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Abstract - Searching for novel molecular biomarkers, we investigated cadmium effects on the ratio of specific activities of 
lysosomal and total acid phosphatases (ACPLys/ACPTot) in 4th instar gypsy moth larvae. After acute and chronic exposure to 
10 and 30 µg Cd/g dry food, as well as after recovery from both concentrations, the trait values, plasticity, variability and 
genetic correlations were evaluated. The ACPLys/ACPTot ratio decreased during acute and chronic effects of both concentra-
tions. Inhibition during long-term cadmium exposure was irreversible. Indices of phenotypic plasticity for ACPLys/ACPTot 
ratio were positive for all cadmium treatments. The variability of plasticity was higher after recovery from 10 µg Cd/g dry 
food, compared to recovery from 30 µg Cd/g dry food. A significant correlation coefficient was calculated between short-
term cadmium treatments. Significant changes in the ACPLys activity fraction during all treatments indicate the examined 
trait (ACPLys/ACPTot) could be used as a pollution exposure biomarker.
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INTRODUCTION

Cadmium pollution has increased over the past 
decades as a result of anthropogenic activities. It is 
a non-degradable heavy metal that can be accumu-
lated in animal tissues causing disruptions at all lev-
els of organization. Cadmium was shown to reduce 
growth and longevity and to affect the development 
in various insect species, such as Epirrita autumnata 
(Van Oik et al. 2007), Lymantria dispar (Vlahović 
et al., 2009; Mirčić et al., 2010), Folsomia candida 
(Fountain and Hopkin, 2001), Oncopeltus fasciatus 
(Cervera et al., 2004). The effects of cadmium on 
detoxification and antioxidant systems in insects 
were noticed by Wang and Wang (2009) and Kafel 
et al. (2012). Planello et al. (2007, 2010) showed that 
cadmium exposure could alter the expression of ri-
bosomal genes, as well as heat-shock and hormone 

receptor genes in Chironomus riparius. Ilijin et al. 
(2011) found the size of L2 type neurosecretory neu-
rons was increased in cadmium-treated Lymantria 
dispar larvae. In addition, cadmium impedes cell cy-
cle progression and cell proliferation (Templeton and 
Liu, 2010), DNA repair (Bertin and Averbeck, 2006) 
and cell-cell adhesion (Prozialeck et al., 2008).

After exposure, in Orchesella cincta approxi-
mately 90% of the cadmium is present in the gut (van 
Straalen and Roelofs, 2005). This study investigated 
cadmium effects on the midgut ratio of specific ac-
tivities of lysosomal and total acid phosphatases 
(ACPLys/ACPTot). Phosphatases are metalloenzymes 
that catalyze the hydrolysis of various phospho-
monoesters and take part in transphosphorylation. 
(Calvo-Marzal et al., 2001). Acid phosphatases (ACP) 
are located mainly in the cytosol of midgut cells of 
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Diptera and Lepidoptera, but can also be membrane-
bound or present in the gut lumen (Terra and Fer-
reira, 1994). They participate in the final processes of 
digestion (Cheung and Low, 1975), excretion, water 
resorption and the mechanisms of active membrane 
transport, as well as in the cell replacement during 
apoptosis (Srivastava and Saxena, 1967). Lysosom-
al acid phosphatases take part in the hydrolysis of 
various macromolecules inside the lysosomal com-
partment, which is recognized as a center of heavy 
metal sequestration (Sterling et al., 2007). Cadmium 
is known to induce lysosomal damage (Fotakis et 
al., 2005), to increase lysosomal size and reduce its 
membrane stability (Lekube et al., 2000). Lysosomal 
enzyme release assay is generally considered as a bi-
omarker of exposure to toxicants (Fotakis et al., 2005; 
Nazar et al., 2008).

The aims of this study were (i) to investigate the 
effects of cadmium exposure on the ratio of specific 
activities of lysosomal and total ACP (ACPLys/ACP-
Tot) and to evaluate the possibility of using the trait 
as a biomarker of exposure; (ii) to study the variance 
and plasticity of the ACPLys/ACPTot ratio, and (iii) to 
evaluate the correlations of the ACPLys/ACPTot ratio 
across cadmium treatments.

MATERIALS AND METHODS

Experimental animals and rearing conditions

Female gypsy moths lay a single egg mass that is the 
product of a single mating. All larvae hatched from 
a single egg mass represent full sibs. Twenty egg 
masses were collected from the poplar forest at Op-
ovo (45°03´49”N and 20°27´26”E). Egg masses were 
kept at +4°C until they were allowed to hatch. Lar-
vae were reared individually in plastic cups on a high 
wheat germ diet (HWG) (Bell et al., 1981; Odell et 
al., 1984) at 23°C with a 12 h light/dark photoperiod. 
They were fed daily.

Cadmium treatments

Ten larvae from each of the twenty egg masses were 
randomly selected and assigned to seven experimen-

tal groups. These are as follows: 1 – C or control lar-
vae that were not exposed to cadmium; 2 and 3 – Ac1 
and Ac2 or larvae acutely exposed to two cadmium 
concentrations (10 and 30 µg Cd/g dry food, respec-
tively); after molting into the 4th instar they were fed 
the cadmium diet for three days; 4 and 5 – Chr1 and 
Chr2 or larvae chronically exposed to two cadmium 
concentrations (10 and 30 µg Cd/g dry food, respec-
tively); these were provided a cadmium diet from 
hatching until sacrifice; 6 and 7 – Rec1 and Rec2 or 
larvae recovered after chronic exposure to two cad-
mium concentrations (10 and 30 µg Cd/g dry food, 
respectively); these were provided the cadmium diet 
from hatching until molting into the 4th instar and 
then fed a control diet for three days until sacrifice. 
The cadmium test concentrations were based on the 
active component in Cd(NO3)2·4H2O.

Preparation of midgut homogenates

Larvae were weighed and killed on ice by decapitation 
on the third day of the 4th instar. The midguts were 
removed and kept at -20°C until homogenized. The 
homogenization was done in ice-cold saline 0.15M 
NaCl, followed by 10 min centrifugation at 10,000 
x g. Supernatants were used for enzyme assays. For 
each pooled homogenate, five midguts from a single 
egg mass were used.

Enzyme assays

The activity of total acid phosphatases was measured 
spectrophotometrically by the modified method of 
Nemec and Socha (1988) based on the dephosphor-
ylation of p-nitrophenyl phosphate (pNPP) which is 
a general substrate of phosphatases. The reaction was 
performed at 30°C in a mixture containing 100 mM 
citrate buffer pH 5.6, 5 mM MgCl2, homogenate and 
5 mM pNPP. After 30 min, the reaction was stopped 
by the addition of 0.5 M NaOH, and the absorbance 
of the enzyme reaction product, p-nitrophenol, was 
measured at 405 nm. Lysosomal acid phosphatase 
activity was determined indirectly, by calculating the 
difference between the activities of total acid phos-
phatases and nonlysosomal phosphatases. The reac-
tion mixture was the same as described above with 
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the addition of 50 mM NaF, which is the specific in-
hibitor of lysosomal acid phosphatases. Protein con-
centrations were estimated according to the method 
of Bradford (1976).

Statistical methods

Mean values (MV) and standard errors of mean val-
ues (±SE) were calculated for the ratio of specific ac-
tivities of lysosomal and total ACP. To evaluate the 
cadmium influence on the ACPLys/ACPTot ratio, one-
way ANCOVA was used with the larval mass as cov-
ariate. The analysis of variance was carried out on the 
arc sin-transformed values of the trait. 

Phenotypic plasticity (PP) for each egg mass was 
expressed by an index of PP, which was calculated 
according to the formula of Cheplick (1995):

PPCh = 

where Xc is the ACPLys/ACPTot ratio in the pooled 
homogenate from a single egg mass during control 
treatment, while Xt refers to cadmium treatment. 
Wilcoxon’s test was used for comparing the PP of the 
trait between different cadmium treatments, and sig-
nificance in index variability was estimated by the F-
test. Z-test was used for comparisons of correlation 
coefficients between different environments. Differ-
ences were considered significant when p<0.05 was 
achieved.

RESULTS

Fig. 1 shows the ratio of specific activities of lyso-
somal and total ACP (ACPLys/ACPTot). During acute 
and chronic effects of both cadmium concentrations 
there were significant differences in relation to the 
control. Inhibition of the lysosomal fraction during 
long-term exposure to the effect of cadmium was ir-
reversible considering that the activities did not re-
turn to the control level during a three-day recovery 
period. One-way ANOVA showed that the ACPLys/
ACPTot ratio significantly depended on the cadmium 
concentrations during all treatments (Table 1). The 
indices of phenotypic plasticity for the ACPLys/ACP-

Tot ratio were positive for all cadmium concentration 
treatments (Table 2). The variability of plasticity was 
higher after recovery from 10 µg Cd/g dry food com-
pared to recovery from 30 µg Cd/g dry food (Table 
3). A statistically significant correlation coefficient 
was calculated between short-term cadmium treat-
ments at 10 and 30 µg Cd/g dry food (Table 4).

DISCUSSION

The decrease in the ACPLys/ACPTot ratio during 
short- and long-term stress at both cadmium con-
centrations, as well as the failure of the lysosomal 
phosphatase fraction to recover from inhibition dur-
ing chronic treatment, show that this enzyme is sus-
ceptible to cadmium toxicity. This finding is expect-
ed considering that lysosomes are known to respond 
intensely to heavy-metal stress. According to Fotakis 
et al. (2005), cadmium-induced lysosomal damage is 
one of the earliest events in the cell stress response, 
preceding mitochondria and DNA damage. It in-
cludes the permeabilization and disintegration of 
lysosomes (Messnera et al., 2012), leading to content 
leakage and pH changes. Consequently, the ACPLys 
activity fraction might be reduced in such subopti-
mal conditions. Severe disruption of the lysosomal 
system could explain the irreversible nature of AC-
PLys inhibition that we have shown in this study.

Being accumulated in lysosomes, cadmium 
might inhibit ACPLys directly, due to its high affin-
ity to thiol groups and the forming of cadmium-thiol 
complexes with proteins (van Straalen and Donker, 
1994). Since it is able to replace cations in the metal-
loproteins (Moulis and Thevenod, 2010), cadmium 
could target the ACPLys active site, disabling enzyme 
function. In addition, it might prevent de novo syn-
thesis of the enzyme. According to Planello and 
coworkers (2007), cadmium can inhibit the expres-
sion of ribosomal genes, consequently leading to the 
depletion of ribosomes. Stress may cause an energy 
redirection towards detoxification processes, which 
can also account for alterations in expression pro-
files in favor of proteins involved in stress adaptation 
response. Previously, we found that larval mass did 
not change during acute cadmium treatment, but de-
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creased during long-term exposure (Vlahović, 2009). 
These findings support the assumption of energetic 
shift during cadmium stress, as life history traits take 
longer to manifest changes compared to those at the 
molecular level.

Phenotypic plasticity represents a change of the 
phenotype of a specific genotype in response to envi-
ronmental factors. The capacity of plasticity depends 
on genotype, hormones and environment, and does 
not have to be an adaptive trait (Scheiner, 1993). 
Cheplick’s index of PP is used to explore plasticity 
when some covariates are expected to influence the 
target variable or trait showing the direction of full-
sib plastic response (Valladares et al., 2006). The var-

iability of plasticity was higher after recovery from 10 
µg Cd/g dry food compared to recovery from 30 µg 
Cd/g dry food.

The significant positive correlation of the AC-
PLys/ACPTot ratio between short-term treatments at 
10 and 30 µg Cd/g dry food points to an overlapping 
in the genes that influence the ACPLys/ACPTot ratio at 
two different concentrations during acute treatment. 
Inter-environmental genetic correlations can con-
siderably affect the rate and direction of evolution in 
traits related to the use of environmental resources 
(Via, 1984). Being significantly different from “one”, 
the significant correlation we obtained is not a con-
straint for the evolution of plasticity. On the other 

Figure 1. Changes in ratio of specific activities of lysosomal and total ACP (ACPLys/ACPTot) (MV±SE) after acute (A) and chronic treat-
ments (B) and after recoveries (C, D). Experimental groups were compared by one-way ANCOVA followed by LSD multiple range test. 
Bars marked with different letters differ significantly. C-control; Ac1 and Ac2 – acute exposure to 10 and 30 µg Cd/g dry food; Chr1 and 
Chr2 – chronic exposure to 10 and 30 µg Cd/g dry food; Rec1 and Rec2 – recovery from exposure to 10 and 30 µg Cd/g dry food
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Table 1. Mean square (x103) from the one-way ANCOVA of ratio of specific activities of lysosomal and total ACP (ACPLys/ACPTot) in 
gypsy moth larvae exposed to different cadmium treatments. Larval mass was used as the covariate. Bold values indicate P<0.05; df = 
degrees of freedom

Effect Source of variation df MS F P
Acute Covariance 1 0.960 0.131 0.7193

[Cd] 2 49.621 6.745 0.0024
Error 54 7.357

Chronic Covariance 1 17.470 1.891 0.1747
[Cd] 2 51.856 5.613 0.0061
Error 55 9.239

Recovery1 Covariance 1 12.747 1.253 0.2679
[Cd] 2 53.015 5.212 0.0085
Error 54 10.172

Recovery2 Covariance 1 0.098 0.012 0.9118
[Cd] 2 35.066 4.424 0.0165
Error 55 7.926

Table 2. Mean values (MV) and standard deviations (±SD) of index of phenotypic plasticity according to Cheplick (PPCh) for the ACPLys/
ACPTot ratio depending on cadmium treatments. C1 = 10 µg Cd/g dry food; C2 = 30 µg Cd/g dry food

C1 C2

Effect N MV ±SD N MV ±SD

Acute 19 18.095 23.589 19 17.524 20.160

Chronic 19 20.108 20.762 20 13.939 19.889

Recovery 19 12.387 25.020 19 15.348 14.027

Table 3. Significance of differences between means (Z, Wilcoxon’s test) and standard deviations (F-test) of index of phenotypic plasticity 
for (ACPLys / ACPTot) ratio. Bold value indicates P<0.05

Comparison Z P F P

Ac1 Ac2 1.677 0.0936 1.369 0.5118

Chr1 Chr2 0.523 0.6009 1.090 0.8520

Rec1 Rec2 0.523 0.6009 3.182 0.0183

Chr1 Ac1 1.502 0.1330 1.291 0.5937

Rec1 0.762 0.4460 1.452 0.4364

Chr2 Ac2 0.604 0.5461 1.027 0.9508

Rec2 0.443 0.6580 2.010 0.1448

Table 4. Significance of correlations between cadmium treatments for percent of lysosomal acid phosphatase (ACPLys / ACPTot).  P<0.1   
* P<0.05   

C Chr1 Chr2 Ac1 Ac2 Rec1 Rec2

C 0.223 0.120 0.113 0.039 0.058 0.412
Chr1 0.170 0.204 0.361 0.173 -0.338

Chr2 0.462 -0.054 0.269 0.133

Ac1 0.512* -0.072 -0.032

Ac2 -0.316 -0.111

Rec1 0.194

Rec2
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hand, the marked absence of correlations between 
the treatment groups suggests that independent ge-
netic mechanisms mediate the responses in different 
stress environments. Javakumar et al. (2008) found 
that in the mussel Lamellidens marginalis cadmium 
affected the activity of lysosomal acid phosphatase 
(ACPL) in an exposure duration-dependent manner, 
and Stubberud et al. (2000) evaluated ACP enzymes 
as a sensitive biomarker.

The significant influence of all cadmium treat-
ments on the ACPLys/ACPTot ratio points to its great 
sensitivity, suggesting that ACPLys could be consid-
ered as a bioindicator of dietary cadmium exposure.
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