Nakarada, Đura

Link to this page

Authority KeyName Variants
1aba6784-53e3-4663-a8ac-254b794c32c7
  • Nakarada, Đura (6)
Projects

Author's Bibliography

Alterations in specialized metabolites’ profile of Daucus carota L. Calli induced by low-temperature plasma treatment

Živković, Suzana; Milutinović, Milica; Mišić, Danijela; Nakarada, Đura; Mojović, Miloš; Jovanović, Olivera; Škoro, Nikola; Puač, Nevena

(French Society of Plant Biology, 2023)

TY  - CONF
AU  - Živković, Suzana
AU  - Milutinović, Milica
AU  - Mišić, Danijela
AU  - Nakarada, Đura
AU  - Mojović, Miloš
AU  - Jovanović, Olivera
AU  - Škoro, Nikola
AU  - Puač, Nevena
PY  - 2023
UR  - https://europlantbiology2023.org/wp-content/uploads/2023/07/PBE2023-Abstract-Book.pdf
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6224
AB  - Non-thermal plasma (NTP) technology offers a promising future in plant metabolic engineering, being energy efficient and Eco-friendly alternative to the conventional treatments [1]. Plasma environment is enriched with reactive oxygen and nitrogen species (RONS) that participate in various signaling pathways in plants by regulating their metabolic and developmental processes. In the present study calli of different carrot (Daucus carota L.) varieties was treated by using plasma needle device designed for biomedical applications [2]. Metabolite profiling revealed that plasma treatment could induce severe qualitative and quantitative changes of the major phenolic compounds detected in carrot calli. Current
metabolic alteration was followed by the significant shift in the antioxidant capacity of the treated calli. Obtained results outline the potential application of plasma treatment as a novel elicitor for the production of bio-active compounds in plant in vitro culture systems
PB  - French Society of Plant Biology
C3  - 14th International Conference of the French Society of Plant Biology; 2023 Jul 3-6; Marseille, France
T1  - Alterations in specialized metabolites’ profile of Daucus carota L. Calli induced by low-temperature plasma treatment
SP  - 154
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6224
ER  - 
@conference{
author = "Živković, Suzana and Milutinović, Milica and Mišić, Danijela and Nakarada, Đura and Mojović, Miloš and Jovanović, Olivera and Škoro, Nikola and Puač, Nevena",
year = "2023",
abstract = "Non-thermal plasma (NTP) technology offers a promising future in plant metabolic engineering, being energy efficient and Eco-friendly alternative to the conventional treatments [1]. Plasma environment is enriched with reactive oxygen and nitrogen species (RONS) that participate in various signaling pathways in plants by regulating their metabolic and developmental processes. In the present study calli of different carrot (Daucus carota L.) varieties was treated by using plasma needle device designed for biomedical applications [2]. Metabolite profiling revealed that plasma treatment could induce severe qualitative and quantitative changes of the major phenolic compounds detected in carrot calli. Current
metabolic alteration was followed by the significant shift in the antioxidant capacity of the treated calli. Obtained results outline the potential application of plasma treatment as a novel elicitor for the production of bio-active compounds in plant in vitro culture systems",
publisher = "French Society of Plant Biology",
journal = "14th International Conference of the French Society of Plant Biology; 2023 Jul 3-6; Marseille, France",
title = "Alterations in specialized metabolites’ profile of Daucus carota L. Calli induced by low-temperature plasma treatment",
pages = "154",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6224"
}
Živković, S., Milutinović, M., Mišić, D., Nakarada, Đ., Mojović, M., Jovanović, O., Škoro, N.,& Puač, N.. (2023). Alterations in specialized metabolites’ profile of Daucus carota L. Calli induced by low-temperature plasma treatment. in 14th International Conference of the French Society of Plant Biology; 2023 Jul 3-6; Marseille, France
French Society of Plant Biology., 154.
https://hdl.handle.net/21.15107/rcub_ibiss_6224
Živković S, Milutinović M, Mišić D, Nakarada Đ, Mojović M, Jovanović O, Škoro N, Puač N. Alterations in specialized metabolites’ profile of Daucus carota L. Calli induced by low-temperature plasma treatment. in 14th International Conference of the French Society of Plant Biology; 2023 Jul 3-6; Marseille, France. 2023;:154.
https://hdl.handle.net/21.15107/rcub_ibiss_6224 .
Živković, Suzana, Milutinović, Milica, Mišić, Danijela, Nakarada, Đura, Mojović, Miloš, Jovanović, Olivera, Škoro, Nikola, Puač, Nevena, "Alterations in specialized metabolites’ profile of Daucus carota L. Calli induced by low-temperature plasma treatment" in 14th International Conference of the French Society of Plant Biology; 2023 Jul 3-6; Marseille, France (2023):154,
https://hdl.handle.net/21.15107/rcub_ibiss_6224 .

Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening

Milutinović, Milica; Nakarada, Đura; Božunović, Jelena; Todorović, Miloš; Gašić, Uroš; Živković, Suzana; Skorić, Marijana; Ivković, Đurđa; Savić, Jelena; Devrnja, Nina; Aničić, Neda; Banjanac, Tijana; Mojović, Miloš; Mišić, Danijela

(Basel: MDPI, 2023)

TY  - JOUR
AU  - Milutinović, Milica
AU  - Nakarada, Đura
AU  - Božunović, Jelena
AU  - Todorović, Miloš
AU  - Gašić, Uroš
AU  - Živković, Suzana
AU  - Skorić, Marijana
AU  - Ivković, Đurđa
AU  - Savić, Jelena
AU  - Devrnja, Nina
AU  - Aničić, Neda
AU  - Banjanac, Tijana
AU  - Mojović, Miloš
AU  - Mišić, Danijela
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5505
AB  - The present study provides, for the first time, a physicochemical and biochemical characterization of the redox processes associated with the ripening of Solanum dulcamara L. (bittersweet) berries. Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) measurements of reactive oxygen species (ROS) were performed in parallel with the tissue-specific metabolic profiling of major antioxidants and assessment of antioxidant enzymes activity. Fruit transition from the mature green (MG) to ripe red (RR) stage involved changes in the qualitative and quantitative content of antioxidants and the associated cellular oxidation and peroxidation processes. The skin of bittersweet berries, which was the major source of antioxidants, exhibited the highest antioxidant potential against DPPH radicals and nitroxyl spin probe 3CP. The efficient enzymatic antioxidant system played a critical protective role against the deleterious effects of progressive oxidative stress during ripening. Here, we present the EPRI methodology to assess the redox status of fruits and to discriminate between the redox states of different tissues. Interestingly, the intracellular reoxidation of cell-permeable nitroxide probe 3CP was observed for the first time in fruits or any other plant tissue, and its intensity is herein proposed as a reliable indicator of oxidative stress during ripening. The described noninvasive EPRI technique has the potential to have broader application in the study of redox processes associated with the development, senescence, and postharvest storage of fruits, as well as other circumstances in which oxidative stress is implicated.
PB  - Basel: MDPI
T2  - Antioxidants
T1  - Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening
IS  - 2
VL  - 12
DO  - 10.3390/antiox12020346
SP  - 346
ER  - 
@article{
author = "Milutinović, Milica and Nakarada, Đura and Božunović, Jelena and Todorović, Miloš and Gašić, Uroš and Živković, Suzana and Skorić, Marijana and Ivković, Đurđa and Savić, Jelena and Devrnja, Nina and Aničić, Neda and Banjanac, Tijana and Mojović, Miloš and Mišić, Danijela",
year = "2023",
abstract = "The present study provides, for the first time, a physicochemical and biochemical characterization of the redox processes associated with the ripening of Solanum dulcamara L. (bittersweet) berries. Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) measurements of reactive oxygen species (ROS) were performed in parallel with the tissue-specific metabolic profiling of major antioxidants and assessment of antioxidant enzymes activity. Fruit transition from the mature green (MG) to ripe red (RR) stage involved changes in the qualitative and quantitative content of antioxidants and the associated cellular oxidation and peroxidation processes. The skin of bittersweet berries, which was the major source of antioxidants, exhibited the highest antioxidant potential against DPPH radicals and nitroxyl spin probe 3CP. The efficient enzymatic antioxidant system played a critical protective role against the deleterious effects of progressive oxidative stress during ripening. Here, we present the EPRI methodology to assess the redox status of fruits and to discriminate between the redox states of different tissues. Interestingly, the intracellular reoxidation of cell-permeable nitroxide probe 3CP was observed for the first time in fruits or any other plant tissue, and its intensity is herein proposed as a reliable indicator of oxidative stress during ripening. The described noninvasive EPRI technique has the potential to have broader application in the study of redox processes associated with the development, senescence, and postharvest storage of fruits, as well as other circumstances in which oxidative stress is implicated.",
publisher = "Basel: MDPI",
journal = "Antioxidants",
title = "Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening",
number = "2",
volume = "12",
doi = "10.3390/antiox12020346",
pages = "346"
}
Milutinović, M., Nakarada, Đ., Božunović, J., Todorović, M., Gašić, U., Živković, S., Skorić, M., Ivković, Đ., Savić, J., Devrnja, N., Aničić, N., Banjanac, T., Mojović, M.,& Mišić, D.. (2023). Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening. in Antioxidants
Basel: MDPI., 12(2), 346.
https://doi.org/10.3390/antiox12020346
Milutinović M, Nakarada Đ, Božunović J, Todorović M, Gašić U, Živković S, Skorić M, Ivković Đ, Savić J, Devrnja N, Aničić N, Banjanac T, Mojović M, Mišić D. Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening. in Antioxidants. 2023;12(2):346.
doi:10.3390/antiox12020346 .
Milutinović, Milica, Nakarada, Đura, Božunović, Jelena, Todorović, Miloš, Gašić, Uroš, Živković, Suzana, Skorić, Marijana, Ivković, Đurđa, Savić, Jelena, Devrnja, Nina, Aničić, Neda, Banjanac, Tijana, Mojović, Miloš, Mišić, Danijela, "Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening" in Antioxidants, 12, no. 2 (2023):346,
https://doi.org/10.3390/antiox12020346 . .
4
4
1

Solvent System-Guided Extraction of Centaurium spicatum (L.) Fritch Provides Optimized Conditions for the Biological and Chemical Characteristics of the Herbal Extracts

Božunović, Jelena; Ivanov, Marija; Petrović, Jovana; Gašić, Uroš; Nakarada, Đura; Milutinović, Milica; Aničić, Neda; Giba, Zlatko; Mišić, Danijela; Stojković, Dejan

(Basel: MDPI, 2023)

TY  - JOUR
AU  - Božunović, Jelena
AU  - Ivanov, Marija
AU  - Petrović, Jovana
AU  - Gašić, Uroš
AU  - Nakarada, Đura
AU  - Milutinović, Milica
AU  - Aničić, Neda
AU  - Giba, Zlatko
AU  - Mišić, Danijela
AU  - Stojković, Dejan
PY  - 2023
UR  - https://www.mdpi.com/1424-8247/16/2/245
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5490
AB  - Spiked centaury (Centaurium spicatum) is a well-known medicinal plant from the Mediterranean region with various bioactivities, but there are no studies addressing the use of different solvent systems to improve its pharmacological potential. Nine extraction procedures were adapted to study the effects of solvent composition on the content of bioactive compounds in C. spicatum extracts and on corresponding bioactivities. Targeted metabolomics was performed to obtain information on the chemical composition of extracts. Ethanol-water-based extraction procedures were the most efficient in isolating polyphenols, while less polar butanol extract contained the highest amount of iridoids. Antioxidant potential analysis revealed stronger activity in extracts with higher polyphenol content. Bacillus cereus and Staphylococus aureus were designated as the most sensitive bacterial strains to the activity of extracts, while among the micromycetes tested, Penicillium funiculosum was the most susceptible strain. Butanol extract showed antivirulence potential on Candida albicans morphological transition from yeast to hyphal form, and selected extracts were effective against biofilm formation in two Candida species. All the extracts tested in this study showed no cytotoxic activity to immortalize human skin keratinocyte cell line (HaCaT), whereas extracts obtained by ethanol-water extraction stand out for their potent wound healing effects. Moreover, the influence of the extraction solvent system on various bioactivities of C. spicatum is reported herein for the first time. Overall, the results presented in this study promote the use of C. spicatum as a source of natural products with potential antioxidant, wound healing, and antimicrobial applications that are potentially safe for human use.
PB  - Basel: MDPI
T2  - Pharmaceuticals
T1  - Solvent System-Guided Extraction of Centaurium spicatum (L.) Fritch Provides Optimized Conditions for the Biological and Chemical Characteristics of the Herbal Extracts
IS  - 2
VL  - 16
DO  - 10.3390/ph16020245
SP  - 245
ER  - 
@article{
author = "Božunović, Jelena and Ivanov, Marija and Petrović, Jovana and Gašić, Uroš and Nakarada, Đura and Milutinović, Milica and Aničić, Neda and Giba, Zlatko and Mišić, Danijela and Stojković, Dejan",
year = "2023",
abstract = "Spiked centaury (Centaurium spicatum) is a well-known medicinal plant from the Mediterranean region with various bioactivities, but there are no studies addressing the use of different solvent systems to improve its pharmacological potential. Nine extraction procedures were adapted to study the effects of solvent composition on the content of bioactive compounds in C. spicatum extracts and on corresponding bioactivities. Targeted metabolomics was performed to obtain information on the chemical composition of extracts. Ethanol-water-based extraction procedures were the most efficient in isolating polyphenols, while less polar butanol extract contained the highest amount of iridoids. Antioxidant potential analysis revealed stronger activity in extracts with higher polyphenol content. Bacillus cereus and Staphylococus aureus were designated as the most sensitive bacterial strains to the activity of extracts, while among the micromycetes tested, Penicillium funiculosum was the most susceptible strain. Butanol extract showed antivirulence potential on Candida albicans morphological transition from yeast to hyphal form, and selected extracts were effective against biofilm formation in two Candida species. All the extracts tested in this study showed no cytotoxic activity to immortalize human skin keratinocyte cell line (HaCaT), whereas extracts obtained by ethanol-water extraction stand out for their potent wound healing effects. Moreover, the influence of the extraction solvent system on various bioactivities of C. spicatum is reported herein for the first time. Overall, the results presented in this study promote the use of C. spicatum as a source of natural products with potential antioxidant, wound healing, and antimicrobial applications that are potentially safe for human use.",
publisher = "Basel: MDPI",
journal = "Pharmaceuticals",
title = "Solvent System-Guided Extraction of Centaurium spicatum (L.) Fritch Provides Optimized Conditions for the Biological and Chemical Characteristics of the Herbal Extracts",
number = "2",
volume = "16",
doi = "10.3390/ph16020245",
pages = "245"
}
Božunović, J., Ivanov, M., Petrović, J., Gašić, U., Nakarada, Đ., Milutinović, M., Aničić, N., Giba, Z., Mišić, D.,& Stojković, D.. (2023). Solvent System-Guided Extraction of Centaurium spicatum (L.) Fritch Provides Optimized Conditions for the Biological and Chemical Characteristics of the Herbal Extracts. in Pharmaceuticals
Basel: MDPI., 16(2), 245.
https://doi.org/10.3390/ph16020245
Božunović J, Ivanov M, Petrović J, Gašić U, Nakarada Đ, Milutinović M, Aničić N, Giba Z, Mišić D, Stojković D. Solvent System-Guided Extraction of Centaurium spicatum (L.) Fritch Provides Optimized Conditions for the Biological and Chemical Characteristics of the Herbal Extracts. in Pharmaceuticals. 2023;16(2):245.
doi:10.3390/ph16020245 .
Božunović, Jelena, Ivanov, Marija, Petrović, Jovana, Gašić, Uroš, Nakarada, Đura, Milutinović, Milica, Aničić, Neda, Giba, Zlatko, Mišić, Danijela, Stojković, Dejan, "Solvent System-Guided Extraction of Centaurium spicatum (L.) Fritch Provides Optimized Conditions for the Biological and Chemical Characteristics of the Herbal Extracts" in Pharmaceuticals, 16, no. 2 (2023):245,
https://doi.org/10.3390/ph16020245 . .
5
2

Tissue-specific distribution of antioxidants during ripening of Solanum dulcamara L. fruits: the redox state alterations

Milutinović, Milica; Nakarada, Đura; Božunović, Jelena; Gašić, Uroš; Živković, Suzana; Savić, Jelena; Skorić, Marijana; Devrnja, Nina; Banjanac, Tijana; Todorović, Miloš; Mojović, Miloš; Mišić, Danijela

(Belgrade: Serbian Plant Physiology Society, 2022)

TY  - CONF
AU  - Milutinović, Milica
AU  - Nakarada, Đura
AU  - Božunović, Jelena
AU  - Gašić, Uroš
AU  - Živković, Suzana
AU  - Savić, Jelena
AU  - Skorić, Marijana
AU  - Devrnja, Nina
AU  - Banjanac, Tijana
AU  - Todorović, Miloš
AU  - Mojović, Miloš
AU  - Mišić, Danijela
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5270
AB  - Identifying plant species tolerant to hypoxia and determining mechanisms this tolerance is standing upon may aid in improving nutritional quality of fruits of waterlogging-intolerant crops. Berries of Solanum dulcamara L. (bittersweet), a Eurasian species belonging to the Solanaceae family that grows in both dry habitats and wetlands, represent a suitable hypoxia-tolerant model species to study redox processes in relation to fruit development. Using biochemical and physicochemical analyses, we examined differences in enzymatic and non-enzymatic components of the antioxidant system of S. dulcamara during the transition from mature green (MG) to ripe red (RR) developmental stage. By combining untargeted (UHPLC/Orbitrap MSn) and targeted (UHPLC-DAD MS2) metabolomics approaches, we revealed a significant change in polyphenolic profile of S. dulcamara fruits during fruit ripening. In order to improve knowledge on the link between metabolism and cell redox status, Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) of reactive oxygen species (ROS) in intact fruits, fruit sections and extracts, were performed in parallel with the analysis of tissue-specific distribution of antioxidants and activity of antioxidant enzymes, which demonstrated alterations in the redox state and the increase of total antioxidant capacity of bittersweet berries during ripening, especially of outer layers (pericarp) of the fruits. This knowledge could provide important information to direct research on fruit quality improvement of flood-intolerant crops that are a close relatives of bittersweet, such as tomato and eggplant.
PB  - Belgrade: Serbian Plant Physiology Society
C3  - 4th International Conference on Plant Biology [and] 23rd SPPS Meeting; 2022 Oct 6-8; Belgrade, Serbia
T1  - Tissue-specific distribution of antioxidants during ripening of Solanum dulcamara L. fruits: the redox state alterations
SP  - 126
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5270
ER  - 
@conference{
author = "Milutinović, Milica and Nakarada, Đura and Božunović, Jelena and Gašić, Uroš and Živković, Suzana and Savić, Jelena and Skorić, Marijana and Devrnja, Nina and Banjanac, Tijana and Todorović, Miloš and Mojović, Miloš and Mišić, Danijela",
year = "2022",
abstract = "Identifying plant species tolerant to hypoxia and determining mechanisms this tolerance is standing upon may aid in improving nutritional quality of fruits of waterlogging-intolerant crops. Berries of Solanum dulcamara L. (bittersweet), a Eurasian species belonging to the Solanaceae family that grows in both dry habitats and wetlands, represent a suitable hypoxia-tolerant model species to study redox processes in relation to fruit development. Using biochemical and physicochemical analyses, we examined differences in enzymatic and non-enzymatic components of the antioxidant system of S. dulcamara during the transition from mature green (MG) to ripe red (RR) developmental stage. By combining untargeted (UHPLC/Orbitrap MSn) and targeted (UHPLC-DAD MS2) metabolomics approaches, we revealed a significant change in polyphenolic profile of S. dulcamara fruits during fruit ripening. In order to improve knowledge on the link between metabolism and cell redox status, Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) of reactive oxygen species (ROS) in intact fruits, fruit sections and extracts, were performed in parallel with the analysis of tissue-specific distribution of antioxidants and activity of antioxidant enzymes, which demonstrated alterations in the redox state and the increase of total antioxidant capacity of bittersweet berries during ripening, especially of outer layers (pericarp) of the fruits. This knowledge could provide important information to direct research on fruit quality improvement of flood-intolerant crops that are a close relatives of bittersweet, such as tomato and eggplant.",
publisher = "Belgrade: Serbian Plant Physiology Society",
journal = "4th International Conference on Plant Biology [and] 23rd SPPS Meeting; 2022 Oct 6-8; Belgrade, Serbia",
title = "Tissue-specific distribution of antioxidants during ripening of Solanum dulcamara L. fruits: the redox state alterations",
pages = "126",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5270"
}
Milutinović, M., Nakarada, Đ., Božunović, J., Gašić, U., Živković, S., Savić, J., Skorić, M., Devrnja, N., Banjanac, T., Todorović, M., Mojović, M.,& Mišić, D.. (2022). Tissue-specific distribution of antioxidants during ripening of Solanum dulcamara L. fruits: the redox state alterations. in 4th International Conference on Plant Biology [and] 23rd SPPS Meeting; 2022 Oct 6-8; Belgrade, Serbia
Belgrade: Serbian Plant Physiology Society., 126.
https://hdl.handle.net/21.15107/rcub_ibiss_5270
Milutinović M, Nakarada Đ, Božunović J, Gašić U, Živković S, Savić J, Skorić M, Devrnja N, Banjanac T, Todorović M, Mojović M, Mišić D. Tissue-specific distribution of antioxidants during ripening of Solanum dulcamara L. fruits: the redox state alterations. in 4th International Conference on Plant Biology [and] 23rd SPPS Meeting; 2022 Oct 6-8; Belgrade, Serbia. 2022;:126.
https://hdl.handle.net/21.15107/rcub_ibiss_5270 .
Milutinović, Milica, Nakarada, Đura, Božunović, Jelena, Gašić, Uroš, Živković, Suzana, Savić, Jelena, Skorić, Marijana, Devrnja, Nina, Banjanac, Tijana, Todorović, Miloš, Mojović, Miloš, Mišić, Danijela, "Tissue-specific distribution of antioxidants during ripening of Solanum dulcamara L. fruits: the redox state alterations" in 4th International Conference on Plant Biology [and] 23rd SPPS Meeting; 2022 Oct 6-8; Belgrade, Serbia (2022):126,
https://hdl.handle.net/21.15107/rcub_ibiss_5270 .

Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.

Krunić, Matija; Ristić, Biljana; Bošnjak, Mihajlo; Paunović, Verica; Tovilović-Kovačević, Gordana; Zogović, Nevena; Mirčić, Aleksandar; Marković, Zoran; Todorović-Marković, Biljana; Jovanović, Svetlana; Kleut, Duška; Mojović, Miloš; Nakarada, Đura; Marković, Olivera; Vuković, Irena; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(Elsevier Inc., 2021)

TY  - JOUR
AU  - Krunić, Matija
AU  - Ristić, Biljana
AU  - Bošnjak, Mihajlo
AU  - Paunović, Verica
AU  - Tovilović-Kovačević, Gordana
AU  - Zogović, Nevena
AU  - Mirčić, Aleksandar
AU  - Marković, Zoran
AU  - Todorović-Marković, Biljana
AU  - Jovanović, Svetlana
AU  - Kleut, Duška
AU  - Mojović, Miloš
AU  - Nakarada, Đura
AU  - Marković, Olivera
AU  - Vuković, Irena
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2021
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0891584921007760
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4655
AB  - We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•-), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagy-limiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.
PB  - Elsevier Inc.
T2  - Free Radical Biology and Medicine
T1  - Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.
VL  - 177
DO  - 10.1016/j.freeradbiomed.2021.10.025
SP  - 167
EP  - 180
ER  - 
@article{
author = "Krunić, Matija and Ristić, Biljana and Bošnjak, Mihajlo and Paunović, Verica and Tovilović-Kovačević, Gordana and Zogović, Nevena and Mirčić, Aleksandar and Marković, Zoran and Todorović-Marković, Biljana and Jovanović, Svetlana and Kleut, Duška and Mojović, Miloš and Nakarada, Đura and Marković, Olivera and Vuković, Irena and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2021",
abstract = "We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•-), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagy-limiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.",
publisher = "Elsevier Inc.",
journal = "Free Radical Biology and Medicine",
title = "Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.",
volume = "177",
doi = "10.1016/j.freeradbiomed.2021.10.025",
pages = "167-180"
}
Krunić, M., Ristić, B., Bošnjak, M., Paunović, V., Tovilović-Kovačević, G., Zogović, N., Mirčić, A., Marković, Z., Todorović-Marković, B., Jovanović, S., Kleut, D., Mojović, M., Nakarada, Đ., Marković, O., Vuković, I., Harhaji-Trajković, L.,& Trajković, V.. (2021). Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.. in Free Radical Biology and Medicine
Elsevier Inc.., 177, 167-180.
https://doi.org/10.1016/j.freeradbiomed.2021.10.025
Krunić M, Ristić B, Bošnjak M, Paunović V, Tovilović-Kovačević G, Zogović N, Mirčić A, Marković Z, Todorović-Marković B, Jovanović S, Kleut D, Mojović M, Nakarada Đ, Marković O, Vuković I, Harhaji-Trajković L, Trajković V. Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.. in Free Radical Biology and Medicine. 2021;177:167-180.
doi:10.1016/j.freeradbiomed.2021.10.025 .
Krunić, Matija, Ristić, Biljana, Bošnjak, Mihajlo, Paunović, Verica, Tovilović-Kovačević, Gordana, Zogović, Nevena, Mirčić, Aleksandar, Marković, Zoran, Todorović-Marković, Biljana, Jovanović, Svetlana, Kleut, Duška, Mojović, Miloš, Nakarada, Đura, Marković, Olivera, Vuković, Irena, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death." in Free Radical Biology and Medicine, 177 (2021):167-180,
https://doi.org/10.1016/j.freeradbiomed.2021.10.025 . .
10
7

In vivo/Ex Vivo EPR Investigation of the Brain Redox Status and Blood--Brain Barrier Integrity in the 5xFAD Mouse Model of Alzheimer's Disease.

Vesković, Ana; Nakarada, Đura; Pavićević, Aleksandra; Prokić, Bogomir; Perović, Milka; Kanazir, Selma; Popović-Bijelić, Ana; Mojović, Miloš

(Bentham Science Publishers Ltd., 2021)

TY  - JOUR
AU  - Vesković, Ana
AU  - Nakarada, Đura
AU  - Pavićević, Aleksandra
AU  - Prokić, Bogomir
AU  - Perović, Milka
AU  - Kanazir, Selma
AU  - Popović-Bijelić, Ana
AU  - Mojović, Miloš
PY  - 2021
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4221
AB  - BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive decline and total brain atrophy. Despite the substantial scientific effort, the pathological mechanisms underlying neurodegeneration in AD are currently unknown. In most studies, amyloid β peptide has been considered the key pathological change in AD. However, numerous Aβ-targeting treatments have failed in clinical trials. This implies the need to shift the re- search focus from Aβ to other pathological features of the disease. OBJECTIVE The aim of this study was to examine the interplay between mitochondrial dysfunction, oxidative stress and blood-brain barrier (BBB) disruption in AD pathology, using a novel approach that involves the application of electron paramagnetic resonance (EPR) spectroscopy. METHOD In vivo and ex vivo EPR spectroscopy using two spin probes (aminoxyl radicals) exhibit- ing different cell-membrane and BBB permeability were employed to assess BBB integrity and brain tissue redox status in the 5xFAD mouse model of AD. In vivo spin probe reduction decay was analyzed using a two-compartment pharmacokinetic model. Furthermore, 15 K EPR spectros- copy was employed to investigate the brain metal content. RESULTS This study has revealed an altered brain redox state, BBB breakdown, as well as ROS-me- diated damage to mitochondrial iron-sulfur clusters, and up-regulation of MnSOD in the 5xFAD model. CONCLUSION The EPR spin probes were shown to be excellent in vivo reporters of the 5xFAD neu- ronal tissue redox state, as well as the BBB integrity, indicating the importance of in vivo EPR spec- troscopy application in preclinical studies of neurodegenerative diseases.
PB  - Bentham Science Publishers Ltd.
T2  - Current Alzheimer Research
T1  - In vivo/Ex Vivo EPR Investigation of the Brain Redox Status and Blood--Brain Barrier Integrity in the 5xFAD Mouse Model of Alzheimer's Disease.
IS  - 1
VL  - 18
DO  - 10.2174/1567205018666210324121156
SP  - 25
EP  - 34
ER  - 
@article{
author = "Vesković, Ana and Nakarada, Đura and Pavićević, Aleksandra and Prokić, Bogomir and Perović, Milka and Kanazir, Selma and Popović-Bijelić, Ana and Mojović, Miloš",
year = "2021",
abstract = "BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive decline and total brain atrophy. Despite the substantial scientific effort, the pathological mechanisms underlying neurodegeneration in AD are currently unknown. In most studies, amyloid β peptide has been considered the key pathological change in AD. However, numerous Aβ-targeting treatments have failed in clinical trials. This implies the need to shift the re- search focus from Aβ to other pathological features of the disease. OBJECTIVE The aim of this study was to examine the interplay between mitochondrial dysfunction, oxidative stress and blood-brain barrier (BBB) disruption in AD pathology, using a novel approach that involves the application of electron paramagnetic resonance (EPR) spectroscopy. METHOD In vivo and ex vivo EPR spectroscopy using two spin probes (aminoxyl radicals) exhibit- ing different cell-membrane and BBB permeability were employed to assess BBB integrity and brain tissue redox status in the 5xFAD mouse model of AD. In vivo spin probe reduction decay was analyzed using a two-compartment pharmacokinetic model. Furthermore, 15 K EPR spectros- copy was employed to investigate the brain metal content. RESULTS This study has revealed an altered brain redox state, BBB breakdown, as well as ROS-me- diated damage to mitochondrial iron-sulfur clusters, and up-regulation of MnSOD in the 5xFAD model. CONCLUSION The EPR spin probes were shown to be excellent in vivo reporters of the 5xFAD neu- ronal tissue redox state, as well as the BBB integrity, indicating the importance of in vivo EPR spec- troscopy application in preclinical studies of neurodegenerative diseases.",
publisher = "Bentham Science Publishers Ltd.",
journal = "Current Alzheimer Research",
title = "In vivo/Ex Vivo EPR Investigation of the Brain Redox Status and Blood--Brain Barrier Integrity in the 5xFAD Mouse Model of Alzheimer's Disease.",
number = "1",
volume = "18",
doi = "10.2174/1567205018666210324121156",
pages = "25-34"
}
Vesković, A., Nakarada, Đ., Pavićević, A., Prokić, B., Perović, M., Kanazir, S., Popović-Bijelić, A.,& Mojović, M.. (2021). In vivo/Ex Vivo EPR Investigation of the Brain Redox Status and Blood--Brain Barrier Integrity in the 5xFAD Mouse Model of Alzheimer's Disease.. in Current Alzheimer Research
Bentham Science Publishers Ltd.., 18(1), 25-34.
https://doi.org/10.2174/1567205018666210324121156
Vesković A, Nakarada Đ, Pavićević A, Prokić B, Perović M, Kanazir S, Popović-Bijelić A, Mojović M. In vivo/Ex Vivo EPR Investigation of the Brain Redox Status and Blood--Brain Barrier Integrity in the 5xFAD Mouse Model of Alzheimer's Disease.. in Current Alzheimer Research. 2021;18(1):25-34.
doi:10.2174/1567205018666210324121156 .
Vesković, Ana, Nakarada, Đura, Pavićević, Aleksandra, Prokić, Bogomir, Perović, Milka, Kanazir, Selma, Popović-Bijelić, Ana, Mojović, Miloš, "In vivo/Ex Vivo EPR Investigation of the Brain Redox Status and Blood--Brain Barrier Integrity in the 5xFAD Mouse Model of Alzheimer's Disease." in Current Alzheimer Research, 18, no. 1 (2021):25-34,
https://doi.org/10.2174/1567205018666210324121156 . .
1
4
3