Marić, Nađa

Link to this page

Authority KeyName Variants
979b542a-3791-4d1c-8438-5418b5f28a09
  • Marić, Nađa (1)
Projects

Author's Bibliography

Dual role of mitochondrial damage in anticancer and antipsychotic treatment

Misirkić Marjanović, Maja; Vučićević, Ljubica; Kosić, Milica; Paunović, Verica; Arsikin-Csordas, Katarina; Ristić, Biljana; Marić, Nađa; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Kravić-Stevović, Tamara; Martinović, Tamara; Ćirić, Darko; Mirčić, Aleksandar; Petričević, Saša; Bumbaširević, Vladimir; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(The Mitochondrial Physiology Society, 2019)

TY  - CONF
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Kosić, Milica
AU  - Paunović, Verica
AU  - Arsikin-Csordas, Katarina
AU  - Ristić, Biljana
AU  - Marić, Nađa
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Kravić-Stevović, Tamara
AU  - Martinović, Tamara
AU  - Ćirić, Darko
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bumbaširević, Vladimir
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2019
UR  - https://www.mitoeagle.org/index.php/MiP2019/MitoEAGLE_Belgrade_RS
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6353
AB  - We analyzed the impact of mitochondrial damage in anticancer action of combining lysosomal
membrane permeabilization (LMP)-inducing agent N- dodecylimidazole (NDI)[1] with
glycolytic inhibitor 2-deoxy-D-glucose (2DG) and in antipsychotic action of atypical antipsychotic
olanzapine.
NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing ATP depletion,
mitochondrial damage and reactive oxygen species production, eventually leading to necrotic
death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma
cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant tocopherol, suggesting
the involvement of LMP and oxidative stress in the observed cytotoxicity. Moreover, the
combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6
mice by inducing necrotic death of tumor cells.
Based on these results, we propose that NDI-triggered LMPcauses initial mitochondrial damage
that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial
health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss,
and reactive oxygen species production, culminating in necrotic cell death.
We also investigated the role of autophagy, a controlled cellular self-digestion process, in regulating
survival of neurons exposed to olanzapine. Olanzapine induced autophagy in human
SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of
autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression
of autophagy-related (ATG) genes ATG4B, ATG5, andATG7. The production of reactive oxygen
species, but not modulation of the main autophagy repressor mTOR or its upstream regulators
AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy.
Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage,
and the autophagic clearance of dysfunctional mitochondria [2] was confirmed by electron microscopy,
colocalization of autophagosome associated MAP1LC3B (LC3B) and mitochondria,
and mitochondrial association with the autophagic cargo receptor p62. While olanzapine-triggered
mitochondrial damage was not visibly toxic to SH-SY5Ycells, their death was readily initiated
upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown
of BECN1 and LC3B. The treatment of mice with olanzapine increased the brain levels of
LC3B-II and mRNA encoding Atg4b,Atg5, Atg7, Atg12, Gabarap, and Becn1.
These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal
mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action
of the drug.
References;
1. Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death.
Mitochondrion10: 662-669.
2. Wang K, Klionsky DJ(2011) Mitochondrial removal by autophagy. Autophagy 7:297-300.
PB  - The Mitochondrial Physiology Society
C3  - Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia
T1  - Dual role of mitochondrial damage in anticancer and antipsychotic treatment
SP  - 29
EP  - 29
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6353
ER  - 
@conference{
author = "Misirkić Marjanović, Maja and Vučićević, Ljubica and Kosić, Milica and Paunović, Verica and Arsikin-Csordas, Katarina and Ristić, Biljana and Marić, Nađa and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Kravić-Stevović, Tamara and Martinović, Tamara and Ćirić, Darko and Mirčić, Aleksandar and Petričević, Saša and Bumbaširević, Vladimir and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2019",
abstract = "We analyzed the impact of mitochondrial damage in anticancer action of combining lysosomal
membrane permeabilization (LMP)-inducing agent N- dodecylimidazole (NDI)[1] with
glycolytic inhibitor 2-deoxy-D-glucose (2DG) and in antipsychotic action of atypical antipsychotic
olanzapine.
NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing ATP depletion,
mitochondrial damage and reactive oxygen species production, eventually leading to necrotic
death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma
cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant tocopherol, suggesting
the involvement of LMP and oxidative stress in the observed cytotoxicity. Moreover, the
combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6
mice by inducing necrotic death of tumor cells.
Based on these results, we propose that NDI-triggered LMPcauses initial mitochondrial damage
that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial
health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss,
and reactive oxygen species production, culminating in necrotic cell death.
We also investigated the role of autophagy, a controlled cellular self-digestion process, in regulating
survival of neurons exposed to olanzapine. Olanzapine induced autophagy in human
SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of
autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression
of autophagy-related (ATG) genes ATG4B, ATG5, andATG7. The production of reactive oxygen
species, but not modulation of the main autophagy repressor mTOR or its upstream regulators
AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy.
Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage,
and the autophagic clearance of dysfunctional mitochondria [2] was confirmed by electron microscopy,
colocalization of autophagosome associated MAP1LC3B (LC3B) and mitochondria,
and mitochondrial association with the autophagic cargo receptor p62. While olanzapine-triggered
mitochondrial damage was not visibly toxic to SH-SY5Ycells, their death was readily initiated
upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown
of BECN1 and LC3B. The treatment of mice with olanzapine increased the brain levels of
LC3B-II and mRNA encoding Atg4b,Atg5, Atg7, Atg12, Gabarap, and Becn1.
These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal
mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action
of the drug.
References;
1. Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death.
Mitochondrion10: 662-669.
2. Wang K, Klionsky DJ(2011) Mitochondrial removal by autophagy. Autophagy 7:297-300.",
publisher = "The Mitochondrial Physiology Society",
journal = "Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia",
title = "Dual role of mitochondrial damage in anticancer and antipsychotic treatment",
pages = "29-29",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6353"
}
Misirkić Marjanović, M., Vučićević, L., Kosić, M., Paunović, V., Arsikin-Csordas, K., Ristić, B., Marić, N., Bošnjak, M., Zogović, N., Mandić, M., Kravić-Stevović, T., Martinović, T., Ćirić, D., Mirčić, A., Petričević, S., Bumbaširević, V., Harhaji-Trajković, L.,& Trajković, V.. (2019). Dual role of mitochondrial damage in anticancer and antipsychotic treatment. in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia
The Mitochondrial Physiology Society., 29-29.
https://hdl.handle.net/21.15107/rcub_ibiss_6353
Misirkić Marjanović M, Vučićević L, Kosić M, Paunović V, Arsikin-Csordas K, Ristić B, Marić N, Bošnjak M, Zogović N, Mandić M, Kravić-Stevović T, Martinović T, Ćirić D, Mirčić A, Petričević S, Bumbaširević V, Harhaji-Trajković L, Trajković V. Dual role of mitochondrial damage in anticancer and antipsychotic treatment. in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia. 2019;:29-29.
https://hdl.handle.net/21.15107/rcub_ibiss_6353 .
Misirkić Marjanović, Maja, Vučićević, Ljubica, Kosić, Milica, Paunović, Verica, Arsikin-Csordas, Katarina, Ristić, Biljana, Marić, Nađa, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Kravić-Stevović, Tamara, Martinović, Tamara, Ćirić, Darko, Mirčić, Aleksandar, Petričević, Saša, Bumbaširević, Vladimir, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Dual role of mitochondrial damage in anticancer and antipsychotic treatment" in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia (2019):29-29,
https://hdl.handle.net/21.15107/rcub_ibiss_6353 .