Jovanović, Ivan P

Link to this page

Authority KeyName Variants
d52d358e-fd3e-49a0-9f5f-142620a43b3f
  • Jovanović, Ivan P (1)
Projects

Author's Bibliography

Galectin-3 Deficiency Accelerates High-Fat Diet-Induced Obesity and Amplifies Inflammation in Adipose Tissue and Pancreatic Islets

Pejnović, Nada N; Pantić, Jelena M; Jovanović, Ivan P; Radosavljević, Gordana D; Milovanović, Marija Z; Nikolić, Ivana; Zdravković, Nemanja S; Đukić, Aleksandar Lj; Arsenijević, Nebojsa N; Lukić, Miodrag L

(2013)

TY  - JOUR
AU  - Pejnović, Nada N
AU  - Pantić, Jelena M
AU  - Jovanović, Ivan P
AU  - Radosavljević, Gordana D
AU  - Milovanović, Marija Z
AU  - Nikolić, Ivana
AU  - Zdravković, Nemanja S
AU  - Đukić, Aleksandar Lj
AU  - Arsenijević, Nebojsa N
AU  - Lukić, Miodrag L
PY  - 2013
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/1003
AB  - Obesity-induced diabetes is associated with low-grade inflammation in adipose tissue and macrophage infiltration of islets. We show that ablation of galectin-3 (Gal-3), a galactoside-binding lectin, accelerates high-fat diet-induced obesity and diabetes. Obese LGALS3(-/-) mice have increased body weight, amount of total visceral adipose tissue (VAT), fasting blood glucose and insulin levels, homeostasis model assessment of insulin resistance, and markers of systemic inflammation compared with diet-matched wild-type (WT) animals. VAT of obese LGALS3(-/-) mice exhibited increased incidence of type 1 T and NKT lymphocytes and proinflammatory CD11c(+)CD11b(+) macrophages and decreased CD4(+)CD25(+)FoxP3(+) regulatory T cells and M2 macrophages. Pronounced mononuclear cell infiltrate, increased expression of NLRP3 inflammasome and interleukin-1 beta (IL-1 beta) in macrophages, and increased accumulation of advanced glycation end products (AGEs) and receptor for AGE (RAGE) expression were present in pancreatic islets of obese LGALS3(-/-) animals accompanied with elevated phosphorylated nuclear factor-kappa B (NF-kappa B) p65 and mature caspase-1 protein expression in pancreatic tissue and VAT. In vitro stimulation of LGALS3(-/-) peritoneal macrophages with lipopolysaccharide (LPS) and saturated fatty acid palmitate caused increased caspase-l-dependent IL-1 beta production and increased phosphorylation of NF-kappa B p65 compared with WT cells. Transfection of LGALS3(-/-) macrophages with NLRP3 small interfering RNA attenuated production in response to palmitate and LPS plus palmitate. Obtained results suggest important protective roles for Gal-3 in obesity-induced inflammation and diabetes.
T2  - Diabetes
T1  - Galectin-3 Deficiency Accelerates High-Fat Diet-Induced Obesity and Amplifies Inflammation in Adipose Tissue and Pancreatic Islets
IS  - 6
VL  - 62
DO  - 10.2337/db12-0222
SP  - 131
EP  - 1944
ER  - 
@article{
author = "Pejnović, Nada N and Pantić, Jelena M and Jovanović, Ivan P and Radosavljević, Gordana D and Milovanović, Marija Z and Nikolić, Ivana and Zdravković, Nemanja S and Đukić, Aleksandar Lj and Arsenijević, Nebojsa N and Lukić, Miodrag L",
year = "2013",
abstract = "Obesity-induced diabetes is associated with low-grade inflammation in adipose tissue and macrophage infiltration of islets. We show that ablation of galectin-3 (Gal-3), a galactoside-binding lectin, accelerates high-fat diet-induced obesity and diabetes. Obese LGALS3(-/-) mice have increased body weight, amount of total visceral adipose tissue (VAT), fasting blood glucose and insulin levels, homeostasis model assessment of insulin resistance, and markers of systemic inflammation compared with diet-matched wild-type (WT) animals. VAT of obese LGALS3(-/-) mice exhibited increased incidence of type 1 T and NKT lymphocytes and proinflammatory CD11c(+)CD11b(+) macrophages and decreased CD4(+)CD25(+)FoxP3(+) regulatory T cells and M2 macrophages. Pronounced mononuclear cell infiltrate, increased expression of NLRP3 inflammasome and interleukin-1 beta (IL-1 beta) in macrophages, and increased accumulation of advanced glycation end products (AGEs) and receptor for AGE (RAGE) expression were present in pancreatic islets of obese LGALS3(-/-) animals accompanied with elevated phosphorylated nuclear factor-kappa B (NF-kappa B) p65 and mature caspase-1 protein expression in pancreatic tissue and VAT. In vitro stimulation of LGALS3(-/-) peritoneal macrophages with lipopolysaccharide (LPS) and saturated fatty acid palmitate caused increased caspase-l-dependent IL-1 beta production and increased phosphorylation of NF-kappa B p65 compared with WT cells. Transfection of LGALS3(-/-) macrophages with NLRP3 small interfering RNA attenuated production in response to palmitate and LPS plus palmitate. Obtained results suggest important protective roles for Gal-3 in obesity-induced inflammation and diabetes.",
journal = "Diabetes",
title = "Galectin-3 Deficiency Accelerates High-Fat Diet-Induced Obesity and Amplifies Inflammation in Adipose Tissue and Pancreatic Islets",
number = "6",
volume = "62",
doi = "10.2337/db12-0222",
pages = "131-1944"
}
Pejnović, N. N., Pantić, J. M., Jovanović, I. P., Radosavljević, G. D., Milovanović, M. Z., Nikolić, I., Zdravković, N. S., Đukić, A. L., Arsenijević, N. N.,& Lukić, M. L.. (2013). Galectin-3 Deficiency Accelerates High-Fat Diet-Induced Obesity and Amplifies Inflammation in Adipose Tissue and Pancreatic Islets. in Diabetes, 62(6), 131-1944.
https://doi.org/10.2337/db12-0222
Pejnović NN, Pantić JM, Jovanović IP, Radosavljević GD, Milovanović MZ, Nikolić I, Zdravković NS, Đukić AL, Arsenijević NN, Lukić ML. Galectin-3 Deficiency Accelerates High-Fat Diet-Induced Obesity and Amplifies Inflammation in Adipose Tissue and Pancreatic Islets. in Diabetes. 2013;62(6):131-1944.
doi:10.2337/db12-0222 .
Pejnović, Nada N, Pantić, Jelena M, Jovanović, Ivan P, Radosavljević, Gordana D, Milovanović, Marija Z, Nikolić, Ivana, Zdravković, Nemanja S, Đukić, Aleksandar Lj, Arsenijević, Nebojsa N, Lukić, Miodrag L, "Galectin-3 Deficiency Accelerates High-Fat Diet-Induced Obesity and Amplifies Inflammation in Adipose Tissue and Pancreatic Islets" in Diabetes, 62, no. 6 (2013):131-1944,
https://doi.org/10.2337/db12-0222 . .
1
142
106
132