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Ćuković, K.B.; Subotić, A.R.;
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Abstract: Somatic embryogenesis (SE) is a developmental process during which plant somatic cells,
under suitable conditions, produce embryogenic cells that develop into somatic embryos (se). SE is
the most important method for plant propagation in vitro, having both fundamental and applicative
significance. SE can be induced from different tissues and organs, but when se are used as explants,
the process is recognized as secondary or cyclic SE. We induced secondary SE in Centaurium erythraea
by application of 2,4-dichlorophenoxyacetic acid (2,4-D) and N-(2-chloro-4-pyridyl)-N′-phenylurea
(CPPU). A medium containing 0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU was optimal in terms of
the number of primary SE explants forming se, the number of well-developed se per explant,
and morphological appearance of the obtained se. These concentrations allowed SE to progress
through three cycles, whereas at higher concentrations of 0.2 mgL−1 2,4-D and 0.5 mgL−1 CPPU,
only two cycles were achieved. Histological analysis revealed that secondary se are formed both
directly and indirectly. Secondary SE readily germinated and converted into plantlets. Induction
of cyclic SE contributes to the conservation efforts of this endangered medicinal plant and expands
the spectrum of in vitro developmental pathways described in centaury—an emerging model in
developmental biology.

Keywords: cyclic somatic embryogenesis; direct somatic embryogenesis; indirect somatic embryogenesis;
leaf explant; histology; 2,4-D; CPPU; auxins; cytokinins

1. Introduction

Centaurium erythraea Rafn (common, European, or small centaury), belonging to the
Gentianaceae family, is a medicinal plant with a broad environmental tolerance. Centaury
is widespread over most of Europe, where it grows in different habitats, such as on river
banks and wood margins, as well as on calcareous dry and sandy land [1,2]. The aerial
part of the plant, Centaurii herba, is traditionally used as bitter tinctures, tonics, lotions, or
teas to treat a diversity of ailments. The bitter taste is due to the secoiridoids. Secoiridoid
glucosides are reported in various applications for the treatment of different digestive
problems, as well as gastroprotective [3] and hepatoprotective agents [4]. Other important
secondary metabolites include xanthones [5], as well as alkaloids, terpenoids, phenolic
acids, flavonoids, fatty acids, alkanes, and waxes [6,7], some of which are constituents
of centaury essential oils [8]. Centaury also exhibits considerable antioxidant [7,9,10],
antidiabetic [11,12], and antimicrobial [7] pharmacological properties, which are correlated
with its phytochemical composition. Because of the extensive and uncontrolled exploitation,
coupled with its limited cultivation restricted by unpredictable seed germination and the
inability of C. erythraea to grow in dense stands [6], as well as insufficient attempts for the
replenishment, the wild populations of centaury have been markedly depleted. Sustainable
utilization of this valuable medicinal plant and the efforts for its conservation, as well
as biotechnological alternatives for the production of its secondary metabolites, rely on
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the development of efficient in vitro techniques for the mass propagation of centaury [13].
As reviewed in the accompanying article in this issue [14], the most extensively studied
pathway of centaury in vitro propagation is somatic embryogenesis (SE).

SE is a developmental process by which plant somatic cells, under suitable induc-
tive conditions, produce embryogenic cells that, through a series of morphological and
biochemical changes, form a somatic embryo [15]. Somatic embryo (se) is a structure that
resembles the zygotic embryo, but formed without fertilization, which passes through
similar stages (globular, heart-shaped, torpedo-shaped, and cotyledonary embryo). As
such, se is not enclosed by maternal tissues, so that the process of SE can be not only con-
trolled by the in vitro culture conditions, but the obtained se can be observed and collected
at different developmental stages for the molecular and biochemical analyses [15]. Thus,
SE is used as a model system for studying morphological, physiological, and molecular
aspects of embryogenesis in higher plants [15,16], as well as for investigating cellular
differentiation and mechanisms leading to acquisition of totipotency in plant cells [17].
Equally important are various biotechnological applications of SE, such as the propagation
of elite or transgenic lines, while single-cell origin of some se may offer many advantages
for breeding programs [18]. Actually, SE is considered as the most appropriate in vitro
method for the clonal propagation of different plant species due to its high multiplication
potential [19]. In addition, plant propagation trough SE represents an important source
of material for plant transformation, offering genetically identical starting material, with
less somaclonal variation as compared to propagation through organogenesis [20]. SE has
also been revealed as the best regeneration pathway in cryopreservation [21], as well as a
method of choice for the haploid production, somatic hybridization, and the production of
artificial seeds [16].

Somatic embryos can either differentiate directly, from a small group of cells of the
explanted tissue (direct SE or DSE), or indirectly, from embryogenic callus cells that further
produce embryos (indirect SE or ISE) [22]. SE is influenced by internal and external factors,
such as the type and the physiological state of the explant, the composition of the culture
medium, the type and concentration of plant growth regulators (PGRs) in the medium,
temperature, and light regime [23]. It has been suggested that in the case of DSE, proem-
bryogenic competent cells are already present in the explant, hence they require minimal
reprogramming, while in ISE, major cell reprogramming is needed to acquire embryogenic
potential [24].

In most plant species, particularly in the Gentianaceae family, PGRs in the auxin
and cytokinin groups are among the main factors affecting the induction of SE [25]. They
determine the acquisition of totipotency by the explant cells [26], and consequently induce
the development of se. Auxins and cytokinins are involved in the regulation of cell divisions
and differentiation processes in the plant tissues [27], leading to the formation of SE. In
the protocols for the induction of SE in many plant species, cell reprogramming is induced
by a treatment with exogenous auxin, usually 2,4-dichlorophenoxyacetic acid (2,4-D). The
evidence supports the notion that auxins play a critical role in cell reprogramming, while the
induction of SE development requires subsequent elimination of the auxin from the culture
media [28]. The concentrations of auxin required for SE induction may vary with different
protocols. Cytokinins are thought to be more involved in the differentiation and further
development of SE. In most plant species, the SE induction requires the presence of both
PGRs [29], but SE can also be achieved by using only certain auxins [30] or cytokinins [31].

Secondary SE is a developmental process by which new (secondary) somatic embryos
are developed from the primary somatic embryos used as explants. Other common names
for secondary SE are repetitive, cyclic, recurrent, accessory, or adventitious SE. Secondary
se are formed directly or/and indirectly on the cotyledons, hypocotyls, epicotyls, or root
tips of the primary se. Efficient plant regeneration systems through secondary SE have been
reported in several plant species, for example in Cyclamen persicum [32], Hepatica nobilis [33],
Pseudotsuga menziesii [34], Akebia trifoliata [35], and Olea europea [36]. Secondary SE may
enhance and prolong embryogenic competence of certain lines [34], multiply the number
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of embryos that can be obtained (compared to primary SE) [34], and recycle se of abnormal
morphology that otherwise cannot regenerate normal plants [37]. This developmental
pathway characterizes high multiplication index, repeatability, independence from explants
source effects, and high level of uniformity [38]. Low production rate of important clone
lines can be enhanced by obtaining secondary SE [34]. Since in many species, embryogenic
competence in the in vitro culture declines over time due to aging and subculturing for
several months [39,40], secondary SE provides a way to restore the embryogenic potential
of important productive lines and is routinely used with broadleaved tree species as a
method of long-term management [34].

As discussed in detail in the accompanying review article of this issue [14], several
successful protocols for the induction of SE in C. erythraea from different explants have
been published. Briefly, SE has been induced in cell suspension culture [41], root ex-
plants [6,42–45], and leaf explants [13,46]. While SE from roots was spontaneous and direct,
the SE from the leaf explants was indirect and induced by the addition of 2,4-D and a
urea-type synthetic cytokinin N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU). There are no
reports on the induction of secondary SE in centaury. Hereby, we report a successful estab-
lishment of secondary SE in centaury, as a valuable addition to the spectrum of protocols
for the in vitro propagation of this species. Namely, we have recently proposed C. erythraea
as a model plant organism in developmental biology due to its great regeneration potential
and developmental plasticity [46,47]. So, the present work aims not only to provide a more
efficient way for the in vitro propagation of centaury as a support for the conservation
efforts, but also to establish an additional system for fundamental research of centaury de-
velopment. Namely, having several systems for the induction of SE from different explants
in the same species would allow for a comparison of biochemical and molecular events in
these systems within the same genetic background. The effects of different combinations of
2,4-D and CPPU on the induction of SE are described, along with the effects of multiple
cycles of SE on the efficiency of this process. The results are supported by histological
analyzes of the embryogenic tissues and developing se, as well as the germination tests of
the obtained secondary se.

2. Results
2.1. Induction of Primary SE from C. erythraea Leaf Explants and the Experimental Setup

We have previously published successful induction of SE from centaury leaf explants
cultivated on a combination of 2,4-D and CPPU, where ISE proceeds as a sole develop-
mental pathway, providing that the leaf explants are kept in darkness [13]. Thus, primary
SE was induced as described by Filipović et al. [13], with slight modifications. The leaf
segments of mature plants were cultivated for three weeks in the darkness on MS medium
supplemented with 0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU (Figure 1). Well-developed
primary cotyledonary somatic embryos (cse) (Figures 1 and 2a) formed on this media were
used as primary explants for the induction of secondary SE on media with varying 2,4-D
and CPPU concentrations (Figure 1). Generally, in all experiments described below, only
cse were used as explants, even though embryos of all developmental stages were observ-
able. For a comparison, the leaf explants were also cultivated on a media supplemented
with 0.2 mgL−1 2,4-D and 0.5 mgL−1 CPPU, and the primary cse obtained in this setup
were also used for the induction of secondary and cyclic SE, as discussed later.

2.2. Induction of Secondary SE

Well-developed primary cse formed on the leaf explants on 0.1 mgL−1 2,4-D and
0.25 mgL−1 CPPU (Figure 2a) were excised (Figures 2b and 3a) and used as explants for the
induction of secondary SE on the same medium. After four weeks, primary cse explants
enlarged several times and developed both embryogenic calli (ec) and nonembryogenic
calli (nec), as well as somatic embryos at different developmental stages (Figure 2c). The
nec that developed on primary cse was watery, friable, and translucent (Figure 3b). In
contrast, the ec exhibited more organized structure and morphology: the embryogenic
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tissue was semi-compact, nodular, with a smooth surface and whitish to yellowish color
(Figure 3c–e). Secondary se developed on the primary cse both indirectly, from the ec
(Figure 3e,f,h), as well as directly on the explants, without callusing (Figure 3g,h). Somatic
embryos at the cotyledonary stage formed directly or indirectly are referred to in the
following text as dcse and icse, respectively. Although most of the explants swelled and
significantly changed their morphology during the cultivation, in some of the explants,
dcse could be observed developing on the primary cotyledons (Figure 3g).

Figure 1. Schematic presentation of the experimental setup. Primary cotyledonary somatic embryos (cse) developed on the
centaury leaf explants provided the initial explants for the induction of secondary somatic embryos (SE). The induction of
cyclic SE was conducted on two different media. Secondary embryos developed on 0.1 mgL−1 2,4-dichlorophenoxyacetic
acid (2,4-D) and 0.25 mgL−1 N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) were examined histologically and their ger-
mination was tested. Rectangles of identical colors represent the same composition of the culture medium. The listed
abbreviations are used throughout the text.

Figure 2. The induction of secondary SE in Centaurium erythraea. (a) Primary cse developed on leaf explants (red arrows);
(b) primary cse were excised and set as explants arranged as 6 × 6 array on MS medium containing 0.1 mgL−1 2,4-D and
0.25 mgL−1 CPPU; (c) primary cse with induced secondary embryos.
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Figure 3. Secondary SE after four weeks in culture on medium with 0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU. (a) Primary
explant—cse at the beginning of the experiment; (b) cse with only nonembryogenic calli (nec) developed; (c) cse with
developed embryogenic calli (ec) and globular somatic embryo (gse); (d) cse that developed both ec and nec; (e) ec
with secondary se of various developmental stages; (f) cotyledonary somatic embryo formed indirectly (icse) developed
from callus; (g) cotyledonary somatic embryo formed directly (dcse) developed on cotyledons of primary cse explants;
(h) both dcse and icse types of embryos on the same explant. cse—cotyledonary somatic embryo, nec—nonembryonic
callus, ec—embryogenic callus, gse—globular somatic embryo, dsce—cotyledonary somatic embryo formed directly,
icse—cotyledonary somatic embryo formed indirectly.

2.3. Histology of the Secondary SE

The process of the development of secondary somatic embryos in centaury was
histologically analyzed. As explained in the previous section, secondary SE was induced
on media containing 0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU. Morphological features of
the explants with directly and/or indirectly developed secondary se at different stages,
that were used for the histological analysis, are shown in Figure 4a–c. The presence of the
se at different developmental stages that could be observed on the same explant suggests
that the process of SE is asynchronous. The major events during the SE are comprised
of early, intermediate, and the maturation stages. Early stages of SE are described as the
process of the induction of ec, as well as induction of direct se from the subepidermal
cells of the explant. This is followed by the intermediate stage of SE, during which se are
initiated either indirectly, from the proembryogenic masses (PEM), or directly, following
the activation of repeated cell divisions of the proembryogenic cells. Finally, the maturation
stage of SE is the final stage of vascular patterning for the induction of shoot apical meristem
(SEM), leaf primordia, and provascular bands. Histological features observed during DSE
from centaury roots [42,43] and ISE from the leaf explants [13] aid in distinguishing these
two types of SE, which occur simultaneously during secondary SE.

Direct induction of secondary se was seen from the entire surface of the primary se.
The direct initiation of se was observed from the subepidermal layer of the cse explant
without an intervening callus phase. Differentiated multicellular PEMs, seen at the periph-
ery of the explants, further developed into embryos (Figure 4d). During further growth,
the PEM produced secondary somatic embryos at the globular stages of development (gse).
The gse at the onset of polarization, showing a protoderm-like layer, were the first clearly



Plants 2021, 10, 199 6 of 20

distinguishable stage of the somatic embryo differentiation (Figure 4e). These gse had no
apparent vascular connection with the primary cse tissue to which they are connected
by a suspensor-like structure (Figure 4e). Subsequent somatic embryo development in-
cluded their elongation, development of procambium, and shoot meristem differentiation,
reaching the early cotyledonary-staged somatic embryo (Figure 4f). The secondary cse
were poorly attached to the surface of the primary explants and could easily separate. No
vascular connections were observed between the developing somatic embryos and the
primary explant (Figure 4f).

Figure 4. Morphological and histological characterization of secondary SE from primary cse explants
cultured for 3 weeks in the darkness on medium supplemented with 0.1 mgL−1 2,4-D and 0.25 mgL−1

CPPU. (a–c) Numerous secondary cse were visible to arise indirectly from ec and/or directly from the
primary explant; (d–f) the process of secondary DSE; (g–i) the process of secondary ISE; (d) developed
proembryogenic cell masses (PEMs); (e) formation of secondary gse with a suspensor-like structure
at the surface of primary cse; (f) secondary cse at early stage of development; (g) embryogenic callus
formed of small and isodiametric clumps of cells; (h) globular somatic embryo formed from cse;
(i) secondary cse at a late developmental stage with visible shoot apical meristem (SAM), provascular
bands (PB), and leaf primordia (LP).

As observed using light microscopy, the ec was formed by small and isodiametric
clumps of cells, containing prominent nuclei and dense cytoplasm. These clusters were
round structures bounded by a layer of organized cells. Histological analyses showed that
some cells in the superficial portions of this callus exhibited meristematic characteristics
(Figure 4g). These clusters of proembryogenic cells progressed through a series of organized
division to give rise to gse (Figure 4h). Finally, an increased embryo differentiation and
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elongation were observed, which became sharper, reaching the late cse with well-developed
shoot apical meristem, leaf primordia and provascular bands (Figure 4i).

2.4. The Effect of 2,4-D and CPPU on the Induction of Secondary SE

To explore the effect of different concentrations of 2,4-D and CPPU on the process of
secondary SE, well-developed primary cse were excised from the leaf explants cultured
on 0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU and transferred to fresh media with different
content of PGRs. The media were supplemented with 2,4-D (0.1 mgL−1) and increasing
CPPU concentrations (0–0.5 mgL−1), whereas a hormone-free medium was used as control
(Figures 1 and 5). After 4 weeks in culture, each primary cse was observed, and features
such as development of calli (ec or nec) and se at different developmental stages (cotyle-
donary or other) and of different origin (directly or indirectly formed) were recorded as a
number of explants with a particular feature.

General regenerative potential of the cse explants on different media was initially
evaluated as the number of explants forming calli. On a hormone-free medium, on average,
only 3 out of 36 explants formed calli, exclusively nonembryogenic ones (nec), while
no explants formed embryogenic (ec) calli (Figure 5a). In the cse explants cultivated on
0.1 mgL−1 2,4-D, on average, about 60% of the explants produced calli, but again, all of
them were nec. However, if both PGRs were added to the medium, almost all of the cse
(on average 34.14–35.57 explants per treatment) generated calli, even at the lowest CPPU
concentration of 0.1 mgL−1 (Figure 5a). Therefore, CPPU was necessary for the generation
of ec. The concentration of 0.5 mgL−1 CPPU gave the highest number of explants with
ec (21.71 on average), with concomitant reduction of the number of cse where only nec
formed (Figure 5a).

Even though the primary explants cultivated on media without CPPU did not produce
any embryogenic calli, secondary se did appear, on average, on 10 (out of 36) explants on
the MS medium, and on 6.57 explants grown on 0.1 mgL−1 2,4-D (Figure 5b). Obviously, in
the absence of ec, all of the secondary se formed on these media were developed directly.
Spontaneous secondary DSE is depicted in Figure 6a. With the addition of CPPU, the
number of explants developing se drastically increased in a dose–response manner, up to,
on average, 35.14 explants on the media supplemented with 0.5 mgL−1 CPPU (Figure 5b).
Only cse were further classified into embryos formed directly and indirectly (dcse and
icse), and it turned out that DSE is not only the exclusive path on CPPU-free media,
but also the predominant path on media containing CPPU (Figure 5b). However, the
number of explants with embryos developed by ISE slightly increased with rising the
CPPU concentration, up to an average of 5.43 explants on medium with 0.1 mgL−1 2,4-D
and 0.5 mgL−1 CPPU (Figure 5b, “icse only”), in concordance with higher induction of ec
on this medium (Figure 5a).

In addition, the number of cse per explant was also scored after 4 weeks of cultivation
on different media (Table 1). The average number of the cse per explant was significantly
higher on media containing 0.25 and 0.5 mgL−1 CPPU, as compared to other media,
reaching up to 3.87 ± 0.50 new secondary cse per primary explant (Table 1).

The induction of secondary SE on different media produced cse of different mor-
phology. On the hormone-free media, secondary se formed on the primary explants
spontaneously and directly, mostly in the hypocotyl zone of the explant, and had nor-
mal morphology (Figure 6a). Concentration of 0.1 mgL−1 2,4-D with 0.25 mgL−1 CPPU
resulted in a production of well-developed bi-cotyledonary se (Figure 6b), which were
easily isolated from the primary explant (and thus preferable as explants for new cycles of
SE, as discussed later). Secondary cse forming on media formulations with higher CPPU
concentration (0.5 mgL−1 CPPU) often had an abnormal morphology, with cse having
more than two cotyledons, trumpet or fascicular shape, and fused cotyledons (Figure 6c,d).
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Figure 5. The effect of different concentrations of 2,4-D and CPPU on the induction of calli and secondary embryos on the cse
explants. (a) The number of cse explants forming any type of calli and specifically embryogenic (ec) or nonembryogenic (nec)
calli; (b) the number of cse explants forming secondary embryos of any stage or origin (se) and specifically cotyledonary
somatic embryos (cse), formed directly (dcse) or indirectly (icse). The mean values for seven replicates (with 36 cse explants
each) equivalent to fitted values of the corresponding logistic regression models, with error bars (95% confidence intervals)
are presented as the number of explants forming specific types of calli or SE (left ordinate), or the probability of calli or SE
formation on the explants (right ordinate). Different letters denote statistically significant differences at p < 0.05. Gray dots
represent individual replicates (Petri dishes).
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Figure 6. Morphology of secondary cse (red arrows) developing on different hormone combinations: (a) hormone-free
medium; (b) 0.1 mgL−1 2,4-D with 0.25 mgL−1 CPPU; (c) 0.1 mgL−1 2,4-D with 0.5 mgL−1 CPPU; and (d) 0.2 mgL−1 2,4-D
with 0.5 mgL−1 CPPU.

Table 1. The effect of media formulation on the average number of secondary cse per primary
explant. Only explants that formed cse were considered. Mean values ± SD per treatment are
presented. Different letters denote significant differences (p < 0.05) according to Tukey post-hoc
pairwise comparisons.

2,4-D [mg l−1] CPPU [mg l−1] cse Per Explant

0 0 1.43 ± 0.44 a

0.1 0 1.18 ± 0.37 a

0.1 0.1 1.61 ± 0.54 a

0.1 0.25 3.28 ± 0.71 b

0.1 0.5 3.87 ± 0.50 b

2.5. Induction of Cyclic SE

To see whether SE can continue through several cycles, two combinations of PGRs
were tested: 0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU or 0.2 mgL−1 2,4-D and 0.5 mgL−1

CPPU, referred in the following text as lower and higher concentrations, respectively. These
two combinations of PGRs were maintained throughout this experiment, starting with the
induction of SE on the leaf explants (see Figure 1). The four replicates (Petri dishes) that
were used in this experiment were linked through the cycles in terms that the embryos
developed in one cycle were transferred to a Petri dish with the same label in the next
cycle. Since the highest number of the explants forming se or cse (Figure 5b), as well as the
highest number of the cse per explant (Table 1), were obtained on 0.1 mgL−1 2,4-D and 0.25
or 0.5 mgL−1 CPPU, the lower concentration of CPPU was used in combination with 2,4-D
(0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU) because the embryos developed on this media
exhibited normal morphology (Figure 6b). On the other hand, the higher concentrations
of both PGR but at the same ratio (0.2 mgL−1 2,4-D with 0.5 mgL−1 CPPU) proved to
be optimal for the induction of SE in centaury leaf culture [13], and for this reason were
also used in this experiment. Only somatic embryos at the cotyledonary stage (cse) were
harvested and set to initiate the next cycle.

In the 1st cycle of the cyclic SE, secondary cse that developed on primary cse explants
on media with lower or higher PGRs concentration were excised, transferred to a fresh
media of the same composition, and their morphological features (developed calli and
embryos) were scored after 4 weeks in culture. In the 2nd cycle, tertiary cse that formed
after four weeks were subcultured on the same fresh media for the 3rd and last cycle (see
Figure 1). As can be seen in Figure 7, both hormone combinations were able to initiate cyclic
SE, but as discussed later, only SE on the lower concentrations could progress through
three cycles, whereas only two cycles were possible on higher concentrations.
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Figure 7. The effect of secondary SE cycle and media composition on the induction of calli and secondary embryos on
explants. (a,c) The explants cultivated on lower concentrations of plant growth regulators (PGRs) (0.1 mgL−1 2,4-D and
0.25 mgL−1 CPPU); (b,d) the explants are cultivated on higher concentrations of PGRs (0.2 mgL−1 2,4-D and 0.5 mgL−1

CPPU); (a,b) the number of cse explants forming any type of calli and specifically embryogenic (ec) or nonembryogenic (nec)
calli; (c,d) the number of cse explants forming secondary embryos of any stage or origin (se) and specifically cotyledonary
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somatic embryos (cse), formed directly (dcse) or indirectly (icse). The mean values for four replicates (with 36 cse explants
each), equivalent to fitted values of the corresponding general estimating equations models, with error bars (95% confidence
intervals), are presented as the number of explants forming specific types of calli or se (left ordinate), or the probability
of calli or se formation on the explants (right ordinate). Dots of the same color represent linked replicates (Petri dishes)
through the cycles. Different letters denote statistically significant differences at p < 0.05.

On the medium with lower PGRs, on average, 29.25 of the cse explants produced
some type of calli during the 1st cycle, whereas nearly all explants (35.75 on average)
generated calli during the 2nd and the 3rd cycle (Figure 7a). Likewise, the number of
explants forming calli increased in the 2nd cycle, as compared to the 1st cycle, on higher
PGRs concentration (Figure 7b). The embryogenic capacity of the explants measured as
the number of cse explants producing embryogenic calli (ec) also significantly increased
with the cycles’ progression on both types of media. Specifically, the number of explants
forming ec on 0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU increased through the cycles from
5.75 explants (per replicate) in the 1st cycle to 25.5 explants in the 3rd cycle (Figure 7a),
while on 0.2 mgL−1 2,4-D and 0.5 mgL−1 CPPU, 16.25 and 31.75 explants produced ec in
the 1st and 2nd cycle, respectively (Figure 7b). In both cases, this increase was concomitant
with a decrease in the number of explants forming only nec (Figure 7a,b).

The formation of se, as another parameter of the embryogenic capacity of the explants,
also did not change much over the cycles, since nearly all of the explants formed se on
both types of media (Figure 7c,d). On the lower PGRs concentration, there was a slight
(albeit statistically significant) increase in the number of explants forming se in the 3rd
cycle, as compared to the first two cycles (Figure 7c), whereas on higher concentration,
nearly all of the explants developed se in both cycles (Figure 7d). However, the number of
fully-developed embryos at the cotyledonary stage drastically decreased with the cycles’
progression at both lower and higher concentrations of PGRs. Thus, the number of explants
with developed cse decreased from 25 in the 1st to 7.5 in the 3rd cycle, and from 22.5
in the 1st to only 2.25 in the 2nd cycle on lower and higher concentrations, respectively
(Figure 7c,d). Considering only explants that did form cse, the average number of newly-
formed cse per explant was not significantly different among different SE cycles and
different concentrations, being ≈3 in all cases (data not shown). This means that in the 2nd
cycle at the higher concentration, less than 10 cse were formed, which was insufficient to
initiate the 3rd cycle. Overall, 432 cse that were used as explants on the lower concentrations
(4 Petri dishes x 36 explants/replicate x 3 cycles) produced a total of 634 newly-formed,
well-developed cse in all cycles, whereas 288 cse cultivated on higher PGRs concentrations
(4 replicates x 36 explants x 2 cycles) formed a total of 280 cse. Most of the cse were formed
by direct pathway on both media and in all cycles (Figure 7c,d).

2.6. Germination of Secondary Somatic Embryos

The ability of secondary cse, obtained on media with 0.1 mgL−1 2,4-D and 0.25 mgL−1

CPPU, to germinate and develop into plantlets was tested in the light and in darkness on
media without growth regulators. In the light, well-developed shoots with multiple leaves
were formed on 80% of the explants (Figure 8a–c), while 32.4% of these plantlets devel-
oped roots after 25 days of cultivation (Figure 8b,c). Well-developed and rooted plantlets
(Figure 8e) further developed into plants upon transfer to fresh media (Figure 8f). Most
plants appeared to be healthy and to grow vigorously. In darkness, 64.5% of the cse explants
developed etiolated shoots (Figure 8d), and most of those shoots also formed roots.
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Figure 8. Germination of secondary cse on media without PGRs. (a–c) Most of secondary cse germinated in the light had
well-developed shoots and some of them formed roots; (d) when the secondary cse are set to germinate in the darkness,
roots and etiolated shoots are formed; (e) 40 days old plantlet with well-developed roots; (f) plantlets ready for transfer to
MS for further development.

3. Discussion

One of the most important factors in SE induction in most plant species is the concen-
tration of auxins and cytokinins present in the medium. Regarding the requirements for
PGRs for the induction of secondary SE, Raemakers et al. [18] concluded that the kinds of
PGRs suitable for primary SE were generally suitable for secondary SE as well, and our
results corroborate this conclusion. Namely, 2,4-D and CPPU successfully induced both
primary [13] and secondary SE in C. erythraea (Figures 2–5). Similarly, 2,4-D induced both
primary and secondary SE in peanut [48] and Magnolia dealbata [49], while in some species,
hormone-free medium was suitable for efficient induction of both primary and secondary
SE [33]. However, there are cases where primary SE is induced by PGRs, but the induction of
the secondary SE requires a medium without PGRs for its completion. For example, in car-
nation, primary ISE was induced through application of 2,4-D and CPPU, while secondary
se were produced on hormone-free medium [50]. The combination of 2,4-D and CPPU has
been investigated during the induction of primary SE [13,29,50–52], but very rarely in the
induction of the secondary SE [52–54]. Adventitious (secondary) embryos were formed on
2,4-D and CPPU-containing media in grapevine [53] and Epipremnum aureum [52], but this
combination of PGRs did not induce secondary se in peanut [54].

Another important factor for the efficiency of secondary SE induction is developmental
stage of primary embryos. Some protocols for successful secondary SE involved the use
of cse as explants, for example in P. menziesii [34] and A. trifoliata [35]. Globular se were
more suitable for inducing secondary SE than cse in some plant species. However, efficient
secondary SE was recorded for all developmental stages of somatic embryos (heart, torpedo,
cotyledonary) in cabbage and cauliflower [55] and H. nobilis [33]. Centaury leaf-derived
cse exhibited great embryogenic potential in our research, since secondary SE occurred on
all tested media (Figure 5b).

The pattern and frequency of secondary embryogenesis, as well as callogenesis, on
centaury primary cse explants depended on the culture medium composition, where
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combinations of 2,4-D and CPPU and 2,4-D alone were used to examine the embryogenic
capacity of the primary cse. Callus formation was observed on all media, but there
were obvious differences in the frequency and characteristics of the induced calli among
different PGRs combinations and concentrations. Nonembryogenic calli (nec) were formed
on all types of media (Figure 5a). The highest number of explants forming nec only was
observed on media supplemented with 2,4-D solely, on media with equal levels of 2,4-D
and CPPU, and on media with 0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU (Figure 5a). Further
increase of CPPU concentration promoted the formation of ec on centaury cse, and the
highest number of explants with ec was obtained on medium with the highest CPPU
concentration (Figure 5a). To the best of our knowledge, there are no data concerning the
effect of increasing concentrations of CPPU on ec formation during secondary SE. During
primary SE, the increase in CPPU concentrations resulted in ec induction, for example, in
carnation [50].

In the absence of PGRs and on the media containing 2,4-D only, somatic embryos
were formed only directly (Figures 5b and 6a). Nevertheless, DSE was the predominant
developmental pathway even on media containing CPPU (compare “dcse only” and “icse
only” graphs, Figure 5b). Our results are consistent with literature, since in almost all
plant species, the origin of embryos in secondary SE is direct, regardless of the PGRs used.
Direct secondary SE was induced on hormone-free medium [35], on medium with different
cytokinins [56], or on medium with 2,4-D [38]. However, in the present study, along with
secondary DSE (Figure 3g,h and Figure 5b), secondary ISE also occurred, since the forma-
tion of ec (Figures 3c–e and 5a) and icse on cse (Figure 3f,h and Figure 5b) was observed
upon the addition of CPPU in the presence of 2,4-D. Two different pathways—DSE and
ISE—on the same se of Castanea sativa during secondary SE were also observed [57]. The
importance of explant type and PGRs in culture medium on the induction of SE in centaury
are reviewed in the accompanying article [14]. While in centaury root culture, SE manifests
by direct pattern on media without growth regulators [43], SE in leaf culture occurs by
indirect pattern and is induced by 2,4-D and CPPU [13]. Current results indicate that the
morphogenic response of centaury cse is complex and that it could be modulated with
different PGRs combinations. For the first time, both DSE and ISE were observed on the
same explant in centaury in vitro culture.

Although se and cse were formed on all media used in this study, the highest num-
ber of cse per explant (Table 1) and the highest number of explants forming se or cse
(Figure 5b) were obtained on medium with the highest CPPU concentration. This finding
is in agreement with Chen and Hong [55], who found that increasing concentrations of a
urea-type cytokinin, thidiazuron, significantly enhanced the percentages of secondary SE
in Oncidium cultivars Gower Ramsey and Sweet Sugar. On the contrary, Szewczyk-Taranek
and Pawłowska [33] reported that the highest number of cse per explant was detected
on medium without PGRs, while the increasing concentrations of cytokinins reduced the
frequency of secondary SE. CPPU is a highly active diphenylurea-derived cytokinin with
efficiency in the induction of various morphogenetic processes, including SE. Our results
showed that the secondary embryo formation occurred at low efficiency on hormone-free
medium or medium containing only 2,4-D. In Tetrapleura tetraptera [58] and M. dealbata [49],
secondary se were formed on the media supplemented with 2,4-D only.

Histological analysis confirmed that secondary se formed both directly (Figure 4d–f)
and indirectly (Figure 4g–i) on the primary cse explants. Histological examination showed
that DSE and ISE originated from the cse subepidermal cells (Figure 4d,g), indicating
multicellular origin of centaury secondary somatic embryos. Generally, the pathway and
the onset of SE are determined by the physiological and morphological characteristics of
the plant tissue source from which the explant derived [59]. Induction of DSE is restricted
to somatic cells of explants which have acquired embryogenic competence [15]. According
to Puigderrajols et al. [60], se development in cork oak actually begins when epidermal
and subepidermal cell dedifferentiation starts and the entire meristematic proliferation is
a PEM.
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Hereby, we have provided the structural evidence for the multicellular origin of
secondary se in C. erythraea. We have demonstrated that the secondary se of centaury may
develop from PEM clusters of rapidly dividing cells of subepidermal layer. Such response
may be a consequence of the various degrees of cell maturity of cse explants and different
content of endogenous hormones [61]. In C. erythraea, intensive divisions of the cells in
the subepidermal layers of cse explants, and the capability of many neighboring cells to
act in a coordinated manner, led to the differentiation and efficient embryo development.
We speculate that this may be the main reason why secondary somatic embryo formation
via the multicellular pathway occurs very quickly. Our results indicate that primary and
secondary SE in centaury result from two distinct ontogenetic pathways, DSE and ISE.
These two processes led to the production of cse and the maintenance of embryogenic
competence for more than 3 months. Secondary embryos arose directly from the primary
cse embryos, where some epidermal and/or subepidermal cells may have already been
embryogenically determined [62]. Regarding secondary ISE, the formation of se from the ec
suggested that cotyledon cells divided and proliferated before some of the callus cells had
reached embryogenic competence; thus, a callogenesis stage occurred prior to initiation of
the embryogenic process.

The process of centaury secondary SE is asynchronous (Figure 3e,h) which is in
accordance with secondary SE of other species [32,38]. Asynchronous development of
se in centaury has been found both during DSE from roots [43] and ISE from leaf ex-
plants [13]. Secondary embryos originated from the entire surface of the centaury primary
cse (Figure 3c,e and Figure 4a–c). In other species, secondary se are formed from different
parts of primary se, for example, from cotyledons [38], hypocotyls [63,64], hypocotyl/root
zone [57], roots [65], combinations of these organs, for example, from cotyledons and
radicles [66], or stomatal guard cells [56].

The induction of secondary SE in centaury on media containing 0.5 mgL−1 CPPU pro-
duced se with abnormal morphology (Figure 6c,d). Different causes have been proposed
for the abnormality in se development, such as excessive PGR addition, long exposition,
or accumulation of exogenous auxins inside the tissue [67]. Secondary se with abnormal
morphology could be reused for callus reinduction, as proposed by Ji et al. [37]. Abnor-
mal morphology of secondary embryos could affect their germination and conversion
to plantlets. As reported by Ji et al. [37], the best conversion rate had mono- and bi-
cotyledonary embryos (about 60%), followed by poly-cotyledonary and trumpet-shaped
embryos. Because of this, embryos of abnormal morphology are usually discarded; how-
ever, some of them could also be recycled to induce cyclic SE. The response to hormonal
treatment can be dependent on the shape of the cse, and only fused cotyledonary embryos
were successfully induced into ec [37]. Maturation and conversion of somatic embryos into
plantlets are important processes which enable the establishment of efficient regeneration
systems [68]. In the present study, well-developed bi-cotyledonary cse were produced
predominantly on media containing 0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU and, there-
fore, these se were transferred on media without growth regulators for germination and
conversion (Figure 8a–d). Upon transferring, healthy plants were obtained (Figure 8e,f).

Secondary embryogenesis offers the possibility for enhanced production of somatic
embryos through establishment of cycling cultures; thus, it is of great importance to deter-
mine specific conditions under which cyclic SE occurs [68]. In this study we investigated
the effects of two combinations of 2,4-D and CPPU on embryogenic response of cse across
several cycles (Figures 1 and 7). We found that the embryogenic potential (production of
ec and se) of centaury cse explants increased with the cycles’ progression. Centaury cse
showed a high rate of embryogenic callogenesis, which increased with cycles’ progression
on both media (Figure 7a,b), while the production of se increased in the 3rd cycle on lower
concentration (Figure 7c), and nearly all explants produced se on the higher concentration
during two cycles (Figure 7d). Literature encompassing cyclic SE shows that the efficiency
of cyclic embryogenesis varies among different species. In Musa acuminata AAA cv. Grand
Naine, the potential of the explants to produce se did not decline with the number of
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cycles [69]. The embryogenic potential and the mean number of embryos per explant dis-
played a gradual reduction with subculturing in A. trifoliata [35]. Similarly, the percentage
of explants with se decreased with each cycle of SE induction in M. dealbata [49] and in two
Brassica oleracea varieties [55]. In C. persicum, embryogenic competence of calli was affected
by number of subculture cycles, since calli from the first cycle showed the highest compe-
tence for SE, which decreased during second subculture [32]. Pires et al. [36] developed
strategy for recovering and maintaining the cyclic embryogenesis in olive embryogenic
calli by its subculturing, which increased the average number of se per calli. Therefore, ec
produced in centaury cyclic embryogenic system could be recycled by transferring onto
medium which could enhance maturation of icse.

In the present study, the number of explants producing cse decreased on both types
of media during the cycles (Figure 7c,d). The observed discrepancy in the number of
the explants forming se of any developmental stage and the number of explants with
developed se at the cotyledonary stage means that the embryogenic potential of the
explants did not decrease, but that the rate of the embryo maturation slowed down with
subculturing. Decline in the number of fully-developed cse observed in centaury cyclic
SE could represent an evidence that long-term maintenance on inductive media affected
somatic embryo capacity to advance to later stages. Long exposition to auxin 2.4-D could
affect embryo maturation, even though this auxin was proved to be an important factor
in the SE induction. Some studies have shown that the presence of 2,4-D in medium is
conducive to ec induction and proliferation, but that the reduction or removal of 2,4-D
promotes se development and maturation [38,70]. The ec obtained from the immature
zygotic embryo of pine trees could produce se [71], but the se production rate was low,
and maturation of se was limited. Prolonged culture on the induction medium resulted in
an increase in the number of globular and heart-shaped embryos, but did not stimulate
the production of mature embryos [64]. In addition, ec may lose the potential for SE after
extended subculture on medium supplemented with 2,4-D. Although cyclic SE was initiated
in both 2,4-D and CPPU combinations in this study, the number of cycles was affected
by the higher concentrations of 2,4-D and CPPU. We can speculate that the exposition of
cse, even to low 2,4-D concentration of 0.1 mgL−1, during cycles disturbed the balance of
endogenous phytohormones in the embryogenic explants and delayed the maturation of
newly-produced cse.

In this study, secondary SE was reported for the first time in centaury. This new
morphogenetic response could provide a long-term source of ec and se by establishing
cycling cultures. Complex morphogenic response of centaury cse could be modulated with
different PGRs combinations. Cyclic SE obtained in this study could be used in centaury
as a method for obtaining an amplified pool of SE tissues and especially cse, which can
germinate into plants with good development characteristics. The developed secondary
and cyclic SE system could also have fundamental merit because it allows for biochemical
and molecular comparison of se obtained from roots, leaves, and primary cse explants
in centaury.

4. Materials and Methods
4.1. Plant Material

C. erythraea in vitro culture was established as described previously [13]. Commercial
seeds (Jelitto Staudensamen GmbH, Schwarmstedt, Germany) were surface-sterilized with
bleach (4% hypochlorite) and germinated on 1

2 MS medium [72] half-strength salts and vita-
mins, containing 30 gL−1 sucrose and solidified with 7 gL−1 agar (Torlak, Beograd, Serbia).
Seedlings were transferred to the same medium for further growth. All of the cultures were
maintained under a 16/8-h (light/dark) photoperiod at irradiance of 47 µmol m−2 s−1 and
temperature of 25 ± 2 ◦C.
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4.2. Induction of Primary SE

Primary SE was induced according to Filipović et al. [13] with slight modifications.
Leaf segments were dissected from well-developed, two-month-old in vitro grown plants
and cultured, abaxial side down, in Petri dishes containing basal medium formulation
consisting of MS salts and vitamins and supplemented with 30 gL−1 sucrose, 7 gL−1 agar,
0.1 mgL−1 2,4-D (Sigma-Aldrich, Steinheim, Germany) and 0.25 mgL−1 CPPU (Sigma-
Aldrich, Germany). The leaf explants were maintained in darkness, at temperature of
25 ± 2 ◦C, and se were developed during three weeks. The obtained primary se at the
cotyledonary stage (cse) were used as explants for the induction of secondary and cyclic
SE. In parallel, primary SE was also induced on higher PGRs concentrations of 0.2 mgL−1

2,4-D and 0.5 mgL−1 CPPU, and the cse obtained on this concentration were used in the
experiment with the induction of cyclic SE (Figure 1).

4.3. Induction of Secondary SE

Primary cse obtained on the medium with 0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU
were transferred to five different media: a hormone-free MS medium, and media containing
0.1 mgL−1 2,4-D and CPPU at increasing concentrations (0, 0.1, 0.25, and 0.5 mgL−1, see
Figure 1). The cultures were kept in constant darkness at 25 ± 2 ◦C. The experiment was
performed in seven replicates (Petri dishes) per treatment, with 36 cse per replicate. The cse
explants were systematically arranged in 6 × 6 arrays, numbered, and documented both
photographically and by observing under a binocular microscope (Leica WILD, MPS 28/32,
M3Z, Wetzlar, Germany). Developmental parameters, such as the number of explants
forming calli or secondary embryos and the number of secondary cse developed per
explant, were recorded after four weeks.

4.4. Induction of Cyclic SE

For the induction of cyclic SE, primary cse, obtained from leaf explants on medium
containing lower (0.1 mgL−1 2,4-D and 0.25 mgL−1 CPPU) or higher concentration of
PGRs (0.2 mgL−1 2,4-D and 0.5 mgL−1 CPPU), were dissected and transferred to the
same medium. The cultures were kept in constant darkness at 25 ± 2 ◦C. In the 1st
cycle, secondary cse that developed on either of the two media were transferred to fresh
media maintaining the same treatment (Figure 1). In the 2nd cycle, tertiary cse that formed
after four weeks were subcultured on the same fresh media for the 3rd and last cycle.
For both lower and higher hormone treatments, the experiment was performed in four
replicates with 36 cse explants per Petri dish. After four weeks in each cycle, developmental
parameters (as in Section 4.3) were recorded.

4.5. Germination of Somatic Embryos

The viability of secondary cse obtained on medium containing 0.1 mgL−1 2,4-D and
0.25 mgL−1 CPPU was evaluated in terms of somatic embryo germination and plantlet
conversion. White opaque secondary cse, 1.5–2.5 mm in length, were excised from the
primary cse explants and set to germinate on MS media without PGRs. The germination
experiment was conducted in the light with 105 secondary cse and in darkness with 75 cse.
The germination was scored after 25 days in culture as the percentage of cse developing
shoots and/or roots.

4.6. Histological Analysis

Ontogeny of secondary somatic embryos obtained on medium with 0.1 mgL−1 2,4-D
and 0.25 mgL−1 CPPU was studied by histological analysis. To confirm histologically
that secondary SE was indeed induced in the dark, primary cse explants obtained on this
medium were transferred to the same medium, kept in the dark, and sampled after three
weeks. For histological analysis, the cse explants, along with developing se, were fixed
in mixture of formalin–glacial acetic acid–70% ethanol (FAA) for 24 h, dehydrated in an
ethanol series, and embedded in Histowax (Histolab, Västra Frölunda, Sweden) at 56–58 ◦C.
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Five-µm-thick sections were cut using a Reichter rotary microtome (Reichter, Wien, Austria)
and stained with haematoxylin [73]. The sections were observed and photographed under
appropriate magnifications using Nikon Eclipse E100 light research microscope (Nikon,
Tokyo, Japan). All images were recorded with Bresser MikroCam SP 5.1 camera and
software (Bresser, Rhede, Germany).

4.7. Data Collecting and Statistical Analysis

The processes of secondary SE on five different media, as well as cyclic SE on two
different media, through the three cycles were evaluated by scoring several developmental
parameters (events) after four weeks in culture. The scored developmental parameters
included the number of cse explants that developed: any type of calli, embryogenic calli
(ec) or exclusively nonembryogenic calli (nec), as well as the number of cse explants that
developed: secondary somatic embryos at any stage or origin (se), secondary somatic
embryos at the cotyledonary stage (cse), and specifically cse formed by direct (dcse) or
indirect path (icse). All statistical analyses were performed using the R programming
language for statistical computing [74].

The effect of PGRs concentration on the occurrence of specific developmental events
on the explants was analyzed with logistic regression using quasi-binomial distribution to
account for overdispersion and logit link function. Medium formulations where no explants
induced specific types of calli or embryos were not included in the logistic regression
models. The statistical significance of the effect of medium formulation was evaluated
using likelihood ratio tests, and for parameters where the effect was significant (p < 0.05),
pairwise comparisons were performed using the emmeans R package [75]. To account for
multiple comparisons, Bonferroni correction was applied, and adjusted p-values < 0.05
were considered statistically significant. Bar height on graphs represents fitted values for
logistic regression models and error bars represent 95% confidence intervals. Statistically
significant differences are denoted with a compact letter display on the figures. Average
number of secondary cse per experimental replicate was analyzed using ANOVA with
Tukey post hoc test for pairwise comparisons.

Data from the cyclic SE experiment were analyzed using generalized estimating
equations, as implemented in R package geepack [76]. This approach was chosen since
the observations between the cycles were not independent: cse obtained in the replicate
(Petri dish) no. 1 of the 1st cycle were used as explants in the replicate no. 1 of the 2nd cycle
etc., maintaining the same treatment. Occurrence of specific types of calli or embryos on
the explants was analyzed using logistic generalized estimating equations, while average
number of secondary cse per experimental replicate was analyzed using generalized
estimating equations. The statistical significance of the effect of SE cycle was evaluated
by Wald test statistic [76], and for parameters where the effect was significant (p < 0.05),
pairwise comparisons were performed using the emmeans R package [75]. To account for
multiple comparisons, Bonferroni correction was applied, and adjusted p-values < 0.05
were considered statistically significant. Bar height on graphs represents fitted values for
general estimation equations (GEE) logistic regression models and error bars represent 95%
confidence intervals. Statistically significant differences are denoted with a compact letter
display in figures.
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