35, 36]. In the mouse liver, MCT 8 and 10 

seems to be more involved in facilitating the efflux of TH, whereas other unidirectional transport 

systems are critical for the influx of TH [37]. A limited number of papers are available regarding 

IF interference with TH transporters. Genistein was reported to act as an inhibitor of MCT8 at 

high concentrations but is a pharmacological chaperone of mutated human MCT8 at low 

concentrations [38].  

Extrapolation of our data obtained in rodents to humans is uncertain as thyroxin - binding 

globulin (TBG) is the major serum transport protein in humans and IF do not compete with THs 

for binding to TBG or albumin in vitro [6]. However, we should bear in mind that TTR is the 

only transport protein of TH in cerebrospinal fluid, and also that the biological importance of 
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transport proteins is related to the delivery of TH to cells, which makes TTR responsible for 

much of the immediate delivery of TH to human tissues [30, 39]. 

T4 was lower, while T3 and TSH concentrations remained unaltered in serum of IF-treated 

MA rats. Lower serum T4 may be caused by decreased synthesis and secretion via the thyroid 

gland and/or increased hepatic TH conjugation and elimination. Both genistein and daidzein 

were shown to markedly lower activity of TPO, a key enzyme in TH biosynthesis in vitro and in 

vivo [4]. As we detected elevated or unchanged hepatic T4 in case of genistein- and daidzein-

treated rats, respectively, it seems logical to assume that thyroid production of both T4 and T3 

was reduced upon IF treatments. In rats, all of the f T4 and approximately 40% of serum T3 in 

rats is produced by the thyroid gland, while approximately 60% originates from extrathyroid 

deiodination pathways mediated by Dio1 (30%) and Dio2 (30%) enzymes [40]. Keeping in mind 

demonstrated hepatic elevation of T3 and its rapid exchange with the circulation, unchanged 

concentration of T3 and consequently unchanged TSH in serum might be expected. However, 

considering serum TH status, young adult and age-matched MA female rats remained 

euthyroxinemic [4, 5, 10]. This age- and sex-related difference is probably due to a lower 

capacity of the thyroid hormone endocrine system to compensate adverse effects of xenobiotics 

in males with advanced age [20, 41, 42]. In contrast to observations reported here, lower serum 

T4 and T3, as well as higher TSH were obtained in Orx MA model [9], in accordance with 

decreased activity of pituitary Dio2 and hepatic Dio1 enzymes, which indicated local tissue 

hypothyroidism upon orchidectomy [43]. 

Next, we supposed that an elevated hepatic T3 concentration might potentiate cholesterol 

degradation to bile acids in the liver. Our assumption was supported by the fact that T3, among 

several other factors, up-regulates transcription of the P450 enzyme cholesterol 7 α-hydroxylase 
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(Cyp7a1) gene in rats and humans [44, 45]. This is the rate-limiting enzyme in the main neutral 

pathway for elimination of cholesterol from the liver [46]. Indeed, we demonstrated an up-

regulated expression of Cyp7a1 gene as well as increased concentration of CYP7A1 end product, 

7α- hydroxycholesterol after IF treatments. In line with our data, genistein and daidzein elevated 

hepatic expression of Cyp7a1 in adult male Sprague-Dawley rats [15]. However, when we 

treated MA females with IF under the same regime, concentration of 7 α-hydroxycholesterol 

remained unchanged [10]. MA females did not respond to IF treatments with regard to serum T4, 

while hepatic Dio1 activity was moderately elevated only after genistein treatment. The thyroid 

endocrine system in females is less susceptible to xenobiotics than in males [20], and our results 

are in line with indications that hepatic regulation of cholesterol metabolism in males is more 

sensitive to TH manipulation compared to female rodents [47, 48].  

However, it is important to add that regulation of Cyp7a1 is subject to a complex 

transcriptional regulation by the flux of bile acids and cholesterol through the liver, and by a 

great number of dietary and hormonal factors [46] that can be also influenced by IF. Apart from 

the hereby examined interaction with thyroid homeostasis, IF were shown to directly bind to 

estrogen and FXR receptors [12, 13], and to indirectly regulate LXR-mediated actions, possibly 

by mediating receptor phosphorylation via adenosine monophosphate-activated protein kinase 

(AMPK) [14].  

Lower hepatic and serum concentration of 24-hydroxycholesterol and desmosterol 

concentrations as well as serum 27-hydroxycholesterol, were obtained in both IF-treated groups 

compared to controls. 24-hydroxycholesterol is formed by cholesterol 24-hydroxylase 

(CYP46a1) mainly in the brain, but also in the rat liver [49] in quantities comparable to those 

obtained in the present study. In contrast to Cyp7a1, the expression of the Cyp46a1 gene seems 
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to be independent of exposure to factors known to modulate cholesterol homeostasis, including 

nuclear receptor ligands [50]. However, it is possible that IF affected this enzyme activity at the 

posttranscriptional level, considering their free radical scavenging potential [50]. This 

mechanism might also contribute to lower desmosterol levels, as concentration of desmosterol 

and its parallel metabolite 24S,25-epoxycholesterol were reduced in theCyp46a1−/− mouse [50, 

52]. However, it cannot be excluded that the lower concentration of 24- hydroxycholesterol may 

be also due to its elevated degradation, which is mediated by cholesterol 7α- hydroxylase [53] 

and substrate- specific 7α- hydroxylase, CYP39A1 [54]. However, 27-hydroxycholesterol was 

decreased only in the serum of IF-treated groups, indicating its lower production outside of the 

liver [55]. In acyclic MA females, hepatic as well as serum concentrations of this oxysterol were 

lower [10]. Keeping in mind that elevation of 27-hydroxycholesterol promotes atherosclerosis in 

Apoe−/− mice without altering lipid status [56], the obtained change may be also considered 

beneficial. Overall, our obtained results indicate a strong capacity of IF to trigger multiple 

mechanisms involved in the control of oxysterol production. Further studies are needed to clarify 

the molecular interactions underlying the observed changes.  

However, IF treatments and the elevated availability of TH in the liver failed to disturb 

cholesterol homeostasis and to induce a hypocholesterolemic effect in MA males, despite 

significant changes in various oxysterol and desmosterol levels. This is in agreement with 

researchers who claim that IF significantly reduce serum cholesterol only in combination with 

other soy component, such as soy protein isolate (SPI) [11]. As the percentage of aglycone 

relative to total IF in serum (aglycone + conjugated forms) was less than 5% in this and in our 

previous study with age-matched females [10], rapid systemic phase II metabolism might 

attenuate internal exposures to IF and their subsequent pharmacological action if not bound to 
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SPI as a carrier [57]. The aglycone is the available chemical form for rapid intestinal absorption, 

but also for phase II metabolism in the intestine [57]. Thus, as we administered isoflavones 

subcutaneously to avoid species differences in S(-)-equol production by intestinal microflora, 

their bioavailability may be different in comparison to oral administration, which is a potential 

limitation of this study. However, genistein exerts similar estrogenic biological effect on female 

reproductive system independently of administration route [58] and inhibitory effect on TPO 

activity was confirmed upon oral IF administration [4, 5]. These biological effects in target 

tissues are primarily related to aglycone form and not to genistein metabolites [59]. However, for 

a number of endpoints conjugation does not always decrease the biological activity of flavonoids 

[60]. Examinations of hepatic concentration of IF and their metabolites, and direct comparisons 

with oral treatment in case of genistein, may be a good approach to address this issue in the 

future.  

Hepatic elevation of TH under our experimental conditions may also contribute to the anti-

steatotic effects reported for IF [18]. Histological examinations revealed that IF only slightly 

reduced age-related degenerative changes and the occurrence of microvesicular steatosis in the 

liver. However, our experimental design did not provoke fatty liver pathogenesis.  

In conclusion, the obtained results directly indicated that IF increased T3 availability in the 

liver of MA male rats, apparently by displacing TH from serum TTR binding. Hepatic increase 

of T3 may contribute to IF-triggered degradation of cholesterol to bile acids, based on elevated 

level of Cyp7a1 gene transcript and of 7α-hydroxycholesterol in the liver. Isoflavones also 

decreased hepatic and serum 24-hydroxycholesterol and desmosterol, as well as serum 27-

hydrohycholesterol levels. Purified IF seem to have the ability to affect multiple targets involved 
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in the regulation of cholesterol metabolism and oxysterol production in a sex-specific manner, 

but fail to induce a hypocholesterolemic effect.  
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Figure legends 

 

Figure 1. Thyroid state in the liver of middle-aged vehicle (Control)-, genistein (Genistein) - and 

daidzein (Daidzein) - treated male rats. Expression of Dio1 gene (A), Dio1 enzyme activity (B), 

concentration of T3 (C) and T4 (D) in liver. Data are presented as mean ± SD (n=5 for control, 

n=6 for treatment groups; * p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 

Figure 2. Concentrations of total thyroxin (T4; A), 3,3’,5-triiodothyronine (T3; B) and thyroid 

stimulating hormone (TSH; C) in serum of middle-aged vehicle (Control)-, genistein (Genistein)- 

and daidzein (Daidzein)- treated male rats. Data are presented as mean ± SD (n=6/group; 

**p<0.01, ****p<0.0001). 

Figure 3. Concentration of bile acid precursors 7α-, 27-, and 24-hydroxycholesterol in liver (A-

C, respectively) and serum (D-F, respectively) of middle-aged vehicle (Control)-, genistein 

(Genistein)- or daidzein (Daidzein)- treated male rats. Data are presented as mean ± SD (n=5 for 

control, n=6 for treatment groups; * p<0.05, **p<0.01). 

Figure 4. Concentration of cholesterol precursors lanosterol, lathosterol and desmosterol, as well 

as total cholesterol in liver (A-D, respectively) and serum (E-H, respectively) of middle-aged 

vehicle (Control)-, genistein (Genistein)- and daidzein (Daidzein)- treated male rats. Data are 

presented as mean ± SD (n=5 for control, n=6 for treatment groups; * p<0.05, **p<0.01). 

Figure 5. Expression of Cyp7a1 gene (A; * p<0.05), correlation between: T3 and Cyp7a1 (B; 

r=0.5190, p<0.05), T3 and 7α-hydroxycholesterol (C; r=0.5093, p<0.05) in liver of rats of the 

middle-aged vehicle (Control)-, genistein (Genistein)- and daidzein (Daidzein)- treated group 

(n=5 for control, n=6 for treatment groups). 

ACCEPTED M
ANUSCRIP

T



29 

 

Figure 6. Histological examination of hematoxylin- and eosin-stained liver sections of middle-

aged vehicle (A1, A2)-, genistein (B)- and daidzein (C)- treated rats; ms-microvesicular 

steatosis, b- ballooning hepatocytes. 
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Fig 2 
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Fig 5 
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Fig 6 
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Table 1. Body mass, absolute and relative liver weights of middle-aged vehicle (Control)-, 

genistein (Genistein)- and daidzein (Daidzein)- treated rats  

 

 

Group Body mass (g) Absolute liver 

weight (g) 

Relative liver 

weight (% b.w.) 

Control 546 ± 30 16.5 ± 1.5 3.1 ± 0.2 

Genistein 494± 42 14.9 ± 0.6 2.9 ± 0.2 

Daidzein 498± 58 15.2 ± 1.9 2.8 ± 0.1 

The values are mean  SD (n=6)  
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