Liaras, Konstantinos

Link to this page

Authority KeyName Variants
da5dc7cd-afc8-471a-920f-85ad85561c0c
  • Liaras, Konstantinos (2)
Projects

Author's Bibliography

Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review

Stojković, Dejan; Petrović, Jovana; Carević, Tamara; Soković, Marina; Liaras, Konstantinos

(Basel: MDPI, 2023)

TY  - JOUR
AU  - Stojković, Dejan
AU  - Petrović, Jovana
AU  - Carević, Tamara
AU  - Soković, Marina
AU  - Liaras, Konstantinos
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5793
AB  - This narrative review paper provides an up-to-date overview of the potential of novel synthetic and semisynthetic compounds as antibacterials that target virulence traits in resistant strains. The review focused on research conducted in the last five years and investigated a range of compounds including azoles, indoles, thiophenes, glycopeptides, pleuromutilin derivatives, lactone derivatives, and chalcones. The emergence and spread of antibiotic-resistant bacterial strains is a growing public health concern, and new approaches are urgently needed to combat this threat. One promising approach is to target virulence factors, which are essential for bacterial survival and pathogenesis, but not for bacterial growth. By targeting virulence factors, it may be possible to reduce the severity of bacterial infections without promoting the development of resistance. We discuss the mechanisms of action of the various compounds investigated and their potential as antibacterials. The review highlights the potential of targeting virulence factors as a promising strategy to combat antibiotic resistance and suggests that further research is needed to identify new compounds and optimize their efficacy. The findings of this review suggest that novel synthetic and semisynthetic compounds that target virulence factors have great potential as antibacterials in the fight against antibiotic resistance.
PB  - Basel: MDPI
T2  - Antibiotics
T1  - Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review
IS  - 6
VL  - 12
DO  - 10.3390/antibiotics12060963
SP  - 963
ER  - 
@article{
author = "Stojković, Dejan and Petrović, Jovana and Carević, Tamara and Soković, Marina and Liaras, Konstantinos",
year = "2023",
abstract = "This narrative review paper provides an up-to-date overview of the potential of novel synthetic and semisynthetic compounds as antibacterials that target virulence traits in resistant strains. The review focused on research conducted in the last five years and investigated a range of compounds including azoles, indoles, thiophenes, glycopeptides, pleuromutilin derivatives, lactone derivatives, and chalcones. The emergence and spread of antibiotic-resistant bacterial strains is a growing public health concern, and new approaches are urgently needed to combat this threat. One promising approach is to target virulence factors, which are essential for bacterial survival and pathogenesis, but not for bacterial growth. By targeting virulence factors, it may be possible to reduce the severity of bacterial infections without promoting the development of resistance. We discuss the mechanisms of action of the various compounds investigated and their potential as antibacterials. The review highlights the potential of targeting virulence factors as a promising strategy to combat antibiotic resistance and suggests that further research is needed to identify new compounds and optimize their efficacy. The findings of this review suggest that novel synthetic and semisynthetic compounds that target virulence factors have great potential as antibacterials in the fight against antibiotic resistance.",
publisher = "Basel: MDPI",
journal = "Antibiotics",
title = "Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review",
number = "6",
volume = "12",
doi = "10.3390/antibiotics12060963",
pages = "963"
}
Stojković, D., Petrović, J., Carević, T., Soković, M.,& Liaras, K.. (2023). Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review. in Antibiotics
Basel: MDPI., 12(6), 963.
https://doi.org/10.3390/antibiotics12060963
Stojković D, Petrović J, Carević T, Soković M, Liaras K. Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review. in Antibiotics. 2023;12(6):963.
doi:10.3390/antibiotics12060963 .
Stojković, Dejan, Petrović, Jovana, Carević, Tamara, Soković, Marina, Liaras, Konstantinos, "Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review" in Antibiotics, 12, no. 6 (2023):963,
https://doi.org/10.3390/antibiotics12060963 . .
1
3

Design, Synthesis, Evaluation of Antimicrobial Activity and Docking Studies of New Thiazole-based Chalcones.

Tratrat, Christophe; Haroun, Michelyne; Xenikakis, Iakovos; Liaras, Konstantinos; Tsolaki, Evangelia; Eleftheriou, Phaedra; Petrou, Anthi; Aldhubiab, Bandar; Attimarad, Mahesh; Venugopala, Katharigatta N.; Harsha, Sree; Elsewedy, Heba S.; Geronikaki, Athina; Soković, Marina

(2019)

TY  - JOUR
AU  - Tratrat, Christophe
AU  - Haroun, Michelyne
AU  - Xenikakis, Iakovos
AU  - Liaras, Konstantinos
AU  - Tsolaki, Evangelia
AU  - Eleftheriou, Phaedra
AU  - Petrou, Anthi
AU  - Aldhubiab, Bandar
AU  - Attimarad, Mahesh
AU  - Venugopala, Katharigatta N.
AU  - Harsha, Sree
AU  - Elsewedy, Heba S.
AU  - Geronikaki, Athina
AU  - Soković, Marina
PY  - 2019
UR  - http://www.eurekaselect.com/169442/article
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3358
AB  - BACKGROUND Thiazole derivates as well as chalcones, are very important scaffold for medicinal chemistry. Literature survey revealed that they possess wide spectrum of biological activities among which are anti-inflammatory and antimicrobial. OBJECTIVES The current studies describe the synthesis and evaluation of antimicrobial activity of twenty eight novel thiazole-based chalcones. METHODS The designed compounds were synthesized using classical methods of organic synthesis. The in vivo evaluation of antimicrobial activity was performed by microdilution method. RESULTS All compounds have shown antibacterial properties better than that of ampicillin and in many cases better than streptomycin. As far as the antifungal activity is concerned, all compounds possess much higher activity than reference drugs bifonazole and ketoconazole. The most sensitive bacterial species was B. cereus (MIC 6.5-28.4 µmol × 10-2/mL and MBC 14.2-105.0 µmol × 10-2/mL) while the most resistant ones were L. monocytogenes (MIC 21.4-113.6 µmol × 10-2/mL) and E. coli (MIC 10.7- 113.6 µmol × 10-2/mL) and MBC at 42.7-358.6 µmol × 10-2/mL and 21.4-247.2 µmol × 10-2/mL, respectively. All the compounds exhibited antibacterial activity against the three resistant strains, MRSA, P. aeruginosa and E.coli. with MIC and MBC in the range of 0.65-11.00 µmol/mL × 10-2 and 1.30-16.50 µmol/mL × 10-2. Docking studies were performed. CONCLUSION Twenty-eight novel thiazole-based chalcones were designed, synthesized and evaluated for antimicrobial activity. The results showed that these derivatives could be lead compounds in search of new potent antimicrobial agents. Docking studies indicated that DNA gyrase, GyrB and MurA inhibition may explain the antibacterial activity.
T2  - Current Topics in Medicinal Chemistry
T1  - Design, Synthesis, Evaluation of Antimicrobial Activity and Docking Studies of New Thiazole-based Chalcones.
IS  - 5
VL  - 19
DO  - 10.2174/1568026619666190129121933
SP  - 356
EP  - 375
ER  - 
@article{
author = "Tratrat, Christophe and Haroun, Michelyne and Xenikakis, Iakovos and Liaras, Konstantinos and Tsolaki, Evangelia and Eleftheriou, Phaedra and Petrou, Anthi and Aldhubiab, Bandar and Attimarad, Mahesh and Venugopala, Katharigatta N. and Harsha, Sree and Elsewedy, Heba S. and Geronikaki, Athina and Soković, Marina",
year = "2019",
abstract = "BACKGROUND Thiazole derivates as well as chalcones, are very important scaffold for medicinal chemistry. Literature survey revealed that they possess wide spectrum of biological activities among which are anti-inflammatory and antimicrobial. OBJECTIVES The current studies describe the synthesis and evaluation of antimicrobial activity of twenty eight novel thiazole-based chalcones. METHODS The designed compounds were synthesized using classical methods of organic synthesis. The in vivo evaluation of antimicrobial activity was performed by microdilution method. RESULTS All compounds have shown antibacterial properties better than that of ampicillin and in many cases better than streptomycin. As far as the antifungal activity is concerned, all compounds possess much higher activity than reference drugs bifonazole and ketoconazole. The most sensitive bacterial species was B. cereus (MIC 6.5-28.4 µmol × 10-2/mL and MBC 14.2-105.0 µmol × 10-2/mL) while the most resistant ones were L. monocytogenes (MIC 21.4-113.6 µmol × 10-2/mL) and E. coli (MIC 10.7- 113.6 µmol × 10-2/mL) and MBC at 42.7-358.6 µmol × 10-2/mL and 21.4-247.2 µmol × 10-2/mL, respectively. All the compounds exhibited antibacterial activity against the three resistant strains, MRSA, P. aeruginosa and E.coli. with MIC and MBC in the range of 0.65-11.00 µmol/mL × 10-2 and 1.30-16.50 µmol/mL × 10-2. Docking studies were performed. CONCLUSION Twenty-eight novel thiazole-based chalcones were designed, synthesized and evaluated for antimicrobial activity. The results showed that these derivatives could be lead compounds in search of new potent antimicrobial agents. Docking studies indicated that DNA gyrase, GyrB and MurA inhibition may explain the antibacterial activity.",
journal = "Current Topics in Medicinal Chemistry",
title = "Design, Synthesis, Evaluation of Antimicrobial Activity and Docking Studies of New Thiazole-based Chalcones.",
number = "5",
volume = "19",
doi = "10.2174/1568026619666190129121933",
pages = "356-375"
}
Tratrat, C., Haroun, M., Xenikakis, I., Liaras, K., Tsolaki, E., Eleftheriou, P., Petrou, A., Aldhubiab, B., Attimarad, M., Venugopala, K. N., Harsha, S., Elsewedy, H. S., Geronikaki, A.,& Soković, M.. (2019). Design, Synthesis, Evaluation of Antimicrobial Activity and Docking Studies of New Thiazole-based Chalcones.. in Current Topics in Medicinal Chemistry, 19(5), 356-375.
https://doi.org/10.2174/1568026619666190129121933
Tratrat C, Haroun M, Xenikakis I, Liaras K, Tsolaki E, Eleftheriou P, Petrou A, Aldhubiab B, Attimarad M, Venugopala KN, Harsha S, Elsewedy HS, Geronikaki A, Soković M. Design, Synthesis, Evaluation of Antimicrobial Activity and Docking Studies of New Thiazole-based Chalcones.. in Current Topics in Medicinal Chemistry. 2019;19(5):356-375.
doi:10.2174/1568026619666190129121933 .
Tratrat, Christophe, Haroun, Michelyne, Xenikakis, Iakovos, Liaras, Konstantinos, Tsolaki, Evangelia, Eleftheriou, Phaedra, Petrou, Anthi, Aldhubiab, Bandar, Attimarad, Mahesh, Venugopala, Katharigatta N., Harsha, Sree, Elsewedy, Heba S., Geronikaki, Athina, Soković, Marina, "Design, Synthesis, Evaluation of Antimicrobial Activity and Docking Studies of New Thiazole-based Chalcones." in Current Topics in Medicinal Chemistry, 19, no. 5 (2019):356-375,
https://doi.org/10.2174/1568026619666190129121933 . .
1
24
16
23