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Abstract

Magnetic field as ecological factor has influence on all living beings. The aim of this study was to determine if extremely low
frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affects oxidative stress in the brain of gerbils submitted to 10-min global
cerebral ischemia. After occlusion of both carotid arteries, 3-month-old gerbils were continuously exposed to ELF-MF for 7
days. Nitric oxide and superoxide anion production, superoxide dismutase activity and index of lipid peroxidation were
examined in the forebrain cortex, striatum and hippocampus on the 7th (immediate effect of ELF-MF) and 14th day after
reperfusion (delayed effect of ELF-MF). Ischemia per se increased oxidative stress in the brain on the 7th and 14th day after
reperfusion. ELF-MF also increased oxidative stress, but to a greater extent than ischemia, only immediately after cessation
of exposure. Ischemic gerbils exposed to ELF-MF had increased oxidative stress parameters on the 7th day after reperfusion,
but to a lesser extent than ischemic or ELF-MF-exposed animals. On the 14th day after reperfusion, oxidative stress
parameters in the brain of these gerbils were mostly at the control levels. Applied ELF-MF decreases oxidative stress induced
by global cerebral ischemia and thereby reduces possible negative consequences which free radical species could have in
the brain. The results presented here indicate a beneficial effect of ELF-MF (50 Hz, 0.5 mT) in the model of global cerebral
ischemia.
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Introduction

Cerebral ischemia as a consequence of restricted blood flow,

implicating insufficient glucose and oxygen supply, leads to

increased production of free radical species [1]. Enormous

production of reactive oxygen and nitrogen species (ROS and

RNS, respectively) has deleterious effects during pathogenesis of

ischemic insult [2,3]. Brain is highly susceptible to the presence of

free radicals due to high content of lipids and relatively low level of

endogenous antioxidants [4]. Massive production of ROS might

has overall effects on all physiological functions important for

surviving. During cerebral ischemia, production of free radicals

overwhelm possibility of detoxification and capacity for its removal

by enzymes of antioxidative protection like superoxide dismutase

(SOD), catalase (CAT), glutathione peroxidase (GPx) and nonen-

zymatic antioxidants (vitamin C and E, glutathione) resulting in

fast and severe damage of cellular proteins, lipids and DNA [3,5].

Although production of ROS in mitochondria from molecular

oxygen presents normal physiological reaction, enormous activa-

tion of N-methyl-D-aspartate (NMDA) receptors during cerebral

ischemia results in higher production of ROS and nitric oxide

(NO). Oxidation of xanthine to hypoxanthine is accompanied by

production of superoxide anion (O2
2) and hydrogen peroxide

(H2O2), which further compromises neuronal damage during

reperfusion [6,7]. Peroxidation of lipid membranes produces toxic

aldehydes like 4-hydroxynonenal (4-HNE) which damage ion

channels, transporters and cytoskeletal proteins. Activation of

phospholipase A2 after cerebral ischemia releases arachidonic

acid, important source of ROS [8], from membrane phospholip-

ids. Free radicals also activate specific signal pathways like

mitogen-activated protein kinase which further contribute to

ischemic damage [9].

Production of NO and oxidative stress are also linked to

overactivation of poly(ADP-ribose)polymerase-1 (PARP-1), DNA

reparating enzyme. PARP-1 overactivation decreases cellular

NAD+, disturbing NAD+-dependent processes like anaerobic

glycolysis and mitochondrial respiration, which further induces

reduction of ATP content, lack of energy and cell death [10]. Cells

of nervous system, astrocytes and microglia, also contribute to level

of ROS in cerebral ischemia [11,12].

One ecological factor whose influence is growing every day due

to technological development is extremely low frequency magnetic

field (ELF-MF). It has role in the production of free radical species,

as well as modulation of antioxidant defense components [13–18].

As a omnipresent factor, we can not exclude the impact of ELF-

MF on recovery after ischemic insult with possibility of its

beneficial effects. In this study we applied ELF-MF (50 Hz,

0.5 mT) for 7 days in gerbils submitted to 10-min global cerebral

ischemia and measured oxidative stress parameters in distinct
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brain structures (forebrain cortex, striatum and hippocampus) on

the 7th (immediate effect of ELF-MF) and 14th day after

reperfusion (delayed effect of ELF-MF). These results are part of

our comprehensive investigations concerning the effects of ELF-

MF in animals with experimentally induced cerebral ischemia

[19,20] and contribute to the explanation of spatial and temporal

patterns of oxidative stress in the brain of these animals.

Materials and Methods

Animals
3-month-old male gerbils (Meriones unguiculatus, 55–65 g body

weight), obtained from the vivarium of the Institute for Medical

Research, MMA, Serbia, were used. Groups of four gerbils per

cage (Ehret GmbH & Co. KG, Germany) were placed in an air-

conditioned room, at a temperature of 2362uC, with 55610%

humidity and with lights on 12 h/day (07:00–19:00). Commercial

food and tap water were given to the gerbils ad libitum. All animal

procedures were complied with the European Communities

Council Directive (86/609/EEC) and were approved by the

Ethical Committee for the Use of Laboratory Animals of the

Institute for Biological Research, University of Belgrade (Permit

Number: 20/08 and 53/10).

Occlusion of Common Carotid Arteries
Mature gerbils are good model for inducing global cerebral

ischemia due to incomplete circle of Willis (lack of collateral

communication between the carotid and vertebrobasilar circula-

tion, [21]), so we have done occlusion of both common carotid

arteries. A detailed description of the procedure is given in Rauš

et al. [19].

System and Procedure for ELF-MF Exposure
As the source of the alternating MF was used an electromagnet

whose detailed characteristics are given in Rauš et al. [19]. It was

placed in an isolated room with the same temperature, humidity,

light intensity and cycle like in the vivarium. The gerbils were

exposed to ELF-MF (50 Hz, 0.5 mT) for 7 days and after that

were returned to the vivarium. During experiment, geomagnetic

activity was characterized as ‘‘very quiet’’ (Department of

Geomagnetism and Aeronomy, Sector for Geodetic Works,

Republic Geodetic Authority, Republic of Serbia) measured by a

GSM-19 v6.0 proton magnetometer (GEM SYSTEMS INC,

Ontario, Canada).

Experimental Groups
All experiments were performed in a blinded manner. The

gerbils were randomly divided into the following groups: Intact,

Sham-operated, Sham-exposed, ELF-MF, Ischemia and Ische-

mia+ELF-MF.

Intact gerbils were not subjected to any type of surgical

procedure and/or exposure, and they were the whole time in the

vivarium (n = 6). These animals were included in the study to

exclude any possibility that the presence of animals in the vicinity

of the electromagnet, previously turned off, and/or mechanical

stress caused by surgical intervention could have the impact on the

measured oxidative stress parameters.

ELF-MF group of gerbils was continuously exposed to the MF

(50 Hz, 0.5 mT) for 7 days (n = 13), while Sham-exposed one

(n = 6) was submitted to the same experimental procedure as ELF-

MF-exposed gerbils with the electromagnet turned off.

Ischemic gerbils were submitted to the 10-min occlusion of both

common carotid arteries without (Ischemia, n = 12) or with

(Ischemia+ELF-MF, n = 13) exposure to ELF-MF (50 Hz,

0.5 mT) for 7 days. Sham-operated gerbils (n = 6) were submitted

to the same surgical procedure as ischemic gerbils, but without

occlusion of both common carotid arteries.

The gerbils from Sham-operated, Sham-exposed, ELF-MF,

Ischemia and Ischemia+ELF-MF group were further subdivided

into two groups. Biochemical analyses were performed on the 7th

and 14th day from the beginning of experimental procedure.

Preparing Tissue for Biochemical Analysis
The gerbils were decapitated and the brains were immediately

removed. Forebrain cortex, striata and hippocampus of individual

animals were quickly isolated and homogenized in ice-cold buffer

containing 0.25 M sucrose, 0.1 mM EDTA, 50 mM K-Na

phosphate buffer, pH 7.2. Homogenates were centrifuged twice

at 1580 g for 15 min at 4uC. The supernatant (crude mitochon-

drial fraction) obtained by this procedure was then frozen and

stored at 270uC. Chemicals were purchased from Sigma (St.

Louis, MO, USA). Other chemicals were of analytical grade. All

drug solutions were prepared on the day of experiment.

Nitrite Measurement
NO production was quantified by measuring nitrite, a stable

oxidation end product of NO metabolism, by Griess’ method [22].

Briefly, nitrite production was determined by mixing 50 mL of the

assay buffer with 50 mL of Griess reagent (1.5% sulfanilamide in

1 M HCl plus 0.15% N-(1-naphthyl)ethylenediamine dihydro-

chloride in distilled water, v:v). After 10 min of incubation at room

temperature, the absorbance at 540 nm was determined and

nitrite concentrations were calculated from sodium nitrite (Sigma)

standard curve. All measurements were performed in triplicate.

Table 1. One-way analysis of variance.

Forebrain cortex Striatum Hippocampus

df F P gp
2 F p gp

2 F p gp
2

NO 6 128.45 ,0.001 0.95 37.38 ,0.001 0.85 53.58 ,0.001 0.89

O2
2 6 63.61 ,0.001 0.91 24.00 ,0.001 0.79 20.75 ,0.001 0.76

ILP 6 20.50 ,0.001 0.76 24.49 ,0.001 0.79 27.17 ,0.001 0.81

SOD 6 50.80 ,0.001 0.87 44.56 ,0.001 0.87 30.05 ,0.001 0.82

df – degrees of freedom; gp
2 – partial eta-squared.

doi:10.1371/journal.pone.0088921.t001
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Superoxide (O2
2) Production and Measurement

In these experiments, O2
2 was measured by the reduction of

nitro blue tetrazolium (NBT), as previously described [23]. Detec-

tion of this product was by spectrophotometric quantification of a

colored formazan product formed from blue tetrazolium. Reduc-

tion of NBT was measured at 560 nm. All measurements were

performed in triplicate.

Figure 1. ELF-MF effect on NO content in the brain of gerbils submitted to global cerebral ischemia. Each bar represents mean 6 SEM
(n = 6–8 animals per group). **p,0.01 and ***p,0.001 indicate significant differences compared to ELF-MF; ¤p,0.05 and ¤¤¤p,0.001 indicate
significant differences compared to Ischemia (one-way analysis of variance followed by LSD test).
doi:10.1371/journal.pone.0088921.g001
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Superoxide Dismutase (SOD) Assay
Total SOD activity, which includes the activity of two SOD

isoforms – SOD1 (Cu,ZnSOD) citoplasmatic and SOD2

(MnSOD) mitochondrial isoforms, was measured by the adrena-

line method [24]. Inhibition of epinephrine spontaneous auto-

oxidation, monitored at 480 nm, was the measure of SOD activity

(EC 1.15.1.1). The kinetics of enzyme activity was followed in a

sodium carbonate buffer (50 mM, pH 10.2), containing EDTA

(0.1 mM), after the addition of epinephrine (10 mM). Enzymatic

activity was expressed in units (the amount of sample that causes

Figure 2. ELF-MF effect on O2
2 content in the brain of gerbils submitted to global cerebral ischemia. Each bar represents mean 6 SEM

(n = 6–8 animals per group). **p,0.01 and ***p,0.001 indicate significant differences compared to ELF-MF; ¤p,0.05, ¤¤p,0.01 and ¤¤¤p,0.001
indicate significant differences compared to Ischemia (one-way analysis of variance followed by LSD test).
doi:10.1371/journal.pone.0088921.g002
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50% inhibition of spontaneous epinephrine auto-oxidation) per

milligram of protein. All measurements were performed in

triplicate.

Index of Lipid Peroxidation (ILP) Measurement
Malondialdehyde (MDA), the product of polyunsaturated free

fatty acids, reacts with thiobarbituric acid, and it is a common ILP.

It was measured spectrophotometrically as thiobarbituric acid

reactive species. The content of thiobarbituric acid reactive

Figure 3. ELF-MF effect on ILP in the brain of gerbils submitted to global cerebral ischemia. Each bar represents mean 6 SEM (n = 6–8
animals per group). *p,0.05, **p,0.01 and ***p,0.001 indicate significant differences compared to ELF-MF; ¤p,0.05 and ¤¤p,0.01 indicate
significant differences compared to Ischemia (one-way analysis of variance followed by LSD test).
doi:10.1371/journal.pone.0088921.g003
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substances formed spontaneously and in vitro, stimulated by

0.01 mM Fe2+ salts and 0.5 mM ascorbic acid, was measured

upon treating the samples with 1 mL of cold thiobarbituric acid-

reagent (15% trichloroacetic acid, 0.1 M HC1, 0.75% thiobarbi-

turic acid), and subsequent heating at 95uC in the presence of

50 mM deferoxamine to prevent further iron-catalyzed lipid

peroxidation [25]. The absorbance was measured at 533 nm.

Control values (without stimulation with Fe2+ and ascorbic acid)

were determined for each sample. All measurements were

performed in triplicate.

Protein Measurement
The content of protein in the rat brain homogenates (forebrain

cortex, striatum and hippocampus) was measured by the method

of Lowry et al. [26] using bovine serum albumin (Sigma) as

standard. All measurements were performed in triplicate.

Data Presentation and Statistical Analysis
Data were expressed as means 6 SEM (n = 6–8 animals per

group). Before statistical analysis, normal distribution of data was

assessed using Kolmogorov–Smirnov test. The statistical signifi-

cance of differences between groups was assessed by one-way

analysis of variance. When appropriate, subsequent statistical

comparisons were performed by Least Significant Difference

(LSD) test.

Results

There were no differences in values of measured parameters in

all examined structures in Intact, Sham-operated and Sham-

exposed gerbils (data not shown). Thus, these gerbils were

considered as the only Control group (n = 8).

Upon one-way analysis of variance, it was obvious that exposure

to ELF-MF significantly affects production of NO and O2
2, SOD

activity and ILP in the brain (forebrain cortex, striatum and

hippocampus) of gerbils submitted to 10-min global cerebral

ischemia (Table 1).

Our results showed that ischemia per se increased oxidative stress

in all examined brain structures. It could be seen through

increased values of NO, O2
2 and ILP on the 7th and 14th day after

reperfusion (Figs. 1, 2 and 3; Tables 2 and 3). SOD activity in

these animals was at the control level (Fig. 4; Table 2).

ELF-MF also increased production of free radical species and

ILP in the forebrain cortex, striatum and hippocampus on the 7th

day (immediate effect of ELF-MF). This increase was to a greater

extent than those observed in ischemia (Figs. 1, 2 and 3; Tables 2

and 3). In contrast to ischemia, 7-day exposure to ELF-MF

increased SOD activity (Fig. 4; Tables 2 and 3). In this

experimental group, 7 days after cessation of exposure (delayed

Table 2. Significant differences in oxidative stress in the brain of 3-month-old gerbils submitted to 10-min global cerebral
ischemia and continuously exposed to ELF-MF (50 Hz, 0.5 mT) for 7 days.

IMMEDIATE EFFECT DELAYED EFFECT

Cx S Hipp Cx S Hipp

ELF-MF *** *** ***

NO Control vs. Ischemia *** *** *** *** *** ***

Ischemia+ELF-MF *** * *** *

ELF-MF *** *** ***

O2
2 Control vs. Ischemia *** *** *** *** *** ***

Ischemia+ELF-MF *** *** ***

ELF-MF *** *** ***

ILP Control vs. Ischemia *** ** *** ** * *

Ischemia+ELF-MF

ELF-MF *** *** ***

SOD Control vs. Ischemia

Ischemia+ELF-MF *** *** *** * *

Measures are performed on the 7th (immediate effect of ELF-MF) and 14th day after reperfusion (delayed effect of ELF-MF).
Cx – Forebrain cortex; S – Striatum; Hipp – Hippocampus.
*p,0.05, **p,0.01 and ***p,0.001 (one-way analysis of variance followed by LSD test).
doi:10.1371/journal.pone.0088921.t002

Table 3. Significant differences (immediate vs. delayed effect
of ELF-MF) in oxidative stress in the brain of 3-month-old
gerbils submitted to 10-min global cerebral ischemia and
continuously exposed to ELF-MF (50 Hz, 0.5 mT) for 7 days.

Cx S Hipp

ELF-MF *** *** ***

NO Ischemia

Ischemia+ELF-MF *** * **

ELF-MF *** *** ***

O2
2 Ischemia *** **

Ischemia+ELF-MF *** *** ***

ELF-MF *** *** ***

ILP Ischemia

Ischemia+ELF-MF

ELF-MF *** *** ***

SOD Ischemia * * *

Ischemia+ELF-MF *** *** ***

Cx – Forebrain cortex; S – Striatum; Hipp – Hippocampus.
*p,0.05, **p,0.01 and ***p,0.001 (one-way analysis of variance followed by
LSD test).
doi:10.1371/journal.pone.0088921.t003
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effect of ELF-MF) measured values of oxidative stress parameters

were at the control levels (Figs. 1–4; Table 2).

Ischemic gerbils exposed to ELF-MF had also increased values

of measured oxidative stress parameters on the 7th day after

reperfusion (immediate effect of ELF-MF), but to a lesser extent

than animals with global cerebral ischemia or exposed to ELF-MF

(Figs. 1–4; Tables 2 and 3). On the 14th day after reperfusion,

oxidative stress in the brain of these animals was mostly at the

control level (Figs. 1–4; Table 2).

Figure 4. ELF-MF effect on SOD activity in the brain of gerbils submitted to global cerebral ischemia. Each bar represents mean 6 SEM
(n = 6–8 animals per group). **p,0.01 and ***p,0.001 indicate significant differences compared to ELF-MF; ¤¤¤p,0.001 indicates significant
differences compared to Ischemia (one-way analysis of variance followed by LSD test).
doi:10.1371/journal.pone.0088921.g004
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Discussion

Based on reported results, it is obvious that 7-day exposure to

ELF-MF (50 Hz, 0.5 mT) can reduce oxidative stress in the brain

of gerbils submitted to 10-min global cerebral ischemia. This effect

is the most evident 7 days after cessation of exposure when, in

contrast to ischemia, measured parameters were mostly at the

control level.

As already described in many papers [1,27–31], cerebral

ischemia, due to lack of oxygen and substrate for aerobic

metabolism, is accompanied by high production of free radical

species in the brain. Our results confirmed once again that

cerebral ischemia increases oxidative stress in the forebrain cortex,

striatum and hippocampus being almost at the same level on the

7th and 14th day after reperfusion. Free radicals are highly reactive

molecules which can disrupt neuronal membranes attacking lipids

in molecular bilayer or damaging protein structure, and thus

changing its activity and forming protein aggregation [32]. By-

product of lipid peroxidation is 4-HNE, toxic aldehyde which

damages ion channels, transporters and proteins of cytoskeleton

[33]. Cerebral ischemia also activates phospholipase A2 leading to

release of arachidonic acid from membrane phospholipid as a

new, additional source of ROS [8]. Because of relatively low

content of antioxidants and massive production of ROS, cells in

ischemic brain are pushed toward death pathways [4].

ELF-MF is unavoidable environmental factor which affects all

organisms and recently has application in medicine. Its influence

on ionic currents and pumps [34–36], neurotransmission [37–43]

and behaviour [42,44–52] has been well documented. This

influence could be achieved through interaction of ELF-MF with

chemical bonds between adjacent atoms leading to change in

reaction between biomolecules [53] and disruption of biomem-

brane changing structure of its protein molecules [54]. Based,

among others, on this mechanism(s), ELF-MF activates free

radical species and prolongs their life [55–58].

In our experiment, ELF-MF increased production of NO in all

examined brain structures on the 7th exposure day with returning

to control level 7 days after cessation of exposure. This increase is

in line with previous findings [16,55,59,60]. Activity of NO

synthase is mediated through increase of intracellular Ca2+, event

that occurs as a consequence of the applied ELF-MF [34,61–63].

In case when we exposed ischemic gerbils to ELF-MF, NO

content was slightly lower then in only ischemic gerbils on the 7th

day after reperfusion, and at the control level on the 14th day after

reperfusion. Having in mind that cerebral ischemia also increases

influx of Ca2+ [64], someone could expect that the effect of ELF-

MF would be cumulative leading to additional increase of NO

content.

The same results are observed with ILP meaning that ELF-MF

could attenuate harmful effects of ischemia on membranes and

reduce further ROS and RNS production. Like in our case, in the

majority of experiments ELF-MF increases lipid peroxidation

[16,53,60,65]. We can propose that ELF-MF, through increasing

the level of NO, is involved in the reduction of ILP in ischemic

gerbils, because NO itself may directly inhibit lipid peroxidation

by intercepting alkoxyl and peroxyl radical intermediates and thus

terminating chain propagation reaction [66,67]. Di Loreto et al.

[18] also proposed that ELF-MF can simultaneously activate pro-

and antioxidants. They applied ELF-MF (50 Hz, 0.1 and 1 mT)

on cortical neurons and beside increased production of ROS and

malondialdehyde (parameter of lipid peroxidation), they also

found increased expression of brain-derived neurotrophic factor

and nerve growth factor, proteins which participate in free radical

clearance [68,69].

ELF-MF per se increased O2
2 content on the 7th exposure day,

but when applied in ischemic gerbils it reduced production of this

free radical species. Important finding is that the activity of SOD,

enzyme which dismutases O2
2, was not increased in ischemic

gerbils, but it was increased in ELF-MF exposed gerbils without or

with induced global cerebral ischemia on the 7th exposure day.

Our findings are in accordance with some papers [16,53,60,70],

but also there are some opposite results [17,71]. This means that

ELF-MF activates one of the most important enzyme of

antioxidant defense and through reduction of O2
2 level decreases

further propagation of oxidative stress event.

The most interesting result of this study is that ELF-MF and

ischemia separately increase oxidative stress, but when applied

together they have capability to decrease values of measured

parameters. One of the possible mechanism(s) underlying the

beneficial effects of ELF-MF in the model of global cerebral

ischemia could be initial ability of ELF-MF to shift intracellular

pH toward more alkaline conditions [36], considering that acidosis

is one of the crucial hallmark of ischemic injury [64], which further

triggers other neuroprotective pathways. We do not know precisely

time profile of evidently common pathways, so it is hard to

presume time and place of activation or which pathway dominates

and leads to activation of enzymes involved in antioxidant defense.

We need additional biochemical and molecular investigations

bearing in mind all possible interactions of all elements of central

nervous system.

Acknowledgments

The authors are very grateful to Dr. Spomenko Mihajlović (Department of
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47. Pešić V, Janać B, Jelenković A, Vorobyov V, Prolić Z (2004) Non-linearity in

combined effects of ELF magnetic field and amphetamine on motor activity in
rats. Behav Brain Res 150: 223–227.

48. Shupak NM, Hensel JM, Cross-Mellor SK, Kavaliers M, Prato FS, et al. (2004)

Analgesic and behavioral effects of a 100 microT specific pulsed extremely low
frequency magnetic field on control and morphine treated CF-1 mice. Neurosci

Lett 354: 30–33.
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