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Abstract 28 

 29 

Background: Increased fructose consumption and chronic exposure to stress have been associated with 30 

development of obesity and insulin resistance. In the hypothalamus, a crossroad of stress response and 31 

energy balance, insulin and glucocorticoids regulate expression of orexigenic neuropeptides – 32 

neuropeptide Y (NPY) and agouti-related protein (AgRP) and anorexigenic neuropeptides – 33 

proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Objectives: 34 

We investigated whether chronic stress and fructose diet disrupt these hormones’ signaling pathways and 35 

appetite control in the hypothalamus, contributing to development of insulin resistance and obesity. 36 

Potential role of hypothalamic inflammation and oxidative stress in development of insulin resistance was 37 

also analyzed. Methods: Insulin, glucocorticoid and leptin signaling, expression of orexigenic and 38 

anorexigenic neuropeptides, and antioxidative and inflammatory status in the whole hypothalamus of 39 

fructose-fed female rats exposed to unpredictable stress for 9 weeks were analyzed using qPCR and 40 

Western blot. Results: Chronic stress combined with fructose-enriched diet reduced protein content and 41 

stimulatory phosphorylation of Akt kinase, and elevated 11β-hydroxysteroid dehydrogenase 1 and 42 

glucocorticoid receptor expression, while alterations in the appetite regulation (NPY, AgRP, POMC, 43 

CART, leptin receptor, and SOCS3 expression) were not observed. The expression of antioxidative 44 

defense enzymes (mitochondrial manganese superoxide dismutase 2, glutathione reductase and catalase) 45 

and proinflammatory cytokines (IL-1β, IL-6 and TNFα) was reduced. Conclusions: Our results underline 46 

the combination of long-term stress exposure and fructose overconsumption as more detrimental for 47 

hypothalamic function than either of the factors separately, as it enhanced glucocorticoid and impaired 48 

insulin signaling, antioxidative defense and inflammatory response of this homeostasis-regulating center. 49 

 50 
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Introduction 51 

 52 

Increased fructose consumption and pervasive exposure to stress represent inevitable burden of 53 

modern lifestyle. Fructose overconsumption has been associated with development of obesity and insulin 54 

resistance in both humans [1] and animals [2]. Likewise, glucose intolerance was observed in rats exposed 55 

to chronic stress [3]. In support, the majority of diabetic patients experienced significantly higher exposure 56 

to chronic stress compared to subjects with normal glucose tolerance [4]. This raises the need for 57 

understanding molecular mechanisms by which fructose and stress disturb metabolism. 58 

Hypothalamus is the key regulator of stress response and energy balance including food intake 59 

and energy expenditure. Two important signaling pathways contributing to these processes are mediated 60 

by insulin – one of the satiety signals, and glucocorticoid hormones – playing multiple roles in this brain 61 

region including regulation of stress response, energy balance and inflammation. In addition, 62 

glucocorticoids have the ability to downregulate insulin signaling in the brain [5]. It is of note that obesity 63 

is not associated with hypercortisolemia, but rather with elevated tissue-specific intracellular regeneration 64 

of active glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 (HSD1) [6] and hexose-6-65 

phosphate dehydrogenase (H6PDH), which provides a cofactor for the reaction. 66 

A significant association between hypothalamic insulin resistance on one hand and obesity and 67 

diabetes on the other has been postulated both in humans [7] and rodents [3, 8]. Fructose overconsumption 68 

[2] as well as chronic exposure to stress [3] have been described to reduce total protein kinase B (Akt), 69 

Ser473-phosphorilated Akt (pAkt-Ser473), and insulin-stimulated tyrosine phosphorylation of insulin 70 

receptor in the hypothalamus. 71 

Within the hypothalamus, insulin and glucocorticoids regulate expression of neuropeptide Y 72 

(NPY) and agouti-related protein (AgRP), orexigenic neuropeptides that stimulate food intake and reduce 73 

energy expenditure. Insulin inhibits expression of these neuropeptides. Thus, reduced insulin signaling 74 

disables proper regulation of energy homeostasis leading to AgRP/NPY overexpression and consequently, 75 

to increased appetite and body weight [9]. On the other hand, glucocorticoids can directly stimulate 76 

expression of NPY and AgRP and functional glucocorticoid receptor (GR) binding sites were found in 77 

their promotors [10]. Two anorexigenic neuropeptides, proopiomelanocortin (POMC) and cocaine- and 78 

amphetamine-regulated transcript (CART) are also expressed in the hypothalamus and positively 79 

regulated by insulin [11] and glucocorticoids [12].  80 

AgRP/NPY and POMC neurons are also regulated by leptin, another satiety signal [13], which is 81 

secreted by adipose tissue in favorable energy conditions, but acts through leptin receptor (ObRb) in the 82 

hypothalamus. Leptin plasma concentration is directly proportional to the mass of adipose tissue – it is 83 
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increased in obesity while it decreases with the weight loss [13]. Nevertheless, hyperleptinemia can cause 84 

leptin resistance, mainly through downregulation of ObRb and/or the induction of a feedback inhibitor – 85 

suppressor of cytokine signaling 3 (SOCS3) [13], resulting in increased appetite.  86 

Fructose consumption was shown to down-regulate POMC mRNA in the hypothalamus [14], but 87 

literature data regarding fructose effects on NPY and/or AgRP expression are controversial, ranging from 88 

stimulatory to inhibitory [15]. Similarly, daily exposure to psychosocial stress was associated with the 89 

development of metabolic syndrome [16], but the correlation between stress and obesity remains unclear. 90 

Studies show that, when exposed to chronic stress, some people avoid food, while others reach for highly 91 

palatable, "comfort", food abundant with carbohydrates and fats [9]. Prevalence to comfort food is also 92 

observed in animals exposed to this type of food during stress exposure [17].  93 

Oxidative stress is considered as one of the mechanisms contributing to development of obesity 94 

and insulin resistance [18]. The brain is vulnerable to oxidative damage because of low content of 95 

antioxidants [19] and oxidative stress in the hypothalamus has been strongly implicated in development of 96 

insulin and leptin resistance [20]. Both high-fructose diet [21] and chronic stress [22] were shown to 97 

disturb expression of antioxidative enzymes including cytoplasmic copper-zinc superoxide dismutase 1 98 

(SOD1), mitochondrial manganese superoxide dismutase 2 (SOD2), glutathione peroxidase (GSH-Px), 99 

glutathione reductase (GSH-Red) and catalase (CAT). 100 

Inflammation is also implicated in metabolic disorders [23], since it can disrupt hypothalamic 101 

insulin signaling altering the regulation of energy homeostasis. It is postulated that proinflammatory 102 

cytokines IL-1β [24] and TNFα [25] can induce inhibitory phosphorylation of insulin receptor substrate 1 103 

(IRS1) on Ser307 residue (pIRS1-Ser307), inhibiting kinase activity of insulin receptor. High fructose 104 

consumption has a potential to activate nuclear factor-κB (NFκB) signaling pathway in the hypothalamus 105 

elevating proinflammatory cytokines [2, 26]. On the other hand, data on stress-related perturbations in 106 

hypothalamic inflammatory status are rather conflicting. Expression of proinflammatory cytokines IL-1β, 107 

IL-6, and TNFα was reported to be both elevated [27] and unchanged [28] in the hypothalamus of male 108 

rats after chronic exposure to different kinds of stressors.  109 

Most of the studies investigating either the effects of fructose or the effects of stress on 110 

hypothalamic regulation of metabolic homeostasis are performed in males. However, there are about two 111 

million more obese women than men in the United States, and similar data were reported for developing 112 

countries in the South-East of Asia [29, 30], emphasizing the importance of studies on females. 113 

Hypothalamus is a crossroad of stress response and energy balance regulation. Data on 114 

mechanisms by which stress and fructose exert deleterious metabolic effects are somewhat ambiguous and 115 

although these environmental factors commonly accompany each other, only a few studies address the 116 
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consequences of their combination. With this in mind, we tested the hypothesis that long-term exposure to 117 

stress in combination with fructose-enriched diet disrupts insulin and glucocorticoid signaling, and related 118 

appetite control in the hypothalamus of female rats, contributing to development of insulin resistance and 119 

obesity. In addition, we investigated oxidative stress and inflammation as potential mechanisms 120 

contributing to insulin resistance in the hypothalamus. To achieve these goals, we analyzed insulin, 121 

glucocorticoid and leptin signaling, as well as the antioxidative and inflammatory status in the 122 

hypothalamus of fructose-fed female rats exposed to chronic unpredictable stress. 123 

 124 

Materials and Methods  125 

 126 

Material  127 

Fructose was purchased from Apipek (Bečej, Serbia). Anti-HSD1 (ab109554), anti-SOD1 (ab13498), anti-128 

SOD2 (ab13533), anti-GSH-Red (ab16801), anti-CAT (ab16731) and anti-GSH-Px (ab22604) primary 129 

antibodies, secondary anti-mouse and anti-rabbit IgG H&L horseradish peroxidase (HRP)-linked antibody 130 

(ab97046) and (ab6721), respectively, were obtained from Abcam (Cambridge, UK), anti-GR (H-300; sc-131 

8992), anti-H6PDH (sc-67394), anti-NFκB/p65 (C-20; sc-372), anti-IκB (sc-371), anti-ObRb (sc-8391), 132 

anti-SOCS3 (H-103; sc-9023), anti-pAkt-Ser473 (sc-7985-R), anti-pAkt-Thr308 (sc-16646-R), anti-Akt (sc-133 

8312), anti-IRS1 (E-12; sc-8038) and anti-pIRS-1-Ser307 (sc-33956) from Santa Cruz Biotechnology, and 134 

anti-β actin antibody (AC-15) and GAPDH (G9545) from Sigma Chemicals (St. Louis, MO, USA). 135 

Immobilon-FL polyvinylidenedifluoride (PVDF) membrane was a product of Millipore, USA, while 136 

Amersham ECL Western Blotting Detection Kit was acquired from GE Healthcare Life Sciences. Leptin 137 

High Sensitivity EIA kit was obtained from (Millipore, USA). High capacity cDNA reverse transcription 138 

kit, RNase inhibitor, TaqMan® Universal PCR Master Mix with AmpErase UNG, and TaqMan® Gene 139 

Expression Assay primer-probe mix for: leptin (Rn00565158_m1), SOCS3 (Rn00585674_s1), AgRP 140 

(Rn01431703_g1), NPY (Rn01410145_m1), ObRb (Rn00561369_m1), IL-1β (Rn00580432_m1), IL-6 141 

(Rn01410330_m1), TNFα (Rn01525859_g1), and hypoxanthine phosphoribosyl transferase 1 (HPRT1) 142 

(Rn01527840_m1) were all products of Applied Biosystems. Power SYBR® Green PCR Master Mix was 143 

purchased from Applied Biosystems, and specific primer pairs for: POMC: F 5’-TCC ATA GAC GTG 144 

TGG AGC TG-3’, R 5’-GAC GTA CTT CCG GGG ATT TT-3’; CART: F 5’-GCC CTG GAC ATC TAC 145 

TCT GC-3’, R 5’-CAC TGC GCA CTG CTC TCC-3’ and HPRT: F 5’-CAG TCC CAG CGT CGT GAT 146 

TA-3’, R 5’-AGC AAG TCT TTC AGT CCT GTC-3’ from Invitrogen. TRIzol®Reagent (AmBion), 147 

RNase free DNase I (Ferments), and RNase-DNase free water (Eppendorf) were also used. 148 

 149 
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Animals and Treatment  150 

Female Wistar rats (2.5 months old), bred in our laboratory, were randomly divided into four experimental 151 

groups during the 9-week treatment: a control group fed with commercial standard chow and drinking 152 

water, a fructose group fed with the same chow and 10% (w/v) fructose solution instead of drinking water, 153 

a stress group that was fed like the control group and exposed to unpredictable sequence of stressors, 1 or 154 

2 per day for 9 weeks, and a stress + fructose group, which was fed like the fructose group and also 155 

exposed to stress. The stress protocol was a modified protocol of Joels and colleagues [31] and included 156 

following stressors: forced swimming in cold water for 10 min, physical restraint for 60 min, exposure to a 157 

cold room (4°C) for 50 min, wet bedding for 4 h, switching cages for 2 h, rocking cages for 1 h, and cage 158 

tilt (45°) overnight. The number (1 or 2) and type of daily stressor(s), as well as the onset of stress 159 

exposure (between 4 pm and 7 pm for the overnight cage tilt, and between 9 am and 4 pm for all the other 160 

stressors) were randomly selected at the beginning of the treatment. A particular stressor was never 161 

applied in two consecutive days or twice in a day. All experimental groups had ad libitum access to food 162 

and drinking fluid during the treatment period. Animals (12 per group) were housed three per cage and 163 

kept under standard conditions, at 22°C with a 12-h light/dark cycle. Chow [g/(rat·d)] and fluid 164 

[ml/(rat·d)] intake was determined daily by measuring the intake per cage and dividing by the number of 165 

rats housed in the cage (three). This was then used to calculate daily energy intake as follows: energy 166 

intake for control rats was calculated as calories ingested as chow [chow weight (g)×11 kJ], while energy 167 

intake for fructose-fed rats was calculated as sum of calories ingested as chow and fructose solution [chow 168 

weight (g)×11 kJ + fructose intake (ml)×1.72 kJ]. All animal procedures were in compliance with 169 

Directive 2010/63/EU on the protection of animals used for scientific purposes, and were approved by the 170 

Ethical Committee for the Use of Laboratory Animals of the Institute for Biological Research "Siniša 171 

Stanković", University of Belgrade. Permit number: 02-11/14. 172 

 173 

Plasma Parameters 174 

Animals were sacrificed by rapid decapitation after overnight fasting during which experimental animals 175 

were provided only with drinking water. All animals were sacrificed in diestrus phase of estrous cycle, 176 

which was determined from analyses of vaginal smears. For plasma preparation, the trunk blood from 177 

each experimental animal was collected in the separate EDTA-coated tube and centrifuged at 3,000 rpm 178 

for 10 min. Plasma was stored at -20°C until use. Leptin plasma concentrations were measured by Rat 179 

Leptin ELISA kit according to manufacturer’s instructions. 180 

 181 

The Preparation of hypothalamic tissue extract 182 
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After decapitation, the hypothalamus was excised from the ventral side of the brain having the thalamus as 183 

the dorsal limit, the optic chiasm as the rostral, and the mammillary bodies as caudal limit. Excised 184 

hypothalami were snap frozen and kept in liquid nitrogen until use. After thawing, hypothalami were 185 

homogenized in ice-cold RIPA buffer 1:4 (w/V) (50 mM Tris-HCl, pH 7.4, containing 150 mM NaCl, 10 186 

mM EDTA-Na2, 10 mM EGTA-Na2, 0.5% Triton X, 1% NP40, 0.1% SDS, 2 mM dithiothreitol, and 187 

protease and phosphatase inhibitors) with 20 strokes of glass homogenizer. Homogenates were sonicated 188 

3×5 s, 1A, 50/60 Hz on ice, incubated on ice for 30 min with frequent vortexing, and centrifuged 20 min 189 

on 14000xg, 4ºC. The obtained supernatants were used as the hypothalamic tissue extracts. 190 

 191 

SDS Polyacrylamide Gel Electrophoresis and Western Blotting 192 

Samples were mixed 1:1 with 2x Laemmli’s buffer and boiled for 5 min. Proteins (50 μg) were separated 193 

by electrophoresis through SDS polyacrylamide gels and transferred onto PVDF membrane. To detect 194 

proteins involved in glucocorticoid, leptin and insulin signaling, as well as in inflammation and 195 

antioxidative defense, membranes were incubated with appropriate primary antibodies, followed by HRP-196 

conjugated secondary antibodies (1:30,000). For correction of protein load, membranes were probed with 197 

anti-β actin primary antibody followed by respective HRP-conjugated secondary antibody. 198 

Immunopositive bands were visualized by the ECL reaction. Quantitative analysis of immunoreactive 199 

bands was performed using ImageJ software. 200 

 201 

RNA Extraction and Reverse Transcription 202 

Total RNA was extracted from hypothalami (50-100 mg) after thawing using TRIzol®Reagent following 203 

the manufacturer’s protocol. RNA was dissolved in 30 µl of RNase-DNase free water and RNase inhibitor 204 

was added. Concentration and purity were tested spectrophotometrically (OD 260/280 > 1.8 was 205 

considered satisfactory). RNA integrity was confirmed by 1% agarose gel electrophoresis. Prior to cDNA 206 

synthesis, DNA contamination was removed by DNAse I treatment (Fermentas), according to the 207 

manufacturer’s instructions. cDNA was synthesized from 2 µg of RNA. The reverse transcription was 208 

performed in a 20 μl reactions with MultiScribeTM Reverse Transcriptase in the presence of Random 209 

Primers using High Capacity cDNA Reverse Transcription kit. Reactions were carried out under RNase 210 

free conditions at 25°C for 10 min followed by 37°C for 2 hours and final denaturation at 85°C for 5 min. 211 

The cDNA was stored at -80°C until further use. 212 

 213 

Real Time PCR 214 
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The expression of orexigenic neuropeptides and proinflammatory cytokines was analyzed by TaqMan 215 

qPCR and the expression of anorexigenic neuropeptides was analyzed by SYBR® Green qPCR using AB 216 

Prism 7,000 Sequence Detection System. All reactions were performed in 25 µl volume in triplicates and 217 

mean Ct value for each triplicate was used for further analysis. TaqMan reaction mix consisted of 1 × 218 

TaqMan® Universal PCR Master Mix, with AmpErase UNG, 1 × TaqMan® Gene Expression Assay and 219 

cDNA template (20 ng of RNA converted to cDNA). SYBR® Green reaction mix consisted of 1x Power 220 

SYBR® Green PCR Master Mix, specific primer sets and cDNA template. Thermal cycling conditions 221 

were: (2 min incubation at 50°C for UNG activation), 10 min at 95°C followed by 40 cycles of 95°C for 222 

15 s and 60°C for 60 s. The specificity of SYBR® Green reaction was verified by melt curve analyses. No 223 

template control was included for each target gene to detect possible reagent contamination. Relative 224 

quantification of gene expression was performed using comparative 2-ΔΔCt method. HPRT1 was used as 225 

reference gene.  226 

 227 

Statistical Analysis 228 

To determine the effects of fructose and stress treatment, as well as their interaction, two-way ANOVA 229 

followed by the post-hoc Tukey test was used. A probability level less than 0.05 was considered to be 230 

statistically significant. 231 

 232 

Results 233 

 234 

Energy Intake 235 

Energy consumed daily did not differ between experimental groups (Table 1).  236 

 237 

Hypothalamic Insulin and Glucocorticoid Signaling 238 

The influence of fructose-enriched diet and stress on insulin signaling in the hypothalamus was examined 239 

at the level of IRS1 and Akt. Total IRS1 and the level of pIRS-Ser307 as well as their ratio were not altered 240 

by stress, fructose or their combination (Fig. 1). However, for the total Akt protein abundance and the 241 

level of pAkt-Ser473 the main effect of fructose (respectively: [F (1,12) = 28.44, P < 0.001] and [F (1,12) = 242 

43.19, P < 0.0001]), stress ([F (1,12) = 22.12, P < 0.001] and [F (1,12) = 32.00, P < 0.0001]) and their 243 

interaction ([F (1,12) = 5.60, P < 0.05] and [F (1,12) = 25.96, P < 0.001]) were detected. Additionally, the 244 

main effects of stress [F (1,12) = 12.49, P < 0.01] and fructose [F (1,12) = 30.21, P < 0.001] were found 245 

on the level of pAkt-Thr308. All three parameters were significantly reduced in fructose-fed stressed 246 

animals compared to other experimental groups, i.e.: to control (P < 0.001), to fructose-fed (P < 0.05 for 247 
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pAkt-Thr308, P < 0.001 for pAkt-Ser473 and P < 0.01 for total Akt) and to stressed rats on standard diet (P < 248 

0.01 for pAkt-Thr308 and P < 0.001 for pAkt-Ser473 and total Akt). The ratio of each phosphorylated form 249 

to total Akt remained unaltered. 250 

Prereceptor metabolism of glucocorticoid hormones was analyzed at the level of HSD1 and H6PDH 251 

protein (Fig. 2). Two-way ANOVA showed the main effect of fructose [F (1,11) = 9.44; P < 0.05], stress 252 

[F (1,11) = 7.64; P < 0.05], and their interaction [F (1,11) = 7.19; P < 0.05] on HSD1. The protein level of 253 

HSD1 was elevated in fructose-fed rats exposed to stress in respect to untreated and fructose-fed 254 

unstressed animals (P < 0.01), and to stressed animals on standard diet (P < 0.05). Similarly, H6PDH was 255 

elevated in animals exposed to both stress and fructose diet in comparison to all other experimental groups 256 

(control: (P < 0.05), fructose: (P < 0.05) and stress (P < 0.01)) as a consequence of fructose effect [F 257 

(1,12) = 10.65; P < 0.01] and its interaction with stress [F (1,12) = 12.74; P < 0.01]. 258 

When GR protein level was analyzed using Western blot method (Fig. 2) a significant effect of 259 

stress [F (1,12) = 7.40; P < 0.05], fructose [F (1,12) = 6.88; P < 0.05] and their interaction [F (1,12) = 260 

7.63; P < 0.05] was observed. Post-hoc test determined increase in GR protein level in hypothalamus of 261 

fructose-fed rats exposed to stress in comparison to all other experimental groups (P < 0.05). 262 

 263 

Leptin Signaling and the Expression of Orexigenic and Anorexigenic Neuropeptides  264 

Examination of leptin signaling included quantification of leptin plasma concentration, and ObRb and 265 

SOCS3 expression level. A significant effect of stress was detected on plasma leptin concentration [F 266 

(1,33) = 25.8; P < 0.0001] as it was decreased in both stressed groups (P < 0.01 for stressed on standard 267 

diet in respect to the control group, and P < 0.05 for stressed on fructose diet in respect to the control and 268 

fructose-fed unstressed animals) (Table 1). While protein and mRNA levels of ObRb were not affected by 269 

any of the applied treatments (Fig. 3A), a significant effect of stress [F (1,20) = 223.42; P < 0.0001] and 270 

fructose [F (1,20) = 15.51; P < 0.001] on SOCS3 expression was reflected in decreased mRNA level in 271 

both stressed groups in comparison to the control one (P < 0.001). Additionally, SOCS3 mRNA level was 272 

lower in stressed fructose-fed rats compared to rats exposed solely to fructose diet (P < 0.001) and stress 273 

(P < 0.05). Similarly, SOCS3 protein level was decreased in stressed animals on fructose diet compared to 274 

the control and fructose-fed unstressed animals (P < 0.05) and to stressed animals on standard diet (P < 275 

0.01), resulting from a significant effect of stress [F (1,12) = 5.34; P < 0.05], fructose [F (1,12) = 10.14; P 276 

< 0.01], and their interaction [F (1,12) = 5.87; P < 0.05] (Fig. 3B). 277 

Fructose and stress, applied alone or in combination, had no statistically significant effect on the 278 

mRNA level of orexigenic (NPY and AgRP) or anorexigenic (POMC and CART) neuropeptides (Fig. 279 

3C). 280 
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 281 

Hypothalamic Antioxidative Defense and Inflammatory Status 282 

When protein level of antioxidative enzymes was analyzed (Fig. 4) the main effect of stress was detected 283 

for GSH-Red [F (1,12) = 39.65; P < 0.0001], SOD2 [F (1,12) = 13.77; P < 0.01] and CAT [F (1,12) = 284 

7.66; P < 0.05]. The main effect of fructose was observed for GSH-Red [F (1,12) = 35.65; P < 0.0001], 285 

SOD2 [F (1,12) = 14.98; P < 0.01] and CAT [F (1,12) = 11.01; P < 0.01], while significant interaction 286 

between factors was found for GSH-Red [F (1,12) = 18.93; P < 0.001] and SOD2 [F (1,12) = 9.25; P < 287 

0.05]. Furthermore, protein level of GSH-Red and SOD2 was reduced in the hypothalamus of all treated 288 

groups in comparison to the control (P < 0.001 for GSH-Red, and P < 0.01 for SOD2), while CAT was 289 

reduced in stressed fructose-fed animals compared to the controls (P < 0.01) as well as to fructose-fed and 290 

to stressed group on standard diet (P < 0.05). 291 

The protein level of NFκB and its inhibitor IκB was not altered in any of the experimental groups 292 

(Fig. 5A), while significant effect of stress on IL-1β [F (1,19) = 9.18; P < 0.01], IL-6 [F (1,20) = 4.54; P < 293 

0.05] and TNFα [F (1,16) = 14.95; P < 0.01] as well as the interaction of stress and fructose on TNFα [F 294 

(1,16) = 4.67; P < 0.05] was observed. Post-hoc test indicated diminished IL-1β, IL-6 and TNFα 295 

expression in stressed fructose-fed females compared to untreated animals (P < 0.05), and to unstressed 296 

fructose-fed animals (P < 0.05 for IL-1β and P < 0.01 for TNFα) (Fig. 5B). 297 

 298 

Discussion 299 

 300 

The main results of this study show that chronic exposure to stress combined with fructose-301 

enriched diet reduced insulin and elevated glucocorticoid signaling in the hypothalamus of adult female 302 

rats, while the alterations in the appetite regulation were not observed. In addition, antioxidative defense 303 

was compromised. 304 

Disturbed hypothalamic insulin signaling has been reported in male rats after chronic stress, as 305 

well as after fructose overconsumption [2, 3]. However, in our study done on females, combination of 306 

these factors was necessary to elicit such effect. Namely, nine-week consumption of fructose together with 307 

the exposure to unpredictable stress decreased total Akt and both phosphorylated forms – pAkt-Ser473 and 308 

pAkt-Thr308 in the hypothalamus of female rats. Considering that depletion of Akt prominently inhibits the 309 

insulin responsiveness [31], our results indicate decreased Akt activity in our experimental paradigm 310 

although the ratio of phosphorylated form to total Akt was not altered. This suggests reduced 311 

hypothalamic insulin signaling. Similar findings were obtained by Battu [32] who reported significant 312 

decrease in pAkt-Ser473 and unaltered total IRS1 and pIRS1-Ser307 after 4 months of diet rich in simple 313 
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sugars and saturated fat, and by Zhang [2] who observed disrupted insulin signaling evidenced by 314 

decreased phosphorylation of insulin receptor and Akt in the hypothalamus after 4 weeks of high-fructose 315 

diet. Inhibition of hypothalamic insulin signaling has also been observed in rats exposed to chronic 316 

unpredictable stress for 8 weeks [3], and even after short-term exposure to cold [33]. 317 

Glucocorticoid hormones have the ability to downregulate insulin signaling in the brain. Namely, 318 

prolonged dexamethasone administration attenuated insulin signaling in rat hypothalamus, affecting pAkt-319 

Ser473 among other components [5]. Our results suggest activation of glucocorticoid pathway in fructose-320 

fed stressed animals based on increased protein level of GR as well as of both enzymes responsible for the 321 

intracellular glucocorticoid regeneration (HSD1 and H6PDH). It can be postulated that increased 322 

glucocorticoid signaling could disturb insulin signaling in the hypothalamus, although this needs to be 323 

further examined. It should be kept in mind that insulin is a major inhibitor of HSD1 [34], and although 324 

the sequence of events is not known, disturbed insulin signaling contributes to the HSD1 overexpression 325 

and vice versa. 326 

As some people lose appetite in response to stress conditions while others reach for comfort food 327 

[9], decreased body and visceral adipose tissue mass in stressed females that we observed in our 328 

previously published data obtained on the same experimental animals [35] was expected to be a 329 

consequence of reduced appetite due to reduced expression of orexigenic neuropeptides and/or elevated 330 

expression of anorexigenic neuropeptides in the hypothalamus. However, the unchanged expression of 331 

AgRP, NPY, POMC and CART was consistent with similar energy intake of all experimental groups in 332 

our study. As insulin and glucocorticoids coordinate expression of these genes [9-12], it was surprising 333 

that impaired insulin and elevated glucocorticoid signaling in stressed animals on fructose diet did not 334 

increase appetite and visceral adipose tissue mass. Nevertheless, desensitization of hypothalamic insulin 335 

signaling is not necessarily accompanied with obesity [5]. 336 

Although stress has been mainly shown to elevate expression of anorexigenic neuropeptides [12], 337 

Sefton and colleagues [36] have shown that chronic corticosterone treatment does not affect POMC and 338 

CART mRNA level in the hypothalamus. It seems that the direction and intensity of NPY expression is 339 

largely dependent on stress type and duration. While stimulatory effects of acute [37], and inhibitory 340 

effect of chronic stress [38] have been generally reported, some studies [39, 40], including the one 341 

presented herein, indicate that stress does not affect the expression of orexigenic neuropeptides even 342 

though it reduces body weight. Considering this, glucocorticoid hormones, as mediators of stress response, 343 

do not necessarily affect appetite to change fat mass. Thus, the observed visceral adipose tissue loss in 344 

both stressed groups may be a consequence of increased fatty acid oxidation in the tissue itself (results 345 

previously published [35]). 346 
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Leptin is another important regulator of orexigenic and anorexigenic neuropeptides in the 347 

hypothalamus. Plasma leptin is directly proportional to adipose tissue mass [13] and our results reflect this 348 

correlation since stressed animals have been reported to have significantly reduced visceral adipose tissue 349 

mass [35] and plasma leptin regardless of the diet. The ability of stress to reduce plasma leptin level 350 

without increasing appetite was previously demonstrated [40]. Even a stress-induced increase in leptin and 351 

leptin receptor levels does not necessarily affect the NPY expression [41]. Our study contributes to these 352 

findings suggesting that control of food intake under stress conditions is not mediated by leptin, even 353 

when fructose-enriched diet is consumed. 354 

While some studies reported fructose-induced hyperleptinemia [14], others did not [42]. Also, 355 

hyperleptinemia has been associated with leptin resistance [13]. In the present study, leptin signaling at the 356 

level of plasma leptin, ObRb, and SOCS3 was not affected by fructose consumption. 357 

Of note are recent human studies, demonstrating that fructose can activate other brain regions, like 358 

those involved in attention and reward response or in cognitive functions. Namely, in the study by Luo et 359 

al. [43] fructose, compared to the equivalent dose of glucose, resulted in greater brain reactivity of visual 360 

cortex to food cues as well as in a greater appetite, desire for food and preference for immediate food-361 

related rewards promoting feeding behavior. In addition, Zanchi el al. [44] observed increased functional 362 

connectivity in networks related to cognitive functions after acute fructose intake. 363 

Metabolic perturbations including diabetes have been related to hypothalamic oxidative stress in 364 

several models. Namely, oxidative damage in the hypothalamus has been strongly associated with diabetes 365 

in IRS2 knock-out mice [18], while increased hypothalamic lipid peroxidation, and reduced GSH-Px and 366 

glutathione levels indicated elevated oxidative stress and diminished antioxidative defense in the 367 

hypothalamus of streptozotocin-treated diabetic rats [45]. On the other hand, suppression of hypothalamic 368 

oxidative stress improved insulin resistance [20], and antioxidant treatment of mouse hypothalamic 369 

neurons after the induction of endoplasmic reticulum stress recovered the decrease of Akt phosphorylation 370 

[22]. Both fructose and stress may elicit oxidative stress. High-fructose diet has been shown to disturb 371 

cellular antioxidative defense system and enhanced plasma lipid peroxidation in rats [21], which has been 372 

alleviated after treatment with insulin sensitizer metformin. Also, chronic cold stress has been shown to 373 

reduce CAT, GSH-Px and GSH-Red activities and to deplete total antioxidative capacity in the 374 

hypothalamus [46]. In the present study, only combined application of stress and fructose diet 375 

significantly reduced protein levels of antioxidative enzymes (SOD2, GSH-Red and CAT), indicating 376 

reduced antioxidative capacity in the hypothalamus. This change was parallel with perturbations in insulin 377 

signaling in this brain region. It has been documented that prolonged exposure to exogenous 378 

glucocorticoids provoked cellular oxidative stress [47], and that subcutaneous corticosterone 379 
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administration induced generation of reactive oxygen species and decreased activity of antioxidative 380 

enzymes in the hippocampus [48]. In line with this, locally elevated glucocorticoid signaling in the 381 

hypothalamus might underlie decreased antioxidative defense in stressed animals on fructose diet in the 382 

present study. 383 

Regardless of the cause, reduced insulin signaling and antioxidative protection indicate that 384 

combination of prolonged stress and fructose diet disturbs hypothalamic regulation of metabolic 385 

homeostasis. Unbalanced reactive oxygen species production leads to formation of lipid peroxides, 386 

endoplasmic reticulum stress, and loss of DNA integrity, disturbing cell function and finally inducing 387 

apoptosis. Activation of insulin signaling components including Akt mediate antiapoptotic effect of 388 

insulin [49]. Thus, beside the possibility that oxidative stress might disturb hypothalamic insulin signaling, 389 

the deficiency of Akt-mediated signals could further augment oxidative damage. 390 

Metabolic disorders are not only associated with systemic low-grade inflammation, but also with 391 

hypothalamic inflammation, which disrupts regulation of energy homeostasis (Reviewed in [23]). Data on 392 

stress-related perturbations in hypothalamic inflammatory status are rather conflicting, as the expression 393 

of proinflammatory cytokines has been reported to be elevated [27], or unchanged [28] in male rats after 394 

chronic stress. As for nutrients, high fat diet has been predominantly described to induce obesity-related 395 

hypothalamic inflammation [50], though, fructose overconsumption also has a potential to activate NFκB 396 

signaling pathway [2, 26]. However, most in vivo studies describing fructose-related neuro-inflammation, 397 

also reported increased fat mass and disturbed lipid status in the form of elevated plasma triglycerides and 398 

free fatty acids. Although fructose has been proposed to potentiate hepatic production of triglycerides, this 399 

lipogenic effect has not been observed in our previous study on female rats [35]. Interestingly, reduced 400 

expression of proinflammatory cytokines in the hypothalamus of stressed female rats on fructose diet 401 

indicate reduced inflammatory response, which can make these animals prone to infections. In the study of 402 

Marissal-Arvy et al. [51] acute restraint stress reduced hypothalamic expression of proinflammatory 403 

cytokines in male rats while high fat/high fructose diet abolished this adverse effect. Considering this, it 404 

seems that lipid dietary components are important in eliciting hypothalamic inflammation. As reviewed in 405 

[52], saturated fatty acids and their metabolites can trigger proinflammatory pathways, and long-chain 406 

species have the ability to directly act in the brain as they accumulate within the hypothalamus during 407 

high-fat diet regime.  408 

Direct interaction of GR with p65 in the nucleus inhibits NFκB-mediated expression of 409 

proinflammatory genes [53]. Since the protein level of NFκB and its inhibitor IκB were not altered, we 410 

propose that glucocorticoid hormones are responsible for the reduction of proinflammatory cytokines 411 
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based on the observation that GR and both enzymes involved in the regeneration of active glucocorticoids 412 

were elevated in stressed female rats on fructose diet. 413 

In conclusion, our results point that stress exposure combined with fructose overconsumption for 414 

a prolonged time has more detrimental effects on hypothalamic function than stress or fructose-enriched 415 

diet applied separately. The combined treatment enhanced glucocorticoid signaling, and impaired insulin 416 

signaling, antioxidative defense and inflammatory reaction of this homeostasis-regulating center. 417 
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 600 

 Figure Captions 601 

  602 

Fig. 1. Hypothalamic insulin signaling. The level of total IRS1, pIRS1-Ser307, total Akt, pAkt-Ser473 and 603 

pAkt-Thr308 proteins were measured by Western blot in the tissue extracts obtained from the whole 604 
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hypothalamus from control (C), fructose (F), stress (S) and stress + fructose (SF) group of animals. Bar 605 

graphs represent the means ± SEM for each protein normalized to β actin expressed in arbitrary units (AU) 606 

as well as for the ratio of phosphorylated and total protein. Statistical significance of the difference 607 

between experimental groups (two-way ANOVA): ***P < 0.001, SF versus C; #P < 0.05, ##P < 0.01 and 608 

###P < 0.001, SF versus F; $$P < 0.01 and $$$P < 0.001, SF versus S. IRS1 – insulin receptor substrate 1; 609 

pIRS1-Ser307 – phosphorylation of IRS1 on Ser307; Akt – protein kinase B; pAkt-Ser473 – phosphorylation 610 

of Akt on Ser473; pAkt-Thr308 – phosphorylation of Akt on Thr308.  611 

 612 

Fig. 2. Hypothalamic glucocorticoid signaling. Protein levels of HSD1, H6PDH and GR were measured 613 

by Western blot in the tissue extracts obtained from the whole hypothalamus from control (C), fructose 614 

(F), stress (S) and stress + fructose (SF) group of animals, normalized to β actin and expressed in arbitrary 615 

units (AU). The values represent the means ± SEM. Statistical significance of the difference between 616 

experimental groups (two-way ANOVA): *P < 0.05 and **P < 0.01, SF versus C; #P < 0.05 and ##P < 617 

0.01, SF versus F; $P < 0.05 and $$P < 0.01, SF versus S. HSD1 – 11β-hydroxysteroid dehydrogenase type 618 

1; H6PDH – hexose-6-phosphate dehydrogenase; GR – glucocorticoid receptor. 619 

 620 

Fig. 3. Leptin signaling and the expression of orexigenic and anorexigenic neuropeptides. Groups: 621 

control (C), fructose (F), stress (S) and stress + fructose (SF) The protein level of ObRb and SOCS3 622 

(normalized to β actin) was measured by Western blot in the tissue extracts obtained from the whole 623 

hypothalamus. TaqMan real-time PCR was used to determine the level of ObRb, SOCS3, NPY and AgRP 624 

mRNAs relative to HPRT mRNA, while SYBR® Green real-time PCR was used to determine the level of 625 

POMC and CART mRNAs relative to HPRT mRNA. The values represent the mean ± SEM. Statistical 626 

significance of the difference between experimental groups (two-way ANOVA): *P < 0.05 and ***P < 627 

0.001, S or SF versus C; #P < 0.05 and ###P < 0.001, SF versus F; $P < 0.05 and $$P < 0.01, SF versus S. 628 

ObRb – leptin receptor; SOCS3 – suppressor of cytokine signaling 3; HPRT – hypoxanthine 629 

phosphoribosyl transferase 1; NPY – neuropeptide Y; AgRP – agouti-related protein; POMC – 630 

proopiomelanocortin; CART – cocaine and amphetamine-regulated transcript. 631 

  632 

Fig. 4. Hypothalamic level of antioxidative enzymes. Protein levels of SOD1, SOD2, CAT GSH-Px, 633 

and GSH-Red were measured by Western blot in the tissue extracts obtained from the whole 634 

hypothalamus from control (C), fructose (F), stress (S) and stress + fructose (SF) group of animals, 635 

normalized to GAPDH and expressed in arbitrary units (AU). The values represent the means ± SEM. 636 

Statistical significance of the difference between experimental groups (two-way ANOVA): **P < 0.01 637 
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and ***P < 0.001 – F, S or SF versus C; #P < 0.05, SF versus F and $P < 0.05, SF versus S. SOD1 – 638 

cytoplasmic copper-zinc superoxide dismutase 1; SOD2 – mitochondrial manganese superoxide dismutase 639 

2; CAT – catalase; GSH-Px – glutathione peroxidase; GSH-Red – glutathione reductase; GAPDH – 640 

glyceraldehydes-3-phosphate dehydrogenase.  641 

 642 

Fig. 5. Hypothalamic inflammatory status. Groups: control (C), fructose (F), stress (S) and stress + 643 

fructose (SF) A. The protein levels of NFκB and IκB (normalized to β actin) were measured by Western 644 

blot in the tissue extracts obtained from the whole hypothalamus. The values represent the means ± SEM. 645 

B. The level of IL-1β, IL-6 and TNFα mRNAs relative to HPRT mRNA were determined by TaqMan 646 

real-time PCR in the hypothalamus. The values represent the mean ± SEM. All measurements were done 647 

in triplicate. Statistical significance of the difference between experimental groups (two-way ANOVA): 648 

*P < 0.05, SF versus C; #P < 0.05 and, ##P < 0.01, SF versus F. NFκB – nuclear factor-κB; HPRT – 649 

hypoxanthine phosphoribosyl transferase 1. 650 
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Table 1. Energy intake and plasma leptin concentration 

 Control Fructose Stress Stress+ Fructose 

Energy intake (kJ) 259.66 ± 6.87 301.22 ± 14.42 253.04 ± 3.98 284.97 ± 15.50 

Leptin (ng/mL) 1.87 ± 0.19 1.85 ± 0.21 0.88 ± 0.17** 1.04 ± 0.14* # 

 

Values are expressed as mean ± SEM; 

Energy intake is expressed per day per animal; 

* P < 0.05, ** P < 0.01, between treated animals and control group 

# P < 0.05, between stressed and unstressed fructose-fed animals  
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