Vierheilig, Julia

Link to this page

Authority KeyName Variants
4bf2e094-782b-42ee-b183-22023aa5bbd5
  • Vierheilig, Julia (3)
Projects

Author's Bibliography

Linking antibiotic resistance gene patterns with advanced faecal pollution assessment and environmental key parameters along 2300 km of the Danube River

Schachner-Gröhs, Iris; Koller, Michael; Leopold, Melanie; Kolm, Claudia; Linke, Rita; Jakwerth, Stefan; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Kandler, Wolfgang; Sulyok, Michael; Vierheilig, Julia; Toumi, Marwene; Farkas, Rózsa; Toth, Erika; Kittinger, Clemens; Zarfel, Gernot; Farnleitner, Andreas; Kirschner, Alexander

(Elsevier, 2024)

TY  - JOUR
AU  - Schachner-Gröhs, Iris
AU  - Koller, Michael
AU  - Leopold, Melanie
AU  - Kolm, Claudia
AU  - Linke, Rita
AU  - Jakwerth, Stefan
AU  - Kolarević, Stoimir
AU  - Kračun-Kolarević, Margareta
AU  - Kandler, Wolfgang
AU  - Sulyok, Michael
AU  - Vierheilig, Julia
AU  - Toumi, Marwene
AU  - Farkas, Rózsa
AU  - Toth, Erika
AU  - Kittinger, Clemens
AU  - Zarfel, Gernot
AU  - Farnleitner, Andreas
AU  - Kirschner, Alexander
PY  - 2024
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6581
AB  - The global spread of antimicrobial resistance (AMR) in the environment is a growing health threat. Large rivers are of particular concern as they are highly impacted by wastewater discharge while being vital lifelines serving various human needs. A comprehensive understanding of occurrence, spread and key drivers of AMR along whole river courses is largely lacking. We provide a holistic approach by studying spatiotemporal patterns and hotspots of antibiotic resistance genes (ARGs) along 2311 km of the navigable Danube River, combining a longitudinal and temporal monitoring campaign. The integration of advanced faecal pollution diagnostics and environmental and chemical key parameters allowed linking ARG concentrations to the major pollution sources and explaining the observed patterns. Nine AMR markers, including genes conferring resistance to five different antibiotic classes of clinical and environmental relevance, and one integrase gene were determined by probe-based qPCR. All AMR targets could be quantified in Danube River water, with intI1 and sul1 being ubiquitously abundant, qnrS, tetM, blaTEM with intermediate abundance and blaOXA-48like, blaCTX−M-1 group, blaCTX−M-9 group and blaKPC genes with rare occurrence. Human faecal pollution from municipal wastewater discharges was the dominant factor shaping ARG patterns along the Danube River. Other significant correlations of specific ARGs were observed with discharge, certain metals and pesticides. In contrast, intI1 was not associated with wastewater but was already established in the water microbiome. Animal contamination was detected only sporadically and was correlated with ARGs only in the temporal sampling set. During temporal monitoring, an extraordinary hotspot was identified emphasizing the variability within natural waters. This study provides the first comprehensive baseline concentrations of ARGs in the Danube River and lays the foundation for monitoring future trends and evaluating potential reduction measures. The applided holistic approach proved to be a valuable methodological contribution towards a better understanding of the environmental occurrence of AMR.
PB  - Elsevier
T2  - Water Research
T1  - Linking antibiotic resistance gene patterns with advanced faecal pollution assessment and environmental key parameters along 2300 km of the Danube River
VL  - 252
DO  - 10.1016/j.watres.2024.121244
SP  - 121244
ER  - 
@article{
author = "Schachner-Gröhs, Iris and Koller, Michael and Leopold, Melanie and Kolm, Claudia and Linke, Rita and Jakwerth, Stefan and Kolarević, Stoimir and Kračun-Kolarević, Margareta and Kandler, Wolfgang and Sulyok, Michael and Vierheilig, Julia and Toumi, Marwene and Farkas, Rózsa and Toth, Erika and Kittinger, Clemens and Zarfel, Gernot and Farnleitner, Andreas and Kirschner, Alexander",
year = "2024",
abstract = "The global spread of antimicrobial resistance (AMR) in the environment is a growing health threat. Large rivers are of particular concern as they are highly impacted by wastewater discharge while being vital lifelines serving various human needs. A comprehensive understanding of occurrence, spread and key drivers of AMR along whole river courses is largely lacking. We provide a holistic approach by studying spatiotemporal patterns and hotspots of antibiotic resistance genes (ARGs) along 2311 km of the navigable Danube River, combining a longitudinal and temporal monitoring campaign. The integration of advanced faecal pollution diagnostics and environmental and chemical key parameters allowed linking ARG concentrations to the major pollution sources and explaining the observed patterns. Nine AMR markers, including genes conferring resistance to five different antibiotic classes of clinical and environmental relevance, and one integrase gene were determined by probe-based qPCR. All AMR targets could be quantified in Danube River water, with intI1 and sul1 being ubiquitously abundant, qnrS, tetM, blaTEM with intermediate abundance and blaOXA-48like, blaCTX−M-1 group, blaCTX−M-9 group and blaKPC genes with rare occurrence. Human faecal pollution from municipal wastewater discharges was the dominant factor shaping ARG patterns along the Danube River. Other significant correlations of specific ARGs were observed with discharge, certain metals and pesticides. In contrast, intI1 was not associated with wastewater but was already established in the water microbiome. Animal contamination was detected only sporadically and was correlated with ARGs only in the temporal sampling set. During temporal monitoring, an extraordinary hotspot was identified emphasizing the variability within natural waters. This study provides the first comprehensive baseline concentrations of ARGs in the Danube River and lays the foundation for monitoring future trends and evaluating potential reduction measures. The applided holistic approach proved to be a valuable methodological contribution towards a better understanding of the environmental occurrence of AMR.",
publisher = "Elsevier",
journal = "Water Research",
title = "Linking antibiotic resistance gene patterns with advanced faecal pollution assessment and environmental key parameters along 2300 km of the Danube River",
volume = "252",
doi = "10.1016/j.watres.2024.121244",
pages = "121244"
}
Schachner-Gröhs, I., Koller, M., Leopold, M., Kolm, C., Linke, R., Jakwerth, S., Kolarević, S., Kračun-Kolarević, M., Kandler, W., Sulyok, M., Vierheilig, J., Toumi, M., Farkas, R., Toth, E., Kittinger, C., Zarfel, G., Farnleitner, A.,& Kirschner, A.. (2024). Linking antibiotic resistance gene patterns with advanced faecal pollution assessment and environmental key parameters along 2300 km of the Danube River. in Water Research
Elsevier., 252, 121244.
https://doi.org/10.1016/j.watres.2024.121244
Schachner-Gröhs I, Koller M, Leopold M, Kolm C, Linke R, Jakwerth S, Kolarević S, Kračun-Kolarević M, Kandler W, Sulyok M, Vierheilig J, Toumi M, Farkas R, Toth E, Kittinger C, Zarfel G, Farnleitner A, Kirschner A. Linking antibiotic resistance gene patterns with advanced faecal pollution assessment and environmental key parameters along 2300 km of the Danube River. in Water Research. 2024;252:121244.
doi:10.1016/j.watres.2024.121244 .
Schachner-Gröhs, Iris, Koller, Michael, Leopold, Melanie, Kolm, Claudia, Linke, Rita, Jakwerth, Stefan, Kolarević, Stoimir, Kračun-Kolarević, Margareta, Kandler, Wolfgang, Sulyok, Michael, Vierheilig, Julia, Toumi, Marwene, Farkas, Rózsa, Toth, Erika, Kittinger, Clemens, Zarfel, Gernot, Farnleitner, Andreas, Kirschner, Alexander, "Linking antibiotic resistance gene patterns with advanced faecal pollution assessment and environmental key parameters along 2300 km of the Danube River" in Water Research, 252 (2024):121244,
https://doi.org/10.1016/j.watres.2024.121244 . .
34

Occurrence of antibiotic resistance genes along gradients of faecal pollution in water and biofilm samples from the whole Danube River

Schachner-Gröhs, Iris; Kolm, Claudia; Vierheilig, Julia; Leopold, Melanie; Zarfel, Gernot; Koller, Michael; Kittinger, Clemens; Jakwerth, Stefan; Linke, Rita; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Toth, Erika; Farnleitner, Andreas; Kirschner, Alexander

(Austrian Committee - International Association for Danube Research, 2023)

TY  - CONF
AU  - Schachner-Gröhs, Iris
AU  - Kolm, Claudia
AU  - Vierheilig, Julia
AU  - Leopold, Melanie
AU  - Zarfel, Gernot
AU  - Koller, Michael
AU  - Kittinger, Clemens
AU  - Jakwerth, Stefan
AU  - Linke, Rita
AU  - Kolarević, Stoimir
AU  - Kračun-Kolarević, Margareta
AU  - Toth, Erika
AU  - Farnleitner, Andreas
AU  - Kirschner, Alexander
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6590
AB  - Antimicrobial resistance (AMR) represents one of the top ten global public health threats according
to the WHO. The spread of resistances is no longer limited to clinical settings and the natural
environment, especially aquatic ecosystems, are also strongly involved in the global spread. Holistic
as well as quantitative studies are still scarce. We here present for the first time a large scale study
on the Danube River regarding the distribution of AMR along different faecal pollution patterns.
For this study, samples from an international sampling campaign (Joint Danube Survey 4) as well as
additional seasonal samples were screened for the occurrence and origin of faecal pollution and for
the concentrations of nine representative antibiotic resistance genes (ARGs). In addition to water
samples also river biofilms were monitored to account for both, temporal and permanent river
habitats. Analyses were amended by a set of different cultivation-based and non-cultivation-based
microbiological and environmental data to explain the observed pattern in faecal pollution and ARG
concentrations.
Faecal pollution exists and varied strongly along the whole Danube river; hotspots could be identified
downstream of metropolitan areas at which also substantial concentrations of ARGs could be
detected. Quantifying concentrations of ARGs conferring resistance to different antibiotic classes
revealed strong differences between the different genes. Comparing their presence in water and
biofilm samples, allowed to assess how stably present these genes already are in the Danube River
ecosystem.
Environmental surveys are necessary to establish environmental baselines, to be able to guide future
AMR monitoring as well as to enforce useful management strategies. This integrative study therefore
provides first insights in the antimicrobial resistance situation in the most international river in the
world and second largest river in Europe
PB  - Austrian Committee - International Association for Danube Research
C3  - Conference Book: 44th IAD conference: Tackling Present & Future Environmental Challenges of a European Riverscape; 2023 Feb 6-9; Krems, Austria
T1  - Occurrence of antibiotic resistance genes along gradients of faecal pollution in water and biofilm samples from the whole Danube River
SP  - 25
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6590
ER  - 
@conference{
author = "Schachner-Gröhs, Iris and Kolm, Claudia and Vierheilig, Julia and Leopold, Melanie and Zarfel, Gernot and Koller, Michael and Kittinger, Clemens and Jakwerth, Stefan and Linke, Rita and Kolarević, Stoimir and Kračun-Kolarević, Margareta and Toth, Erika and Farnleitner, Andreas and Kirschner, Alexander",
year = "2023",
abstract = "Antimicrobial resistance (AMR) represents one of the top ten global public health threats according
to the WHO. The spread of resistances is no longer limited to clinical settings and the natural
environment, especially aquatic ecosystems, are also strongly involved in the global spread. Holistic
as well as quantitative studies are still scarce. We here present for the first time a large scale study
on the Danube River regarding the distribution of AMR along different faecal pollution patterns.
For this study, samples from an international sampling campaign (Joint Danube Survey 4) as well as
additional seasonal samples were screened for the occurrence and origin of faecal pollution and for
the concentrations of nine representative antibiotic resistance genes (ARGs). In addition to water
samples also river biofilms were monitored to account for both, temporal and permanent river
habitats. Analyses were amended by a set of different cultivation-based and non-cultivation-based
microbiological and environmental data to explain the observed pattern in faecal pollution and ARG
concentrations.
Faecal pollution exists and varied strongly along the whole Danube river; hotspots could be identified
downstream of metropolitan areas at which also substantial concentrations of ARGs could be
detected. Quantifying concentrations of ARGs conferring resistance to different antibiotic classes
revealed strong differences between the different genes. Comparing their presence in water and
biofilm samples, allowed to assess how stably present these genes already are in the Danube River
ecosystem.
Environmental surveys are necessary to establish environmental baselines, to be able to guide future
AMR monitoring as well as to enforce useful management strategies. This integrative study therefore
provides first insights in the antimicrobial resistance situation in the most international river in the
world and second largest river in Europe",
publisher = "Austrian Committee - International Association for Danube Research",
journal = "Conference Book: 44th IAD conference: Tackling Present & Future Environmental Challenges of a European Riverscape; 2023 Feb 6-9; Krems, Austria",
title = "Occurrence of antibiotic resistance genes along gradients of faecal pollution in water and biofilm samples from the whole Danube River",
pages = "25",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6590"
}
Schachner-Gröhs, I., Kolm, C., Vierheilig, J., Leopold, M., Zarfel, G., Koller, M., Kittinger, C., Jakwerth, S., Linke, R., Kolarević, S., Kračun-Kolarević, M., Toth, E., Farnleitner, A.,& Kirschner, A.. (2023). Occurrence of antibiotic resistance genes along gradients of faecal pollution in water and biofilm samples from the whole Danube River. in Conference Book: 44th IAD conference: Tackling Present & Future Environmental Challenges of a European Riverscape; 2023 Feb 6-9; Krems, Austria
Austrian Committee - International Association for Danube Research., 25.
https://hdl.handle.net/21.15107/rcub_ibiss_6590
Schachner-Gröhs I, Kolm C, Vierheilig J, Leopold M, Zarfel G, Koller M, Kittinger C, Jakwerth S, Linke R, Kolarević S, Kračun-Kolarević M, Toth E, Farnleitner A, Kirschner A. Occurrence of antibiotic resistance genes along gradients of faecal pollution in water and biofilm samples from the whole Danube River. in Conference Book: 44th IAD conference: Tackling Present & Future Environmental Challenges of a European Riverscape; 2023 Feb 6-9; Krems, Austria. 2023;:25.
https://hdl.handle.net/21.15107/rcub_ibiss_6590 .
Schachner-Gröhs, Iris, Kolm, Claudia, Vierheilig, Julia, Leopold, Melanie, Zarfel, Gernot, Koller, Michael, Kittinger, Clemens, Jakwerth, Stefan, Linke, Rita, Kolarević, Stoimir, Kračun-Kolarević, Margareta, Toth, Erika, Farnleitner, Andreas, Kirschner, Alexander, "Occurrence of antibiotic resistance genes along gradients of faecal pollution in water and biofilm samples from the whole Danube River" in Conference Book: 44th IAD conference: Tackling Present & Future Environmental Challenges of a European Riverscape; 2023 Feb 6-9; Krems, Austria (2023):25,
https://hdl.handle.net/21.15107/rcub_ibiss_6590 .

Faecal pollution as potential driver of antibiotic resistance genes in the Danube River

Schachner, Iris; Kolm, Claudia; Vierheilig, Julia; Savio, Domenico; Zarfel, Gernot; Koller, Michael; Kittinger, Clemens; Jakwerth, Stefan; Linke, Rita; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Tóth, Erika; Farnleitner, Andreas H.; Kirschner, Alexander K.T.

(Belgrade: Serbian Society of Microbiology, 2022)

TY  - CONF
AU  - Schachner, Iris
AU  - Kolm, Claudia
AU  - Vierheilig, Julia
AU  - Savio, Domenico
AU  - Zarfel, Gernot
AU  - Koller, Michael
AU  - Kittinger, Clemens
AU  - Jakwerth, Stefan
AU  - Linke, Rita
AU  - Kolarević, Stoimir
AU  - Kračun-Kolarević, Margareta
AU  - Tóth, Erika
AU  - Farnleitner, Andreas H.
AU  - Kirschner, Alexander K.T.
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6230
AB  - Human-induced antimicrobial resistance is an emerging concern in aquatic environments. Faecal pollution
sources represent potential propagation pathways, however large-scale quantitative studies in whole river
systems are missing. In the course of the Joint Danube Survey, the Danube River was investigated for the
fourth time in summer 2019 from its headwaters to the delta. Microbial-faecal pollution patterns and the
occurrence of selected antibiotic resistance genes (ARGs) were studied. Subsequently, a one-year time series analysis at selected relevant sites allowed to assess temporal variability.
The intestinal bacterium Escherichia coli was quantified according to standard cultivation methods as indicator for total faecal pollution. In general, longitudinal patterns of faecal pollution showed a comparable picture to previous Joint Danube Surveys, with low to moderate pollution in the upper reaches (Germany, Austria) and critical to strong pollution in the middle and lower sections, especially in Serbia. Genetic microbial source tracking methods, determined via quantitative PCR, allowed us to define human faecal pollution as dominant pollution source along the whole Danube. This trend could be generally confirmed during the annual sampling campaign. To estimate the potential of permanent colonialization of faecal microorganisms within the Danube River ecosystem, biofilms as potential reservoirs were studied along the course of the entire river. Here, E.coli were ubiquitously present but highly variable. Ongoing analyses on the occurrence and quantity of selected ARGs will identify hotspots of antimicrobial resistance and their relationship to faecal pollution along the Danube River and thereby contribute to guide future monitoring and management strategies.
PB  - Belgrade: Serbian Society of Microbiology
C3  - Electronic abstract book: FEMS Conference on Microbiology in association with Serbian Society of Microbiology; 2022 Jun 30 - Jul 2; Belgrade, Serbia
T1  - Faecal pollution as potential driver of antibiotic resistance genes in the Danube River
SP  - 137
EP  - 138
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6230
ER  - 
@conference{
author = "Schachner, Iris and Kolm, Claudia and Vierheilig, Julia and Savio, Domenico and Zarfel, Gernot and Koller, Michael and Kittinger, Clemens and Jakwerth, Stefan and Linke, Rita and Kolarević, Stoimir and Kračun-Kolarević, Margareta and Tóth, Erika and Farnleitner, Andreas H. and Kirschner, Alexander K.T.",
year = "2022",
abstract = "Human-induced antimicrobial resistance is an emerging concern in aquatic environments. Faecal pollution
sources represent potential propagation pathways, however large-scale quantitative studies in whole river
systems are missing. In the course of the Joint Danube Survey, the Danube River was investigated for the
fourth time in summer 2019 from its headwaters to the delta. Microbial-faecal pollution patterns and the
occurrence of selected antibiotic resistance genes (ARGs) were studied. Subsequently, a one-year time series analysis at selected relevant sites allowed to assess temporal variability.
The intestinal bacterium Escherichia coli was quantified according to standard cultivation methods as indicator for total faecal pollution. In general, longitudinal patterns of faecal pollution showed a comparable picture to previous Joint Danube Surveys, with low to moderate pollution in the upper reaches (Germany, Austria) and critical to strong pollution in the middle and lower sections, especially in Serbia. Genetic microbial source tracking methods, determined via quantitative PCR, allowed us to define human faecal pollution as dominant pollution source along the whole Danube. This trend could be generally confirmed during the annual sampling campaign. To estimate the potential of permanent colonialization of faecal microorganisms within the Danube River ecosystem, biofilms as potential reservoirs were studied along the course of the entire river. Here, E.coli were ubiquitously present but highly variable. Ongoing analyses on the occurrence and quantity of selected ARGs will identify hotspots of antimicrobial resistance and their relationship to faecal pollution along the Danube River and thereby contribute to guide future monitoring and management strategies.",
publisher = "Belgrade: Serbian Society of Microbiology",
journal = "Electronic abstract book: FEMS Conference on Microbiology in association with Serbian Society of Microbiology; 2022 Jun 30 - Jul 2; Belgrade, Serbia",
title = "Faecal pollution as potential driver of antibiotic resistance genes in the Danube River",
pages = "137-138",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6230"
}
Schachner, I., Kolm, C., Vierheilig, J., Savio, D., Zarfel, G., Koller, M., Kittinger, C., Jakwerth, S., Linke, R., Kolarević, S., Kračun-Kolarević, M., Tóth, E., Farnleitner, A. H.,& Kirschner, A. K.T.. (2022). Faecal pollution as potential driver of antibiotic resistance genes in the Danube River. in Electronic abstract book: FEMS Conference on Microbiology in association with Serbian Society of Microbiology; 2022 Jun 30 - Jul 2; Belgrade, Serbia
Belgrade: Serbian Society of Microbiology., 137-138.
https://hdl.handle.net/21.15107/rcub_ibiss_6230
Schachner I, Kolm C, Vierheilig J, Savio D, Zarfel G, Koller M, Kittinger C, Jakwerth S, Linke R, Kolarević S, Kračun-Kolarević M, Tóth E, Farnleitner AH, Kirschner AK. Faecal pollution as potential driver of antibiotic resistance genes in the Danube River. in Electronic abstract book: FEMS Conference on Microbiology in association with Serbian Society of Microbiology; 2022 Jun 30 - Jul 2; Belgrade, Serbia. 2022;:137-138.
https://hdl.handle.net/21.15107/rcub_ibiss_6230 .
Schachner, Iris, Kolm, Claudia, Vierheilig, Julia, Savio, Domenico, Zarfel, Gernot, Koller, Michael, Kittinger, Clemens, Jakwerth, Stefan, Linke, Rita, Kolarević, Stoimir, Kračun-Kolarević, Margareta, Tóth, Erika, Farnleitner, Andreas H., Kirschner, Alexander K.T., "Faecal pollution as potential driver of antibiotic resistance genes in the Danube River" in Electronic abstract book: FEMS Conference on Microbiology in association with Serbian Society of Microbiology; 2022 Jun 30 - Jul 2; Belgrade, Serbia (2022):137-138,
https://hdl.handle.net/21.15107/rcub_ibiss_6230 .