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Abstract: The present study investigated the effect of salinity (Control: 1.8 dS/m, S1: 3.0 dS/m
and S2: 4.5 dS/m) on the chemical composition and bioactive properties of three basil cultivars
(Red Basil, Dark Opal Red and Basilico Rosso). Crop performance was not affected by increasing
salinity in DoR and BaR. Fat, ash and carbohydrates content increased by salinity in DoR, whereas
energetic value was negatively affected. Free sugars (total and individual compounds) increased
under saline conditions (S2) in BaR, whereas reducing trends were observed for the main organic
acids and tocopherols in all the cultivars. The major fatty acids were α-linolenic, linoleic and palmitic
acids with no consistent salinity effects, while the richest polyphenols were sagerinic acid and
eriodictyol-O-malonylhexoside. Finally, basil extracts showed moderate antioxidant and strong
antifungal activity. In conclusion, salinity showed a genotype dependent effect on the chemical profile
and bioactivities of the tested cultivars.

Keywords: antimicrobial properties; antioxidants; Ocimum basilicum L.; organic acids; polyphenols;
salinity stress; sweet basil; tocopherols

1. Introduction

Basil (Ocimum basilicum L.) is an aromatic herb of the Lamiaceae family and, over the past few
centuries, there have been many cultivation records. Today, it still has a high commercial value
for having multiple purposes, such as medicinal, nutrition, ornamental, cosmetics, religious and
insecticidal or insect repellant purposes [1].

Basil is a species that, due to its genetic variability, is difficult to characterize chemically,
with numerous cultivars that do not differ significantly in morphological terms but present differences
from the chemical composition point of view [1,2]; leaves contain between 0.5 and 1.5% essential oil,
flavonoids, phenolic acids, triterpenes, steroids, among other compounds considered nutraceuticals,
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and they are also abundant in vitamins and minerals [2]. Basil leaves possess various bioactive
properties such as anticarcinogenic, antioxidant, antibacterial, while it is supposed to fortify the human
body immune system [3], among other properties.

Nowadays, there is a growing concern with the nutritional and bioactive quality of food sources,
while, at the same time, there are increasing environmental and economic concerns regarding sustainable
crop management. This paradigm forced us to find solutions that are both profitable, sustainable,
ecological and nutritionally advantageous in a clearly expanding market through the use of simple
and cost effective cultivation practices and the valorization of the existing genetic diversity that may
increase the quality of horticultural products.

It is widely recognized that agronomic conditions at pre-harvest level may affect the crop,
both in quantitative and qualitative terms. These conditions range from the choice of genotype,
the climatic conditions and the growing location, the cultivation season, the agronomic techniques
during cultivation and their interactions [4]. It is also agreed that “genetic improvement” through
breeding alters the expression of certain genes that in turn alter the chemical and bioactive profile of
the plant, hence the importance of genotype selection [5]. In this sense, it is also known that there is a
growing need for soil, not only for agriculture but for all human activities, which in its turn pushes the
agriculture to inferior and degraded soils that contain high amounts of salts resulting in salinity stress;
soil salinization is already one of the biggest threats to world agriculture as the result of irrational
cultivation and the non-compliance to sustainability principles [6].

Due to the edaphoclimatic changes that are happening in the world, it becomes more and more
pertinent to understand which plants adapt to the new reality, in particular, the increase in soil salinity,
without losing their nutritional/organoleptic/nutraceutical quality and/or therapeutic potential, while at
the same time crop performance remains profitable. It is well established that environmental stressors,
such as drought and salinity, are associated with significant changes in plant growth and the biosynthetic
pathways of several secondary metabolites in basil—e.g., phenolic compounds [7], essential oils [8],
photosynthetic pigments [9] and antioxidant activity [10,11]. Moreover, Babalar et al. [12] suggested a
significant effect of salinity on phenolic acids and anthocyanins content of basil leaves after storage,
while Scagel et al. [7] reported a significant increase in quercetin-rutinoside and rosmarinic acid
and a decrease in rosmarinic acid in basil plants grown under saline conditions. The study of
Omer et al. [13] showed that saline conditions may affect not only crop performance and essential
oil yield and composition, but also the total carbohydrates, total flavonoids and proline content of
basil leaves. In addition, Bernstein et al. [13] reported that among the observed changes in basil
leaves saline conditions induced essential oil production and carotenoids biosynthesis. According to
Akbari et al. [14] there is a great genetic diversity in basil crop which may result in variable response to
environmental stressors, especially in regard to crop performance. Therefore, it is worth investigating
basil genotypes to identify tolerant or resistant genotypes to abiotic stress that could be used for
valorizing degraded soils.

Several works have examined the impact of salinity stress on plant growth and essential oil yield
and volatile compounds composition. However, limited literature exists regarding the impact of
environmental stressors on phytochemicals profile. Considering the above, the present study aims to
examine the effect of different salinity levels on the nutritional value and chemical composition of three
red-colored basil cultivars, namely Red Basil, Dark Opal Red and Basilico Rosso. Finally, the bioactive
properties (antioxidant activity and antimicrobial properties) of hydroethanolic extracts were assessed.

2. Materials and Methods

2.1. Samples and Samples Preparation

Seeds from three colored basil cultivars (Ocimum basilicum L.) were used, namely Red Basil
(Geniki Fytotechniki S.A.; Athens, Greece), Dark Opal (De Corato Sementi; Andria, Italy) and Basilico
Rosso (Larosa Emanuele Sementi; Andria, Italy). Seeds of basil were sown in seed trays containing peat
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on 4 April 2019 and seedlings were transplanted in 2 L plastic pots containing peat and perlite (1:1, v/v)
on 23 April 2019. Three salinity treatments were applied, namely Control (1.8 dS/m, no salt addition),
3.0 dS/m and 4.5 dS/m. The saline solutions were prepared with the addition of the adequate amounts
NaCl in the Control solution until the desired electrical conductivity was achieved. All plants received
fertigation with nutrient solution containing 200 ppm of Nitrogen, Phosphorus and Potassium with the
application of 20–20–20 (N–P–K) fertilizer control treatment until plant establishment (approximately
3 weeks after transplantation) [15]. After that, plants received the salinity treatments which resulted
after the addition of the required amount of NaCl to the control treatment. For each treatment, 15 pots
were used with one plant per pot (45 pots in total).

Harvest took place on 14 June 2019 and just before anthesis initiation. Hunter color parameters
(L*, a* and b*) were measured on the blades of the upper surface of leaves using a chroma meter (Chroma
Meter CR400, Konica Minolta, Tokyo, Japan) [16]. Chroma (C*: relative saturation) and hue angle values
(h◦) were calculated according to the formulas previously described in the literature [17] following
CIELab color space readings (L, a and b values) that were measured through the computerized system.

After harvest, plants were weighed and samples of fresh leaves were freeze-dried, ground to
powder and stored at deep-freezing conditions until further analysis.

2.2. Nutritional Value and Energy

According to the AOAC methods, the proximate composition (ash, protein, fat, carbohydrates,
and energy) was determined in the lyophilized material and expressed in g/100 g of dry weight (dw).
Crude protein was estimated by macro-Kjeldahl method (N × 6.25) using an automatic distillation and
titration unit (model Pro-Nitro-A, JP Selecta, Barcelona), and the crude fat by Soxhlet extraction with
petroleum ether throughout 7 h. Incineration at 550 ± 10 ◦C was the technique applied to determine ash
batch [5]. Total carbohydrates were determined by difference and the energetic value was calculated
according to the Regulation (EC) No. 1169/2011 of The European Parliament and of the Council as
follows: energy (kcal/100 g dried weight (dw)) = 4 × (weight of protein (g)+ weight of carbohydrates
(g)) + 9 × (weight of fat (g)).

2.3. Chemical Characterization

Free sugars. Free sugars were estimated according to a formerly described procedure by
Spréa et al. [18] and were analyzed in a high-performance liquid chromatography (HPLC) system
coupled to a refractive index detector (HPLC-RI; Knauer, Smartline system 1000, Berlin, Germany),
using the internal standard (IS, melezitose, Sigma-Aldrich, St Louis, MO, USA). Data were recorded and
processed using Clarity 2.4 software and the results were expressed as g per 100 g of dry weight (dw).

Tocopherols. The extraction of tocopherols from the lyophilized material was carried out following
the procedure described by Spréa et al. [18]. The analysis was achieved by HPLC and a fluorescence
detector (HPLC-FL; Knauer, Smartline system 1000, Berlin, Germany) as described by the authors.
The compounds were acknowledged via chromatographic assessments with authentic standards and
the quantification was grounded on the fluorescence signal response of each standard, using the IS
(tocol, Matreya, Pleasant Gap, PA, USA) method and using calibration curves gotten from commercial
standards of each compound. Data were recorded and processed using Clarity 2.4 software and the
results were given as mg per 100 g of dw.

Organic acids. Organic acids were analyzed by ultra-fast liquid chromatography coupled to a
diode-array detector (UFLC-DAD; Shimadzu Corporation, Kyoto, Japan) operating in the optimized
conditions described in detail by Pereira et al. [19]. Identification of the compounds was done by
comparing the spectra and the retention time of the standards, and quantification was performed based
on calibration curves, linking the peaks of the recognized compounds and the standards. The results
were recorded and processed using LabSolutions Multi LC-PDA software (Shimadzu Corporation,
Kyoto, Japan). Data were recorded and processed using LabSolutions Multi LC-PDA software and the
results were given as g per 100 g of dw.



Agronomy 2020, 10, 1824 4 of 17

Fatty acids. Fatty acid methyl esters (FAME) was explored next to trans-esterification of the lipid
fraction attained through Soxhlet extraction as previously described by Spréa et al. [18] and determined
by gas-liquid chromatography with flame ionization detection, using a YOUNG IN Crhomass 6500 GC
System instrument equipped with a split/splitless injector, a flame ionization detector (FID) and a
Zebron-Fame column. Fatty acids identification and quantification was achieved by relating the
comparative retention times of FAME peaks from samples with standards (reference standard mixture
37 (47885-U), Sigma-Aldrich, St. Louis, MO, USA). The results were recorded and processed using the
Software Clarity DataApex 4.0 Software (Prague, Czech Republic) and stated in relative percentage of
each fatty acid.

2.4. Preparation of Hydroethanolic Extracts

Extracts Preparation

To prepare the hydroethanolic extracts, each sample (2.5 g) was mixed with ethanol/water
solution (80:20, v/v; 30 mL) and stirred for 1 h at room temperature. After filtering the supernatant
through Whatman filter paper No 4 (Sigma-Aldrich, St Louis, MO, USA), the residue was re-extracted
under the same conditions and the combined filtrates were concentrated under reduced pressure
(rotary evaporator) at 40 ◦C and subsequently lyophilized. The freeze drying of the plant biomass was
carried out by using a stainless steel pilot scale Sublimator model EKS (Christian Zirbus Co, Germany).
The equipment has a 3.5 m2 surface allocated to 7 shelves and it is furthermore equipped with a cooling
trap operating at −45 ◦C and having a capacity of 20 Kg of water per freeze drying cycle and with a
dual stage vacuum pump.

The applied lyophilization program for drying of the plant biomass was the following:

Step 1 −35 ◦C for 2 h at atmospheric pressure (1000 mbar);
Step 2 From −35 ◦C to −20 ◦C in 6 h under vacuum (0.150 mbar);
Step 3 From −20 ◦C to 0 ◦C in 12 h under vacuum (0.150 mbar);
Step 4 From 0 ◦C to 10 ◦C in 12 h under vacuum (0.150 mbar);
Step 5 From 10 ◦C to 25 ◦C in 12 h under vacuum (0.150 mbar).

2.5. Analysis of Phenolic Compounds

Hydroethanolic extracts prepared above, were redissolved in ethanol/water (80:20, v/v), to a final
concentration of 10 mg/mL. The resulting extracts were after assessed through high performance liquid
chromatography coupled with a diode-array and mass spectrometer detector (HPLC-DAD-ESI-MS/MS)
working below the settings systematically defined by Bessada et al. [5]. Phenolic compounds
identification was made through comparison of their retention times, UV–Vis and mass spectra
with existing standard compounds and by comparing the collected information with available data
described in the literature, giving a tentative identification of the spotted compounds. For quantitative
analysis, a calibration curve for each available phenolic compound standard was created based on
the UV signal, whereas when no commercial standards were available, the quantification was done
through the calibration curve of the most similar available standard [5]. The results were given as mg
per g of extract.

2.6. Evaluation of Bioactive Properties

2.6.1. Antioxidant Activity

Two cell-based assays were performed to measure the in vitro antioxidant activity of the extracts.
Lipid peroxidation inhibition in porcine (Sus scrofa) brain homogenates was evaluated by
the decline in thiobarbituric acid reactive substances (TBARS) and the color concentration of
malondialdehyde–thiobarbituric acid (MDA–TBA) was measured by its absorbance at 532 nm;
the inhibition ratio (%) was calculated using the formula: [(A−B)/A] × 100%, where A and B
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were the absorbance of the control and the sample solutions, respectively [5]. The results were
expressed as delayed time of haemolysis (∆t), calculated as follows: ∆t (min) = Ht50 (sample) − Ht50
(control), where Ht50 is the 50% haemolysis time (min) graphically obtained from the haemolysis
curve of each sample concentration. The inhibitory concentrations of the extract able to promote a ∆t
haemolysis delay of 60 min and 120 min were calculated (IC50 values µg/mL) and translate the extract
concentration required to keep 50% of the erythrocyte population intact.

2.6.2. Antimicrobial Properties

For the determination of the antimicrobial properties of the extracts, the microdilution method was
used [20]. The antibacterial properties were tested against the Gram-positive bacteria: Staphylococcus
aureus ATCC 6538, Bacillus cereus (food isolate), Listeria monocytogenes NCTC 7973, as well as the
following Gram-negative bacteria: Escherichia coli ATCC 25922, Salmonella enterica serovar Typhimurium
ATCC 13311 and Enterobacter cloacae ATCC 35030 were used. For antifungal assays, six micromycetes
were used: Aspergillus fumigatus ATCC 9197, A. niger ATCC 6275, A. versicolor ATCC 11730, Penicillium
funiculosum ATCC 36839, Trichoderma viride IAM 5061 and P. verrucosum var. cyclopium (food
isolate). The minimum extract concentrations that completely inhibited bacterial growth (MICs)
were determined by a colorimetric microbial viability assay, and minimum bactericidal concentration
(MBC) and minimum fungicidal concentration (MFC) were also calculated. E211 (sodium benzoate)
and E 224 (potassium metabisulphite) were used as positive controls and 5% DMSO were used as a
negative control.

2.7. Statistical Analysis

The experiment was carried out according to the randomized compete block (RCB) with three
repetitions. Crop performance and color parameters were evaluated in fifteen individual plants
(n = 15), whereas for chemical analysis assays, three batch samples were prepared for each treatment
and each assay was performed in triplicate (n = 3). All the data were subjected to two-way ANOVA
considering as factors the cultivars and the salinity treatments, while means were compared according
to Tukey’s HSD test (p = 0.05). All the analyses were performed with the statistical package SPSS v.
23.0 (IBM Corp., Armonk, NY, USA).

3. Results and Discussion

3.1. Crop Performance and Color Parameters

The results of crop performance of the tested cultivars in relation to the salinity treatment are
presented in Table 1. The tested cultivars differed significantly in the fresh weight parameter, where
Red Basil had the highest fresh weight for all the tested salinity levels, except for the highest level (S2),
where it did not differ significantly from the Dark Opal Red cultivar. On the other hand, Dark Opal
Red and Basilico Rosso cultivars were not affected by increasing salinity. In contrast, plants of Red
Basil exhibited a significant decrease in fresh weight of leaves when the highest level of salinity
(4.5 dS/m) was applied. These results are in agreement with literature reports where a variable response
to salinity was observed when various basil cultivars were tested under the same conditions [21].
Moreover, Bione et al. [22] reported a linear decrease in basil fresh weight (leaves) with increasing
salinity, which was not observed in our study. This contradictory results could be due to the fact that
Bione et al. [22] used a control treatment with very low salinity (0.29 dS/m) and a broader range of
salinity treatments than our study (1.45 dS/m to 8.43 dS/m).
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Table 1. Crop performance (fresh weigh per plant, g/plant), color parameters (L, a, b, Chroma and Hue angle, mean ± SD; n = 15), nutritional (g/100 g dw) and energetic
value (kcal/100 g dw) of the tested basil cultivars in relation to salinity level (mean ± SD; n = 3).

Crop Performance Color Parameters Nutritional Value

Cultivar Treatment * Fresh Weight L a b Chroma (C) Hue Angle (H) Fat Proteins Ash Carbohydrates Energy

Dark Opal Red
Control 26 ± 3 Ba 28 ± 2 Bc

−0.9 ± 0.3 Ba 4.0 ±0.7 Bc 4.2 ± 0.9 Bc 98 ± 4 Ab 1.70 ± 0.04 b 46.4 ± 0.2 d 12.4 ± 0.5 cd 39.5 ± 0.6 c 359 ± 1 a

S1 26 ± 2 Ba 33 ± 1 Bb
−5 ± 2 Bb 10 ± 1 Bb 11 ± 2 Bb 114 ± 18 Aa 2.08 ± 0.04 a 41.2 ± 0.2 e 15.5 ± 0.2 a 41.22 ± 0.02 b 348.4 ± 0.4 c

S2 27 ± 3 Aa 34 ± 1 Aa
−6 ± 1 Cc 11 ± 1 Aa 12 ± 1 Aa 120 ± 3 Aa 2.10 ± 0.03 a 38.4 ± 0.3 f 15.2 ± 0.1 a 44.3 ± 0.2 a 349.7 ± 0.4 c

Red Basil
Control 30 ± 3 Aa 31 ± 2 Ac

−3.5 ± 1 Ca 8 ± 4 Ac 8.8 ± 0.4 Ac 103 ± 14 Ab 1.38 ± 0.02 e 52.2 ± 0.6 a 11.8 ± 0.3 e 34.6 ± 0.6 f 359.7 ± 0.9 a

S1 29 ± 2 Aa 34.4 ± 0.5 Aa
−7 ± 1 Cb 11 ± 2 Aa 13 ± 2 Aa 118 ± 10 Aa 1.57 ± 0.02 d 50.9 ± 0.8 b 13.1 ± 0.1 b 34.4 ± 0.5 f 355.3 ± 0.1 b

S2 2 ± 3 Ab 33 ± 1 Bb
−4 ± 2 Ba 9 ± 2 Ab 10.1 ± 0.6 Bb 110 ± 6 Bab 1.55 ± 0.02 d 49.2 ± 0.8 c 12.8 ± 0.2 bc 36.5 ± 0.4 d 356.7 ± 0.5 b

Basilico Rosso
Control 22.4 ± 0.8 Ca 25.0 ± 0.7 Cc 1.1 ± 0.3 Aa 1.4 ± 0.6 Cc 1.8 ± 0.4 Cc 50 ± 18 Cc 1.59 ± 0.08 cd 51.10 ± 0.07 ab 12.2 ± 0.1 de 35.2 ± 0.2 ef 359.3 ± 0.1 a

S1 18 ± 2 Cb 28 ± 2 Cb
−0.5 ± 0.7 Ab 5 ± 1 Cb 5 ± 1 Cb 86 ± 13 Bb 1.67 ± 0.04 bc 49 ± 1 c 13.2 ± 0.2 b 36.4 ± 0.8 de 355.7 ± 0.7 b

S2 22 ± 2 Ba 31 ± 2 Ca
−2.2 ± 0.8 Ac 7 ± 1 Ba 8 ± 2 Ca 104 ± 11 Ba 1.70 ± 0.01 b 46.5 ± 0.2 d 12.9 ± 0.1 b 38.9 ± 0.2 c 356.9 ± 0.3 b

* Treatments: Control: 1.8 dS/m, S1: 3.0 dS/m and S2: 4.5 dS/m. Different capital Latin letters in the same column indicate significant differences between the tested cultivars for the same
salinity treatment, whereas small Latin letters in the same column indicate significant differences between the tested salinity treatments for the same cultivar, according to Tukey’s HSD test
(p = 0.05). L: lightness from black (0) to white (100); a: green (−) to red (+), b: blue (−) to yellow (+); Chroma (C): chroma, relative saturation; Hue angle (H): angle of the hue in the CIELab
colour space.
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Regarding color parameters, lightness (L) increased when plants were subjected to salinity
treatments compared to the control treatment in all the tested cultivars, while significant differences
were observed among the cultivars with Basilico Rosso, presenting the lowest L values (Table 1).
Parameter a decreased with increasing salinity in Red Opal Red and Basilico Rosso, whereas fluctuating
trends were observed for the Red Basil cultivar. This result indicates that leaves of Dark Opal Red and
Basilico Rosso plants subjected to salinity were less red than the control treatment, whereas fluctuating
trends were observed for Red Basil plants. The comparison between the cultivars showed that Basilico
Rosso had the highest a values compared to the other two cultivars, meaning that the red color of the
leaves of this specific cultivar was more intense than the other two. Similar trends were observed for
Chroma (C) and Hue angle (H) values which increased with increased salinity, while the lowest values
for both parameters were recorded in Basilico Rosso plants. Similar to our study, Elhindi [23] reported
that salinity may affect foliage color of herbs. In contrast, Scagel et al. [7] reported no significant effects
of salinity on leaf color probably because they tested only green-colored cultivars.

3.2. Chemical Composition

For all the tested parameters the two-way ANOVA revealed a significant interaction for the factors
in study. Therefore, all the possible combinations of treatments were compared with each other and
the results are presented in the corresponding tables.

Nutritional and energetic value results are presented in Table 1. Fat content ranged between 1.38
and 2.10 g/100 g dw for the control treatment in Red Basil and the S2 treatment of Dark Opal Red,
respectively. In general, the increased salinity resulted in an increase in fat content for all the cultivars,
while the highest fat amounts were recorded in Dark Opal Red. Similarly, ash content values where
within the range of 12.2 (Basilico Rosso; Control treatment) and 15.5 g/100 g dw (Dark Opal Red;
S1 treatment), while increasing trends were observed for all the cultivars when salinity increased
especially in the Dark Opal Red cultivar where the highest increase was recorded (25.0 and 22.5% for the
S1 and S2 treatments, respectively). Proteins content ranged between 38.4 (Dark Opal Red; S2 treatment)
and 52.2 g/100 g dw (Red Basil; Control treatment), while in contrast to fat and ash a significant decrease
was recorded when salinity increased (up to 17% in Dark Opal Red cultivar). Carbohydrates content
was also affected by both factors and values ranged between 35.2 (Basilico Rosso; Control treatment)
and 44.3 g/100 g dw (Dark Opal Red; S2 treatment), while increasing salinity resulted in a significant
increased content of carbohydrates (up to 12.1% for Dark Opal Red). Regarding the energetic value,
the highest energetic value was recorded in the control treatment for all the tested cultivars, while
the increase in salinity resulted in concomitant reduction in energetic value. Similarly to our study,
Kaur et al. [24] suggested protein and carbohydrates contents within the same range, whereas fat and
protein content was higher and lower than that of our study. Moreover, Ghoora et al. [25] reported
a protein content in French basil micro-greens within the same range (38 g/100 g dw) although ash
content was significantly higher than that of our study (22.7 g/100 g dw). Other studies where different
Ocimum species (O. viride and O. gratissimum) or different basil cultivars were studied reported a
different nutritional profile compared to our study [26–29], while Naiji and Souri [30] who tested the
effect of the fertilization regime (chemical fertilization vs. organic cultivation) on sweet basil leaves also
suggested a different nutritional composition. These results indicate a significant effect of the genotype
and the cultivation practices on the nutritional status of basil, while according to Ribas et al. [31],
the differences among the various studies could be attributed to the presence of branches within the
samples. Regarding the salinity effect, according to the literature, salt stress induces the accumulation
of various osmolytes, such as carbohydrates, for the protection of cytoplasm and cellular structures
and the retention of water absorption, as was also observed in our study [9].

Free sugars composition is presented in Table 2 where only three compounds were identified.
Glucose was the main sugar in most of the cases, followed by sucrose and fructose. The same sugar
profile was reported by Carocho et al. [32], whereas Fernandes et al. [33] additionally detected the
presence of trehalose in similar amounts to sucrose and fructose. Basilico Rosso contained higher
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amounts of total and individual free sugars that the other two cultivars, especially in the S2 treatment
where the highest overall values were recorded. It is interesting to highlight that total and individual
free sugars increased with increasing salinity for all the tested cultivars, except for the case of Dark Opal
Red where a significant reduction in glucse was recorded. This variable response of the tested cultivars
to salinity treatments could be associated with the results of fresh weight per plant (see Table 1) where
Dark Opal Red fresh weight slightly increased at high salinity (S2 treatment). Considering that free
sugars are considered the main osmolytes that plants use to increase cytoplasm potential as a protective
mechanism against salinity stress [9], the findings of our study indicate a possible higher tolerance to
salinity for the Dark Opal Red cultivar compared to the other two cultivars. Salinity stress is associated
with the induction of essential oil biosynthetic pathways in various aromatic plants [34], with sugars
being considered as the main precursors, especially sucrose [35]. Moreover, abiotic stressors, such as
water deficit or high salinity, may induce sugars accumulation as a means to mitigate negative effects
on cellular metabolism [9,36].

Tocopherols’ profile is presented in Table 2. Three compounds were detected, namely α-, γ- and
δ-tocopherol with the former being the most abundant in all the tested samples. The results of our study
are in contrast with the study of Fernandes et al. [33] who not only detected all tocopherol isomers but
also suggested γ-tocopherol as the most abundant compound, whereas Inoue et al. [37] detected only
α-, β- and γ-tocopherol These contradictory results could be assigned to the fact that different genotypes
were tested in the referred studies. The highest contents of γ- and δ-tocopherols were detected in
the control treatment of Dark Opal Red, while α-tocopherol was most abundant in Red basil for the
same treatment. Regarding the salinity effect, increased salinity resulted in a decrease in total and
individual tocopherols in all the cultivars, which is in contrast with the study of Tarchoune et al. [29]
who reported the increase in tocopherols in basil leaves as part of the non-enzymatic detoxification
mechanism of plants. However, the same authors reported a variable response depending on the
cultivar (cv. “Genovese” and “Fine”), the duration of stress (15 or 30 days) and the type of salt
(NaCl or Na2SO4) responsible which could partly justify the different findings compared to our study.
Another explanation for this difference could be the contribution of other bioactive compounds such
as polyphenols and organic acids in plant protection against oxidative stress [38], or the fact that the
plants in our study were harvested at flower initiation where according to Petropoulos et al. [39]
developmental stage may have an impact on tocopherols composition.

The composition of organic acids is presented in Table 2 with quinic acid being the main organic
acid followed by oxalic and shikimic acids, while ascorbic acid was only detected in traces. Quinic
acid was reported being the abundant organic acid by Fernandes et al. [33] who studied the chemical
composition of red rubin basil leaves (Ocimum basilicum var. purpurascens), while they also identified
oxalic, malic, citric, shikimic, fumaric and ascorbic acid. The same main organic acids were also
suggested by Carocho et al. [32] who also identified malic and citric acid in lower amounts. The highest
contents of oxalic, quinic and total organic acids were recorded for the control treatment of Basilico
Rosso cultivar, while for all the tested cultivars increasing salinity resulted in a decrease in the main
organic acids (quinic and oxalic acid) as well as of total organic acids content. The same trends
were reported by Petropoulos et al. [36,40] and Carvalho et al. [41] in other leafy vegetables, who
also observed a decrease in organic acids with increasing salinity. Moreover, considering the results
for sugars and tocopherols content, it seems that the main protective non-enzymatic mechanism of
basil against salinity stress is mostly related with sugars accumulation which are the main osmolytes,
while tocopherols and organic acids have a less profound role.
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Table 2. Free sugars (g/100 g dw), organic acids (g/100 g dw), main fatty acids (%), fatty acid groups (%), and composition in tocopherols (mg/100 g dw) identified in
the tested basil cultivars in relation to salinity level (mean ± SD, n = 3).

Free Sugars Organic Acids

Cultivar Treatment Fructose Glucose Sucrose Total Free Sugars Oxalic Acid Quinic Acid Shikimic Acid Ascorbic Acid Total Organic Acids

Dark Opal Red
Control 0.93 ± 0.03 e 2.59 ± 0.02 h 0.95 ± 0.01 h 4.47 ± 0.01 i 5.23 ± 0.08 c 9.87 ± 0.03 c 0.090 ± 0.001 f tr 15.2 ± 0.1 c

S1 1.65 ± 0.01 bc 2.80 ± 0.01 f 1.73 ± 0.04 e 6.17 ± 0.03 e 4.08 ± 0.01 g 8.19 ± 0.08 f 0.100 ± 0.001 e tr 12.38 ± 0.08 h

S2 1.69 ± 0.01 b 1.35 ± 0.06 i 1.79 ± 0.02 d 4.84 ± 0.08 h 4.81 ± 0.02 f 8.11 ± 0.03 f 0.180 ± 0.002 a tr 13.11 ± 0.01 g

Red Basil Control 1.52 ± 0.04 d 2.67 ± 0.02 g 0.88 ± 0.02 i 5.08 ± 0.01 g 5.49 ± 0.03 b 10.5 ± 0.2 b 0.110 ± 0.001 d tr 16.0 ± 0.2 b

S1 1.61 ± 0.04 c 2.90 ± 0.01 e 1.11 ± 0.01 g 5.63 ± 0.05 f 4.97 ± 0.03 e 8.77 ± 0.05 e 0.100 ± 0.001 e tr 13.85 ± 0.02 f

S2 1.92 ± 0.01 a 3.15 ± 0.01 d 1.57 ± 0.03 f 6.64 ± 0.02 c 4.97 ± 0.02 e 7.4 ± 0.1 g 0.130 ± 0.001 b tr 12.5 ± 0.1 h

Basilico Rosso Control 0.52 ± 0.04 f 3.71 ± 0.02 c 2.09 ± 0.04 c 6.32 ± 0.03 d 5.80 ± 0.05 a 11.97 ± 0.01 a 0.120 ± 0.002 c tr 17.89 ± 0.06 a

S1 1.61 ± 0.02 c 3.76 ± 0.01 b 2.30 ± 0.01 b 7.67 ± 0.02 b 5.09 ± 0.07 d 9.71 ± 0.05 c 0.110 ± 0.001 d tr 14.90 ± 0.03 d

S2 1.94 ± 0.02 a 3.97 ± 0.03 a 2.48 ± 0.03 a 8.39 ± 0.04 a 5.17 ± 0.06 cd 9.33 ± 0.09 d 0.090 ± 0.001 f tr 14.60 ± 0.04 e

Main Fatty Acids Fatty Acid Groups Tocopherols

Cultivar Treatment
* C16:0 C18:2n6c C18:3n3 SFA MUFA PUFA α-Tocopherol γ-Tocopherol δ-Tocopherol Total Tocopherols

Dark Opal Red
Control 21.17 ± 0.01 f 14.94 ± 0.02 e 42.14 ± 0.05 f 33.65 ± 0.05 c 8.46 ± 0.01 a 57.91 ± 0.06 f 6.11 ± 0.04 b 1.35 ± 0.04 a 1.15 ± 0.09 a 8.61 ± 0.08 b

S1 21.8 ± 0.4 e 18.29 ± 0.02 b 40.5 ± 0.3 g 32.8 ± 0.5 d 7.8 ± 0.3 c 59.3 ± 0.3 d 3.49 ± 0.05 f 1.04 ± 0.01 c 0.49 ± 0.02 cd 5.02 ± 0.04 d

S2 20.9 ± 0.2 g 18.72 ± 0.03 a 44.0 ± 0.1 d 29.1 ± 0.2 f 7.7 ± 0.1 c 63.2 ± 0.1 b 3.84 ± 0.05 e 1.07 ± 0.04 0.40 ± 0.01 ef 5.32 ± 0.08 c

Red Basil
Control 19.6 ± 0.1 i 14.4 ± 0.3 f 49.2 ± 0.1 a 28.7 ± 0.2 f 7.3 ± 0.1 d 64.1 ± 0.2 a 7.07 ± 0.02 a 1.12 ± 0.01 b 1.12 ± 0.05 a 9.31 ± 0.02 a

S1 22.85 ± 0.01 c 15.3 ± 0.1 d 42.2 ± 0.1 f 33.8 ± 0.1 c 8.2 ± 0.1 b 58.0 ± 0.1 f 4.11 ± 0.02 c 0.83 ± 0.02 d 0.43 ± 0.02 de 5.37 ± 0.02 c

S2 22.07 ± 0.33 d 16.3 ± 0.3 c 42.4 ± 0.1 e 32.4 ± 0.4 d 8.2 ± 0.1 b 59.4 ± 0.4 d 3.98 ± 0.07 d 0.77 ± 0.01 e 0.35 ± 0.01 f 5.10 ± 0.06 d

Basilico Rosso
Control 19.84 ± 0.01 h 12.6 ± 0.1 g 49.2 ± 0.1 a 29.6 ± 0.1 e 7.8 ± 0.1 c 62.6 ± 0.1 c 1.29 ± 0.02 g 0.49 ± 0.04 f 0.90 ± 0.02 b 2.68 ± 0.03 e

S1 30.16 ± 0.06 a 10.3 ± 0.1 i 47.3 ± 0.1 c 36.5 ± 0.1 a 5.4 ± 0.1 f 58.1 ± 0.1 f 1.07 ± 0.01 h 0.47 ± 0.01 f 0.53 ± 0.02 c 2.07 ± 0.02 f

S2 29.86 ± 0.01 b 10.67 ± 0.04 h 47.59 ± 0.06 b 35.7 ± 0.1 b 5.7 ± 0.1 e 58.7 ± 0.1 e 0.75 ± 0.01 i 0.41 ± 0.01 g 0.38 ± 0.01 ef 1.54 ± 0.01 g

* Treatments: Control: 1.8 dS/m, S1: 3.0 dS/m and S2: 4.5 dS/m. tr—traces; C16:0—palmitic acid; C18:2n6c—linoleic acid; C18:3n3—alpha-linolenic acid; SFA—saturated fatty acids;
MUFA—monounsaturated fatty acids; PUFA—polyunsaturated fatty acids; different Latin letters in the same column indicate significant differences according to Tukey’s HSD test
(p = 0.05).
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Eighteen individual fatty acids were detected in all the studied samples (Supplementary Material:
Table S1), while the most abundant ones were α-linolenic, linoleic and palmitic acids (Table 2). Moreover,
polyunsaturated fatty acids (PUFA) were the prevalent class of fatty acids, followed by saturated and
monounsaturated fatty acids (SFA and MUFA, respectively). A similar fatty acids profile was reported
for red rubin basil by Fernandes et al. [33] not only for individual compounds but also for fatty acid
classes, while Ababutain [42] and Suanarunsawat et al. [43] identified the same compounds in sweet
basil and holy basil (O. sanctum) leaf extracts, respectively. In contrast, Jensen et al. [44] who tested
the effect of the quality of supplemental light on basil physiology reported a different profile with
palmitic and oleic acids accounting for approximately 92% of total fatty acids. The effect of salinity on
the main compounds content varied among the cultivars, although Tarchoune et al. [45] suggested
that fatty acids composition remained unaltered when plants were subjected to high salinity either by
applying 25 mM of Na2SO4 or 50 mM of NaCl. Moreover, the highest amounts of PUFA in the control
treatment of Red Basil should be associated with the results of tocopherols (see Table 2), since the role
of tocopherols against lipid peroxidation is well confirmed [38]. In contrast, Sgherri et al. [46] reported
the low contribution of tocopherols in lipophilic antioxidant activity of basil extracts although they
suggested that the contents of single antioxidants do not reflect the overall antioxidant activity due to
synergistic and redox reactions among the various bioactive molecules.

The results regarding phenolic compounds identification and quantification are presented in
Tables 3 and 4, respectively. Six individual compounds were detected in all the tested samples, namely
four phenolic compounds and two O-glycosylated flavonoids (quercetin and eriodictyol derivatives).
The most profound polyphenols were phenolic acids, which accounted for 63.0–83.4% of total phenolic
compounds. Similar results were reported by Majdi et al. [47] and Fernandes et al. [33] although the
profile of individual compounds differed from that of our study. Literature reports suggest various
profiles of phenolic compounds in basil leaves, suggesting several factors that may affect chemical
composition, including the nitrogen fertilization regime [48], the extraction method and genotype [47]
or the inoculation with mycorrhizal fungi [49].

Table 3. Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass
spectral data and tentative identification of the phenolic compounds present in the hydroethanolic
extracts of the tested basil cultivars.

Peak Rt (min) λmax (nm) [M − H]− (m/z) MS2 (m/z) Tentative Identification

1 8.91 323 179 135(100) Caffeic acid
2 14.96 323 473 313(61),293(100) Chicoric acid
3 16.8 334 609 301(100) Quercetin-O-deoxyhexoside-hexoside
4 19.5 290/325 535 491(100),287(34) Eriodictyol-O-malonylhexoside
5 20.76 282/327 719 359(100),197(31),179(42),161(50),135(5) Sagerinic acid
6 35.36 287/333 313 269(51),203(12),179(5),161(100),135(5) Salvianolic acid F

The quantification of individual compounds showed a variable profile in the studied samples with
sagerinic acid and eriodictyol-O-malonylhexoside being the most abundant polyphenols, followed by
salvianolic acid F and chicoric acid. In contrast to most of the literature reports, rosmarinic acid was
not detected in our study, while eriodictyol-O-malonylhexoside and chicoric acid were also identified
by Fernandes et al. [33]. The highest amounts of total phenolic compounds, total flavonoids and total
phenolic acids were recorded in the S2 treatment of Red Basil due to the highest content of sagerinic
acid and eriodictyol-O-malonylhexoside, whereas the control treatment of Basilico Rosso contained the
lowest amounts of individual and total polyphenols. Moreover, the highest increase in individual and
total phenolic compounds was recorded in Basilico Rosso cultivar, and this finding could be attributed
to the concomitant increase in reducing sugars content, which are associated with phenolic compound
biosynthesis [50].
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Table 4. Quantification (mg/g of extract) of the phenolic compounds (total phenolic acids, total flavonoids and total phenolic compounds) present in the hydroethanolic
extracts of leaves of the tested basil cultivars in relation to salinity level (mean ± SD, n = 3).

Peak Number *

Treatment * 1 2 3 4 5 6 TPA TF TPC

Dark Opal Red
Control 1.54 ± 0.04 d 3.52 ± 0.04 a 0.34 ± 0.01 g 8.5 ± 0.2 b 10.3 ± 0.3 e 3.34 ± 0.03 b 18.7 ± 0.3 cd 8.9 ± 0.2 b 27.6 ± 0.1 c

S1 1.11 ± 0.02 f 2.94 ± 0.01 c 0.859 ± 0.001 d 4.40 ± 0.06 f 11.6 ± 0.5 d 1.57 ± 0.01 g 17.2 ± 0.5 e 5.3 ± 0.1 f 22.4 ± 0.6 e

S2 1.39 ± 0.04 e 3.37 ± 0.01 b 1.62 ± 0.03 a 5.96 ± 0.03 c 11.94 ± 0.01 d 1.37 ± 0.08 i 18.1 ± 0.1 d 7.6 ± 0.1 c 25.7 ± 0.2 d

Red Basil
Control 2.18 ± 0.04 a 1.98 ± 0.03 e 0.429 ± 0.003 f 8.4 ± 0.1 b 16.51 ± 0.06 b 4.99 ± 0.05 a 25.7 ± 0.1 b 8.9 ± 0.1 b 34.5 ± 0.1 b

S1 1.69 ± 0.01 c 1.11 ± 0.03 g 0.756 ± 0.004 e 3.0 ± 0.2 g 14.3 ± 0.6 c 2.04 ± 0.02 e 19.1 ± 0.6 c 3.8 ± 0.2 g 22.9 ± 0.4 e

S2 1.99 ± 0.03 b 2.23 ± 0.04 d 1.48 ± 0.01 b 10.5 ± 0.3 a 19.8 ± 0.2 a 3.19 ± 0.02 c 27.2 ± 0.2 a 12.0 ± 0.3 a 39.2 ± 0.1 a

Basilico Rosso
Control 0.63 ± 0.01 g 0.84 ± 0.02 i 0.215 ± 0.003 i 3.25 ± 0.05 g 2.96 ± 0.01 g 1.47 ± 0.04 h 5.90 ± 0.01 h 3.47 ± 0.05 h 9.37 ± 0.06 h

S1 1.65 ± 0.02 c 1.05 ± 0.02 h 1.12 ± 0.01 c 5.35 ± 0.03 e 6.5 ± 0.3 f 1.82 ± 0.02 f 11.1 ± 0.3 g 6.47 ± 0.02 e 17.5 ± 0.3 g

S2 1.66 ± 0.01 c 1.25 ± 0.02 f 1.43 ± 0.08 b 5.67 ± 0.03 d 6.6 ± 0.3 f 2.28 ± 0.02 d 11.8 ± 0.2 f 7.1 ± 0.1 d 18.9 ± 0.1 f

* Treatments: Control: 1.8 dS/m, S1: 3.0 dS/m and S2: 4.5 dS/m. TPA—total phenolic acids; TF—Total flavonoids, TPC—Total phenolic compounds; different Latin letters in the same
column indicate significant differences according to Tukey’s HSD test (p = 0.05). * Peak numbers correspond to the compounds presented in Table 3.



Agronomy 2020, 10, 1824 12 of 17

Antioxidant activity of basil leaves extracts was determined with the TBARS and OxHLIA methods
(Table 5). The highest activity for the TBASR assays was observed in the control treatment of the Dark
Opal Red cultivar, while the IC50 values of the OxHLIA assay after 60 and 120 min were the lowest
for the control treatment of Red Basil and the S1 treatments of Dark Opal Red and Basilico Rosso in
the first case and the control treatment of Red basil in the second case. None of the tested extracts
showed higher activity than Trolox which was the positive control. The variable results depending
on the implemented assay is usual in natural matrices since several antioxidants are involved in the
overall antioxidant mechanisms of plants, including tocopherols, polyphenols, free sugars and organic
acids [36]. The findings of our study could be partly attributed to γ- and δ-tocopherols and chicoric
acid in the case of TBARS assay where the highest activity was associated with the highest amounts of
these compounds observed in Dark Opal Red (control treatment). On the other hand, α-tocopherol
and caffeic and salvianolic acid F could be responsible for the highest activity against OxHLIA at
∆t = 120 min recorded in Red Basil (control treatment). Although it is reported that salinity stress and
nitrogen deprivation induce the biosynthesis of polyphenols as an adaptation means of basil plants
to oxidative stress [7,48], the increase in total and individual phenolic compounds with increasing
salinity in the Red Basil cultivar was not accompanied by an increase in the antioxidant activity of
leaves extracts indicating a complex antioxidant mechanism.

Table 5. Antioxidant activity of the tested basil cultivars in relation to salinity level (mean ± SD, n = 3).

Cultivar Treatment * TBARS(EC50, µg/mL)
OxHLIA (IC50 Values, µg/mL)

∆t = 60 min ∆t = 120 min

Dark Opal Red
Control 13.0 ± 0.5 i 66 ± 3 b 155 ± 5 b

S1 14.5 ± 0.4 h 41 ± 1 e 104 ± 3 c

S2 30 ± 1 f 50 ± 1 d 100 ± 2 c

Red Basil
Control 24.6 ± 0.7 g 35 ± 1 e 73 ± 2 d

S1 45.3 ± 0.5 c 69 ± 2 b 168 ± 13 b

S2 49.4 ± 0.6 b 58 ± 3 c 112 ± 3 c

Basilico Rosso
Control 31.4 ± 0.2 e 86 ± 5 a 209 ± 4 a

S1 35.6 ± 0.9 d 38 ± 2 e 99 ± 2 c

S2 51.0 ± 0.9 a 51 ± 1 d 100 ± 2 c

Trolox (positive control) 5.4 ± 0.3 19.6 ± 0.7 41 ± 1

* Treatments: Control: 1.8 dS/m, S1: 3.0 dS/m and S2: 4.5 dS/m. Different Latin letters in the same column indicate
significant differences according to Tukey’s HSD test (p = 0.05).

The antimicrobial activities of the tested extracts were tested against six bacteria (Staphylococcus
aureus, Bacillus cereus, Listeria monocytogenes, Escherichia coli, Salmonella enterica serovar Typhimurium
and Enterobacter cloacae) and six fungi (Aspergillus fumigatus, A. niger, A. versicolor, Penicillium funicolosum,
P. verrucosum var. cyclopium and Trichoderma viride) strains and the results are presented in Table 6.
In most of the cases, positive controls (E211 and E224) were more effective than the extracts obtained
from basil leaves, although there were treatments with similar values to the control MIC against
S. aureus (control and S1 treatments of Red Basil and Basilico Rosso, respectively), B. cereus (control
and S1 treatment of Basilico Rosso) and S. enterica serovar Typhimurium (S2 and control treatment
of Red Basil and Basilico Rosso, respectively). In contrast, the activity of the extracts against the
tested fungi was more profound than the same positive controls (E211 and E224), especially against
A. fumigatus, A. niger and A. versicolor, where all the extracts had lower MIC and MFC values than
the controls. Significant activity was also observed against T. viride where almost all the extracts
had MIC values MFC lower and similar to the control, respectively (except for the S1 treatment of
Basilico Rosso). Moreover, Red Basil and Dark Opal Red (only the control treatment) extracts were
effective against P. verrucosum var. cyclopium, while all the extracts (except for the S1 treatment of
Red Basil) exhibited lower MIC values than the positive controls against P. funiculosum. Most of
the published reports refer to the antimicrobial properties of basil essential oils [51,52] suggesting
possible applications in the food industry as antimicrobial agents [53]. However, apart from the
essential oils, leaf extracts may also exhibit significant antimicrobial effects against various pathogens,
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such as L. monocytogenes and P. aeruginosa [47], where these effects were attributed to the presence
of rosmarinic acid, or against P. aeruginosa, Shigella sp., L. monocytogenes, S. aureus and E. coli where
methanolic extracts were most effective compared to the chloroform and acetone ones [54]. Moreover,
Kocić-Tanackov et al. [55] suggested that basil extracts may be effective against various Fusarium
species. According to Ababutain [42] fatty acids composition is related with antimicrobial properties
and chain length may affect the activity against bacteria strains with unsaturated fatty acids being
more effective than the saturated ones against S. aureus, Helicobacter pylori and Mycobacterium.

Table 6. Antibacterial and antifungal activity (mg/mL) of hydroethanolic extracts of the leaves of the
tested basil cultivars in relation to salinity level.

Cultivar Treatment * Antibacterial Activity S. aureus B. cereus L. monocytogenes E. coli
S. enterica

Serovar
Typhimurium

E. cloacae

Dark Opal Red

Control
MIC 4 1 2 2 2 4
MBC 8 2 4 4 4 8

S1
MIC 2 1 2 2 2 2
MBC 4 2 4 4 4 4

S2
MIC 2 1 1 2 2 2
MBC 4 2 2 4 4 4

Red Basil

Control
MIC 1 1 1 1 2 1
MBC 2 2 2 2 4 2

S1
MIC 2 1 1 2 2 2
MBC 4 2 2 4 4 4

S2
MIC 2 1 1 2 1 2
MBC 4 2 2 4 2 4

Basilico Rosso

Control
MIC 2 0.5 1 2 1 2
MBC 4 1 2 4 2 4

S1
MIC 1 0.5 1 2 2 1
MBC 2 1 2 4 4 2

S2
MIC 2 1 1 2 2 2
MBC 4 2 2 4 4 4

Positive controls
E211

MIC 4 0.5 1 1 1 2
MBC 4 0.5 2 2 2 4

E224
MIC 1 2.0 0.5 0.5 1 0.5
MBC 1 4.0 1 1 1 0.5

Cultivar Treatment Antifungal Activity A. fumigatus A. niger A. versicolor P. funiculosum P. v. var.
cyclopium T. viride

Dark Opal Red

Control
MIC 0.5 0.5 0.5 0.5 0.5 0.25
MFC 1 1 1 1 1 0.5

S1
MIC 0.5 0.5 0.5 0.5 1 0.25
MFC 1 1 1 1 2 0.5

S2
MIC 0.5 0.5 0.5 0.5 1 0.25
MFC 1 1 1 1 2 0.5

Red Basil

Control
MIC 0.5 0.5 0.5 0.5 0.5 0.25
MFC 1 1 1 1 1 0.5

S1
MIC 0.5 0.5 0.5 1 0.5 0.25
MFC 1 1 1 2 1 0.5

S2
MIC 0.5 0.5 0.5 0.5 0.5 0.25
MFC 1 1 1 1 1 0.5

Basilico Rosso

Control
MIC 0.25 0.5 0.5 0.5 0.5 0.25
MFC 0.5 1 1 1 1 0.5

S1
MIC 0.5 0.5 0.5 0.5 1 0.5
MFC 1 1 1 1 2 1

S2
MIC 0.5 0.5 0.5 0.5 1 0.25
MFC 1 1 1 1 2 0.5

Positive controls
E211

MIC 1 1 2 1 2 1
MFC 2 2 2 2 4 2

E224
MIC 1 1 1 0.5 1 0.5
MFC 1 1 1 0.5 1 0.5

* Treatments: Control: 1.8 dS/m, S1: 3.0 dS/m and S2: 4.5 dS/m. MIC—minimal inhibition concentration;
MBC—minimal bactericidal concentration; MFC—minimal fungicidal concentration.

4. Conclusions

The results of our study showed that the tested cultivars were moderately tolerant to salinity
with no significant effects on fresh weight of leaves, whereas a slight discoloration (loss of red color)
was also recorded in all the cultivars when the highest salinity level was applied. Varied effects of
salinity were observed regarding the nutritional value of basil leaves with an increase in fat, ash
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and carbohydrates and a decrease in protein and energetic value for all the cultivars. Moreover,
plants of Red Basil and Bassilico Rosso cultivars subjected to salinity stress tended to accumulate free
sugars and phenolic compounds as the main osmolytes to contribute to the overall plant antioxidant
mechanism, whereas tocopherols and organic acids were negatively affected by salinity in all the
cultivars. However, the slight reduction in oxalic acid is deemed beneficial due to the antinutritional
effects of this compound. The antioxidant effects varied for the tested assays and for the TBARS
leaf extracts from the control treatment showed the highest activity probably due to the reduction
in tocopherols for the same treatment. On the other hand, the results of the OxHLIA assay indicate
that high salinity may increase the antioxidant activity for specific cultivars (Dark Opal Red and
Basilico Rosso). Interestingly, most of the leaf extracts showed antifungal activities against the tested
pathogenic fungi with MIC and MFC values similar or lower than the positive controls, whereas the
antibacterial effectiveness for most of the tested extract was lower than the tested controls. Therefore, it
could be assumed that the cultivation of basil under moderate salinity stress is a viable option allowing
for the valorization of slightly salinized soils or the use of brackish water. However, further studies are
needed to identify and select those genotypes that are suitable for cultivation under saline conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/11/1824/s1,
Table S1: Fatty acids composition (%) of the tested basil cultivars in relation to salinity level (mean ± SD, n = 3).
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