Krunić, Matija

Link to this page

Authority KeyName Variants
a7f8fbb4-7b65-41d3-98bc-83decda2c4e4
  • Krunić, Matija (3)

Author's Bibliography

Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death

Ristić, Biljana; Krunić, Matija; Paunović, Verica; Bošnjak, Mihajlo; Tovilović-Kovačević, Gordana; Zogović, Nevena; Mirčić, Aleksandar; Vuković, Irena; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 2023)

TY  - CONF
AU  - Ristić, Biljana
AU  - Krunić, Matija
AU  - Paunović, Verica
AU  - Bošnjak, Mihajlo
AU  - Tovilović-Kovačević, Gordana
AU  - Zogović, Nevena
AU  - Mirčić, Aleksandar
AU  - Vuković, Irena
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2023
UR  - https://indico.bio.bg.ac.rs/event/4/attachments/6/492/Abstract%20Book-CoMBoS2-TMB.pdf
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6284
AB  - Introduction: We examined the molecular mechanisms of graphene quantum dot (GQD)- mediated
protection of SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP).
Methods: GQD was produced by electrochemical oxidation of graphite and characterized by AFM, UVVIS and FTIR spectroscopy. The antioxidant activity of GQD in cell-free conditions was assessed by DPPH,
NBT and EPR analysis. The neuroprotective potential of GQD was determined by cell viability assays MTT,
CV. Flow cytometry was used to assess markers of apoptosis and GQD scavenging of intracellular
ROS/RNS as well. Cellular internalization of GQD was determined using TEM.
Results: GQD prevented SNP-induced apoptosis, caspase activation and mitochondrial depolarization
in neuroblastoma cells. Although GQD diminished the NO levelsin SNP-treated cells, NO scavengers displayed only a slight protection. GQD significantly protected SH-SY5Y cells from neurotoxicity of lightexhausted SNP, incapable of producing NO, implying that protective mechanism is independent of
NO-scavenging. GQD reduced SNP-triggered increase in intracellular levels of ROS, particularly •OH, O2•−
in cells and cell-free condition. Nonselective antioxidants, •OH scavengers and iron chelators, mimicked
GQD cytoprotection, indicating that GQD protect cells by neutralizing •OH generated in the Fenton reaction. Cellular GQD internalization wasrequired for optimal protection since the removal of extracellular GQD by extensive washing partly diminished their protective effect, suggesting that GQD exerted
neuroprotective effect intra- and extracellularly.
Conclusion: By demonstrating that GQD protect neuroblastoma cells from SNP-induced apoptosis by
•OH/NO scavenging, our results suggest that GQD could be valuable candidates for treatment of neurodegenerative diseases associated with oxidative/nitrosative stress.
PB  - Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade
C3  - Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia
T1  - Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death
SP  - 27
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6284
ER  - 
@conference{
author = "Ristić, Biljana and Krunić, Matija and Paunović, Verica and Bošnjak, Mihajlo and Tovilović-Kovačević, Gordana and Zogović, Nevena and Mirčić, Aleksandar and Vuković, Irena and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2023",
abstract = "Introduction: We examined the molecular mechanisms of graphene quantum dot (GQD)- mediated
protection of SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP).
Methods: GQD was produced by electrochemical oxidation of graphite and characterized by AFM, UVVIS and FTIR spectroscopy. The antioxidant activity of GQD in cell-free conditions was assessed by DPPH,
NBT and EPR analysis. The neuroprotective potential of GQD was determined by cell viability assays MTT,
CV. Flow cytometry was used to assess markers of apoptosis and GQD scavenging of intracellular
ROS/RNS as well. Cellular internalization of GQD was determined using TEM.
Results: GQD prevented SNP-induced apoptosis, caspase activation and mitochondrial depolarization
in neuroblastoma cells. Although GQD diminished the NO levelsin SNP-treated cells, NO scavengers displayed only a slight protection. GQD significantly protected SH-SY5Y cells from neurotoxicity of lightexhausted SNP, incapable of producing NO, implying that protective mechanism is independent of
NO-scavenging. GQD reduced SNP-triggered increase in intracellular levels of ROS, particularly •OH, O2•−
in cells and cell-free condition. Nonselective antioxidants, •OH scavengers and iron chelators, mimicked
GQD cytoprotection, indicating that GQD protect cells by neutralizing •OH generated in the Fenton reaction. Cellular GQD internalization wasrequired for optimal protection since the removal of extracellular GQD by extensive washing partly diminished their protective effect, suggesting that GQD exerted
neuroprotective effect intra- and extracellularly.
Conclusion: By demonstrating that GQD protect neuroblastoma cells from SNP-induced apoptosis by
•OH/NO scavenging, our results suggest that GQD could be valuable candidates for treatment of neurodegenerative diseases associated with oxidative/nitrosative stress.",
publisher = "Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade",
journal = "Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia",
title = "Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death",
pages = "27",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6284"
}
Ristić, B., Krunić, M., Paunović, V., Bošnjak, M., Tovilović-Kovačević, G., Zogović, N., Mirčić, A., Vuković, I., Harhaji-Trajković, L.,& Trajković, V.. (2023). Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death. in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia
Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade., 27.
https://hdl.handle.net/21.15107/rcub_ibiss_6284
Ristić B, Krunić M, Paunović V, Bošnjak M, Tovilović-Kovačević G, Zogović N, Mirčić A, Vuković I, Harhaji-Trajković L, Trajković V. Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death. in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia. 2023;:27.
https://hdl.handle.net/21.15107/rcub_ibiss_6284 .
Ristić, Biljana, Krunić, Matija, Paunović, Verica, Bošnjak, Mihajlo, Tovilović-Kovačević, Gordana, Zogović, Nevena, Mirčić, Aleksandar, Vuković, Irena, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death" in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia (2023):27,
https://hdl.handle.net/21.15107/rcub_ibiss_6284 .

Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging

Ristić, Biljana; Krunić, Matija; Bošnjak, Mihajlo; Paunović, Verica; Zogović, Nevena; Tovilović-Kovačević, Gordana; Mirčić, Aleksandar; Misirkić Marjanović, Maja; Vučićević, Ljubica; Kosić, Milica; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Elsevier Inc., 2021)

TY  - CONF
AU  - Ristić, Biljana
AU  - Krunić, Matija
AU  - Bošnjak, Mihajlo
AU  - Paunović, Verica
AU  - Zogović, Nevena
AU  - Tovilović-Kovačević, Gordana
AU  - Mirčić, Aleksandar
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Kosić, Milica
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2021
UR  - https://www.sfrre2021belgrade.rs/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4726
AB  - We here investigated the ability of graphene quantum dots (GQD), graphene nanoparticles with antioxidative capacity, to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). Although GQD diminished the levels of nitric oxide (NO) in both cell free condition and SNPexposed cells, NO scavengers (PTIO and uric acid), displayed only slight protection from SNP, suggesting that NO scavenging was not the main protective mechanism of GQD. Moreover, GQD significantly protected SH-SY5Y cells from neurotoxicity of light exhausted SNP, incapable of producing NO, implying the existence of protective mechanism independent of NO-scavenging. GQD lowered the increase in the concentration of hydroxyl radical (•OH) and superoxide anion (O2•−) caused by SNP both in the cell-free condition and inside cells, as well as ensuing oxidative stress and lipid peroxidation. Nonspecific antioxidants (glutathione, NAC), •OH scavenger (DMSO), and iron chelators (DTPA, BPDSA), but not superoxide dismutase, mimicked the cytoprotective activity of GQD, suggesting that GQD protect cells by neutralizing •OH generated in the presence of iron released from SNP. GQD were readily internalized by SH-SY5Y cells, while extensive washing of cells pre-incubated with GQD only partly reduced their protective activity, suggesting that GQD exerted neuroprotective effect both intra- and extracellularly. By demonstrating that GQD protect neuroblastoma cells from SNP-induced neurotoxicity by both extracellular •OH/NO scavenging and some unknown intracellular mechanism, our results suggest that GQD could be valuable candidate for treatment of neurodegenerative and neuroinflammatory disorders associated with oxidative/nitrosative stress.
PB  - Elsevier Inc.
C3  - Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
T1  - Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging
DO  - 10.1016/j.freeradbiomed.2021.08.167
SP  - 165
ER  - 
@conference{
author = "Ristić, Biljana and Krunić, Matija and Bošnjak, Mihajlo and Paunović, Verica and Zogović, Nevena and Tovilović-Kovačević, Gordana and Mirčić, Aleksandar and Misirkić Marjanović, Maja and Vučićević, Ljubica and Kosić, Milica and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2021",
abstract = "We here investigated the ability of graphene quantum dots (GQD), graphene nanoparticles with antioxidative capacity, to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). Although GQD diminished the levels of nitric oxide (NO) in both cell free condition and SNPexposed cells, NO scavengers (PTIO and uric acid), displayed only slight protection from SNP, suggesting that NO scavenging was not the main protective mechanism of GQD. Moreover, GQD significantly protected SH-SY5Y cells from neurotoxicity of light exhausted SNP, incapable of producing NO, implying the existence of protective mechanism independent of NO-scavenging. GQD lowered the increase in the concentration of hydroxyl radical (•OH) and superoxide anion (O2•−) caused by SNP both in the cell-free condition and inside cells, as well as ensuing oxidative stress and lipid peroxidation. Nonspecific antioxidants (glutathione, NAC), •OH scavenger (DMSO), and iron chelators (DTPA, BPDSA), but not superoxide dismutase, mimicked the cytoprotective activity of GQD, suggesting that GQD protect cells by neutralizing •OH generated in the presence of iron released from SNP. GQD were readily internalized by SH-SY5Y cells, while extensive washing of cells pre-incubated with GQD only partly reduced their protective activity, suggesting that GQD exerted neuroprotective effect both intra- and extracellularly. By demonstrating that GQD protect neuroblastoma cells from SNP-induced neurotoxicity by both extracellular •OH/NO scavenging and some unknown intracellular mechanism, our results suggest that GQD could be valuable candidate for treatment of neurodegenerative and neuroinflammatory disorders associated with oxidative/nitrosative stress.",
publisher = "Elsevier Inc.",
journal = "Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia",
title = "Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging",
doi = "10.1016/j.freeradbiomed.2021.08.167",
pages = "165"
}
Ristić, B., Krunić, M., Bošnjak, M., Paunović, V., Zogović, N., Tovilović-Kovačević, G., Mirčić, A., Misirkić Marjanović, M., Vučićević, L., Kosić, M., Trajković, V.,& Harhaji-Trajković, L.. (2021). Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
Elsevier Inc.., 165.
https://doi.org/10.1016/j.freeradbiomed.2021.08.167
Ristić B, Krunić M, Bošnjak M, Paunović V, Zogović N, Tovilović-Kovačević G, Mirčić A, Misirkić Marjanović M, Vučićević L, Kosić M, Trajković V, Harhaji-Trajković L. Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia. 2021;:165.
doi:10.1016/j.freeradbiomed.2021.08.167 .
Ristić, Biljana, Krunić, Matija, Bošnjak, Mihajlo, Paunović, Verica, Zogović, Nevena, Tovilović-Kovačević, Gordana, Mirčić, Aleksandar, Misirkić Marjanović, Maja, Vučićević, Ljubica, Kosić, Milica, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging" in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia (2021):165,
https://doi.org/10.1016/j.freeradbiomed.2021.08.167 . .

Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.

Krunić, Matija; Ristić, Biljana; Bošnjak, Mihajlo; Paunović, Verica; Tovilović-Kovačević, Gordana; Zogović, Nevena; Mirčić, Aleksandar; Marković, Zoran; Todorović-Marković, Biljana; Jovanović, Svetlana; Kleut, Duška; Mojović, Miloš; Nakarada, Đura; Marković, Olivera; Vuković, Irena; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(Elsevier Inc., 2021)

TY  - JOUR
AU  - Krunić, Matija
AU  - Ristić, Biljana
AU  - Bošnjak, Mihajlo
AU  - Paunović, Verica
AU  - Tovilović-Kovačević, Gordana
AU  - Zogović, Nevena
AU  - Mirčić, Aleksandar
AU  - Marković, Zoran
AU  - Todorović-Marković, Biljana
AU  - Jovanović, Svetlana
AU  - Kleut, Duška
AU  - Mojović, Miloš
AU  - Nakarada, Đura
AU  - Marković, Olivera
AU  - Vuković, Irena
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2021
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0891584921007760
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4655
AB  - We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•-), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagy-limiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.
PB  - Elsevier Inc.
T2  - Free Radical Biology and Medicine
T1  - Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.
VL  - 177
DO  - 10.1016/j.freeradbiomed.2021.10.025
SP  - 167
EP  - 180
ER  - 
@article{
author = "Krunić, Matija and Ristić, Biljana and Bošnjak, Mihajlo and Paunović, Verica and Tovilović-Kovačević, Gordana and Zogović, Nevena and Mirčić, Aleksandar and Marković, Zoran and Todorović-Marković, Biljana and Jovanović, Svetlana and Kleut, Duška and Mojović, Miloš and Nakarada, Đura and Marković, Olivera and Vuković, Irena and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2021",
abstract = "We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•-), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagy-limiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.",
publisher = "Elsevier Inc.",
journal = "Free Radical Biology and Medicine",
title = "Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.",
volume = "177",
doi = "10.1016/j.freeradbiomed.2021.10.025",
pages = "167-180"
}
Krunić, M., Ristić, B., Bošnjak, M., Paunović, V., Tovilović-Kovačević, G., Zogović, N., Mirčić, A., Marković, Z., Todorović-Marković, B., Jovanović, S., Kleut, D., Mojović, M., Nakarada, Đ., Marković, O., Vuković, I., Harhaji-Trajković, L.,& Trajković, V.. (2021). Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.. in Free Radical Biology and Medicine
Elsevier Inc.., 177, 167-180.
https://doi.org/10.1016/j.freeradbiomed.2021.10.025
Krunić M, Ristić B, Bošnjak M, Paunović V, Tovilović-Kovačević G, Zogović N, Mirčić A, Marković Z, Todorović-Marković B, Jovanović S, Kleut D, Mojović M, Nakarada Đ, Marković O, Vuković I, Harhaji-Trajković L, Trajković V. Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.. in Free Radical Biology and Medicine. 2021;177:167-180.
doi:10.1016/j.freeradbiomed.2021.10.025 .
Krunić, Matija, Ristić, Biljana, Bošnjak, Mihajlo, Paunović, Verica, Tovilović-Kovačević, Gordana, Zogović, Nevena, Mirčić, Aleksandar, Marković, Zoran, Todorović-Marković, Biljana, Jovanović, Svetlana, Kleut, Duška, Mojović, Miloš, Nakarada, Đura, Marković, Olivera, Vuković, Irena, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death." in Free Radical Biology and Medicine, 177 (2021):167-180,
https://doi.org/10.1016/j.freeradbiomed.2021.10.025 . .
10
7