Mirčić, Aleksandar

Link to this page

Authority KeyName Variants
3ed36fd2-daf2-49f3-b738-9c93f6a624fa
  • Mirčić, Aleksandar (11)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200110 (University of Belgrade, Faculty of Medicine) The role of autophagy in regulation of cancer cell death
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200007 (University of Belgrade, Institute for Biological Research 'Siniša Stanković') Modulation of intracellular energy balance-controlling signalling pathways in therapy of cancer and neuro-immuno-endocrine disorders
Structural and biochemical characteristics of synaptic plasticity alterations in psychiatric disorders Antioxidative defense, differentiation and regeneration potential of tissue specific mesenchymal stem cells during ageing
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry) UNESCO L'OREAL national scholarship program "For Women in Science", Grant No. 403F
University of Defence in Belgrade Medical Faculty of the Military Medical Academy (#MFVMA/11/16-18 “Cerebral ischemia - damaging mechanisms and neuroprotection”).

Author's Bibliography

Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death

Ristić, Biljana; Krunić, Matija; Paunović, Verica; Bošnjak, Mihajlo; Tovilović-Kovačević, Gordana; Zogović, Nevena; Mirčić, Aleksandar; Vuković, Irena; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 2023)

TY  - CONF
AU  - Ristić, Biljana
AU  - Krunić, Matija
AU  - Paunović, Verica
AU  - Bošnjak, Mihajlo
AU  - Tovilović-Kovačević, Gordana
AU  - Zogović, Nevena
AU  - Mirčić, Aleksandar
AU  - Vuković, Irena
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2023
UR  - https://indico.bio.bg.ac.rs/event/4/attachments/6/492/Abstract%20Book-CoMBoS2-TMB.pdf
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6284
AB  - Introduction: We examined the molecular mechanisms of graphene quantum dot (GQD)- mediated
protection of SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP).
Methods: GQD was produced by electrochemical oxidation of graphite and characterized by AFM, UVVIS and FTIR spectroscopy. The antioxidant activity of GQD in cell-free conditions was assessed by DPPH,
NBT and EPR analysis. The neuroprotective potential of GQD was determined by cell viability assays MTT,
CV. Flow cytometry was used to assess markers of apoptosis and GQD scavenging of intracellular
ROS/RNS as well. Cellular internalization of GQD was determined using TEM.
Results: GQD prevented SNP-induced apoptosis, caspase activation and mitochondrial depolarization
in neuroblastoma cells. Although GQD diminished the NO levelsin SNP-treated cells, NO scavengers displayed only a slight protection. GQD significantly protected SH-SY5Y cells from neurotoxicity of lightexhausted SNP, incapable of producing NO, implying that protective mechanism is independent of
NO-scavenging. GQD reduced SNP-triggered increase in intracellular levels of ROS, particularly •OH, O2•−
in cells and cell-free condition. Nonselective antioxidants, •OH scavengers and iron chelators, mimicked
GQD cytoprotection, indicating that GQD protect cells by neutralizing •OH generated in the Fenton reaction. Cellular GQD internalization wasrequired for optimal protection since the removal of extracellular GQD by extensive washing partly diminished their protective effect, suggesting that GQD exerted
neuroprotective effect intra- and extracellularly.
Conclusion: By demonstrating that GQD protect neuroblastoma cells from SNP-induced apoptosis by
•OH/NO scavenging, our results suggest that GQD could be valuable candidates for treatment of neurodegenerative diseases associated with oxidative/nitrosative stress.
PB  - Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade
C3  - Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia
T1  - Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death
SP  - 27
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6284
ER  - 
@conference{
author = "Ristić, Biljana and Krunić, Matija and Paunović, Verica and Bošnjak, Mihajlo and Tovilović-Kovačević, Gordana and Zogović, Nevena and Mirčić, Aleksandar and Vuković, Irena and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2023",
abstract = "Introduction: We examined the molecular mechanisms of graphene quantum dot (GQD)- mediated
protection of SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP).
Methods: GQD was produced by electrochemical oxidation of graphite and characterized by AFM, UVVIS and FTIR spectroscopy. The antioxidant activity of GQD in cell-free conditions was assessed by DPPH,
NBT and EPR analysis. The neuroprotective potential of GQD was determined by cell viability assays MTT,
CV. Flow cytometry was used to assess markers of apoptosis and GQD scavenging of intracellular
ROS/RNS as well. Cellular internalization of GQD was determined using TEM.
Results: GQD prevented SNP-induced apoptosis, caspase activation and mitochondrial depolarization
in neuroblastoma cells. Although GQD diminished the NO levelsin SNP-treated cells, NO scavengers displayed only a slight protection. GQD significantly protected SH-SY5Y cells from neurotoxicity of lightexhausted SNP, incapable of producing NO, implying that protective mechanism is independent of
NO-scavenging. GQD reduced SNP-triggered increase in intracellular levels of ROS, particularly •OH, O2•−
in cells and cell-free condition. Nonselective antioxidants, •OH scavengers and iron chelators, mimicked
GQD cytoprotection, indicating that GQD protect cells by neutralizing •OH generated in the Fenton reaction. Cellular GQD internalization wasrequired for optimal protection since the removal of extracellular GQD by extensive washing partly diminished their protective effect, suggesting that GQD exerted
neuroprotective effect intra- and extracellularly.
Conclusion: By demonstrating that GQD protect neuroblastoma cells from SNP-induced apoptosis by
•OH/NO scavenging, our results suggest that GQD could be valuable candidates for treatment of neurodegenerative diseases associated with oxidative/nitrosative stress.",
publisher = "Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade",
journal = "Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia",
title = "Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death",
pages = "27",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6284"
}
Ristić, B., Krunić, M., Paunović, V., Bošnjak, M., Tovilović-Kovačević, G., Zogović, N., Mirčić, A., Vuković, I., Harhaji-Trajković, L.,& Trajković, V.. (2023). Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death. in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia
Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade., 27.
https://hdl.handle.net/21.15107/rcub_ibiss_6284
Ristić B, Krunić M, Paunović V, Bošnjak M, Tovilović-Kovačević G, Zogović N, Mirčić A, Vuković I, Harhaji-Trajković L, Trajković V. Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death. in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia. 2023;:27.
https://hdl.handle.net/21.15107/rcub_ibiss_6284 .
Ristić, Biljana, Krunić, Matija, Paunović, Verica, Bošnjak, Mihajlo, Tovilović-Kovačević, Gordana, Zogović, Nevena, Mirčić, Aleksandar, Vuković, Irena, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death" in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia (2023):27,
https://hdl.handle.net/21.15107/rcub_ibiss_6284 .

Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells

Despotović, Ana; Mirčić, Aleksandar; Misirlić-Denčić, Sonja; Harhaji-Trajković, Ljubica; Trajković, Vladimir; Zogović, Nevena; Tovilović-Kovačević, Gordana

(London: Hindawi Ltd., 2022)

TY  - JOUR
AU  - Despotović, Ana
AU  - Mirčić, Aleksandar
AU  - Misirlić-Denčić, Sonja
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
AU  - Zogović, Nevena
AU  - Tovilović-Kovačević, Gordana
PY  - 2022
UR  - https://www.hindawi.com/journals/omcl/2022/2998132/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5078
AB  - We investigated the ability of the ascorbic acid (AA) and menadione (MD) combination, the well-known reactive oxidative species- (ROS-) generating system, to induce autophagy in human U251 glioblastoma cells. A combination of AA and MD (AA+MD), in contrast to single treatments, induced necrosis-like cell death mediated by mitochondrial membrane depolarization and extremely high oxidative stress. AA+MD, and to a lesser extent MD alone, prompted the appearance of autophagy markers such as autophagic vacuoles, autophagosome-associated LC3-II protein, degradation of p62, and increased expression of beclin-1. While both MD and AA+MD increased phosphorylation of AMP-activated protein kinase (AMPK), the well-known autophagy promotor, only the combined treatment affected its downstream targets, mechanistic target of rapamycin complex 1 (mTORC1), Unc 51-like kinase 1 (ULK1), and increased the expression of several autophagy-related genes. Antioxidant N-acetyl cysteine reduced both MD- and AA+MD-induced autophagy, as well as changes in AMPK/mTORC1/ULK1 activity and cell death triggered by the drug combination. Pharmacological and genetic autophagy silencing abolished the toxicity of AA+MD, while autophagy upregulation enhanced the toxicity of both AA+MD and MD. Therefore, by upregulating oxidative stress, inhibiting mTORC1, and activating ULK1, AA converts MD-induced AMPK-dependent autophagy from nontoxic to cytotoxic. These results suggest that AA+MD or MD treatment in combination with autophagy inducers could be further investigated as a novel approach for glioblastoma therapy.
PB  - London: Hindawi Ltd.
T2  - Oxidative Medicine and Cellular Longevity
T1  - Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells
VL  - 2022
DO  - 10.1155/2022/2998132
SP  - 2998132
ER  - 
@article{
author = "Despotović, Ana and Mirčić, Aleksandar and Misirlić-Denčić, Sonja and Harhaji-Trajković, Ljubica and Trajković, Vladimir and Zogović, Nevena and Tovilović-Kovačević, Gordana",
year = "2022",
abstract = "We investigated the ability of the ascorbic acid (AA) and menadione (MD) combination, the well-known reactive oxidative species- (ROS-) generating system, to induce autophagy in human U251 glioblastoma cells. A combination of AA and MD (AA+MD), in contrast to single treatments, induced necrosis-like cell death mediated by mitochondrial membrane depolarization and extremely high oxidative stress. AA+MD, and to a lesser extent MD alone, prompted the appearance of autophagy markers such as autophagic vacuoles, autophagosome-associated LC3-II protein, degradation of p62, and increased expression of beclin-1. While both MD and AA+MD increased phosphorylation of AMP-activated protein kinase (AMPK), the well-known autophagy promotor, only the combined treatment affected its downstream targets, mechanistic target of rapamycin complex 1 (mTORC1), Unc 51-like kinase 1 (ULK1), and increased the expression of several autophagy-related genes. Antioxidant N-acetyl cysteine reduced both MD- and AA+MD-induced autophagy, as well as changes in AMPK/mTORC1/ULK1 activity and cell death triggered by the drug combination. Pharmacological and genetic autophagy silencing abolished the toxicity of AA+MD, while autophagy upregulation enhanced the toxicity of both AA+MD and MD. Therefore, by upregulating oxidative stress, inhibiting mTORC1, and activating ULK1, AA converts MD-induced AMPK-dependent autophagy from nontoxic to cytotoxic. These results suggest that AA+MD or MD treatment in combination with autophagy inducers could be further investigated as a novel approach for glioblastoma therapy.",
publisher = "London: Hindawi Ltd.",
journal = "Oxidative Medicine and Cellular Longevity",
title = "Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells",
volume = "2022",
doi = "10.1155/2022/2998132",
pages = "2998132"
}
Despotović, A., Mirčić, A., Misirlić-Denčić, S., Harhaji-Trajković, L., Trajković, V., Zogović, N.,& Tovilović-Kovačević, G.. (2022). Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells. in Oxidative Medicine and Cellular Longevity
London: Hindawi Ltd.., 2022, 2998132.
https://doi.org/10.1155/2022/2998132
Despotović A, Mirčić A, Misirlić-Denčić S, Harhaji-Trajković L, Trajković V, Zogović N, Tovilović-Kovačević G. Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells. in Oxidative Medicine and Cellular Longevity. 2022;2022:2998132.
doi:10.1155/2022/2998132 .
Despotović, Ana, Mirčić, Aleksandar, Misirlić-Denčić, Sonja, Harhaji-Trajković, Ljubica, Trajković, Vladimir, Zogović, Nevena, Tovilović-Kovačević, Gordana, "Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells" in Oxidative Medicine and Cellular Longevity, 2022 (2022):2998132,
https://doi.org/10.1155/2022/2998132 . .
2
12
12

Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression

Kosić, Milica; Paunović, Verica; Ristić, Biljana; Mirčić, Aleksandar; Bošnjak, Mihajlo; Stevanović, Danijela; Mandić, Miloš; Stamenković, Marina; Janjetović, Kristina; Vučićević, Ljubica; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Elsevier Inc., 2021)

TY  - CONF
AU  - Kosić, Milica
AU  - Paunović, Verica
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Bošnjak, Mihajlo
AU  - Stevanović, Danijela
AU  - Mandić, Miloš
AU  - Stamenković, Marina
AU  - Janjetović, Kristina
AU  - Vučićević, Ljubica
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2021
UR  - https://www.sfrre2021belgrade.rs/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4727
AB  - There is no effective therapy for melanoma, a malignant tumor of melanocytes with an
increasing incidence. High energy demands of melanoma cells are predominantly satisfied by
aerobic glycolysis. When glycolysis is suppressed, these metabolically plastic cells switch to
oxidative phosphorylation. The aim of this study was to investigate the antimelanoma effects of
simultaneous inhibition of glycolysis by 2-deoxy-D-glucose (2DG) and oxidative phosphorylation
by rotenone (ROT). 2DG synergized with ROT in inducing death of B16 melanoma, but not
primary mesenchymal cells. Combined treatment stimulated caspase activation, but not PARP
cleavage and DNA fragmentation. Disintegration of plasma membrane and inability of caspase
inhibitors and necrostatin to suppress toxicity of 2DG/ROT implied that combined treatment
induced necrosis, rather than apoptosis and necroptosis. 2DG/ROT stimulated ATP depletion,
mitochondrial superoxide production, and mitochondrial swelling, but not depolarization
of mitochondria. 2DG/ROT-induced toxicity was suppressed by antioxidant α-tocopherol,
but not mitochondrial depolarization inhibitor cyclosporine. Combined treatment induced
the translocation of hexokinase II, a suppressor of voltage-dependent anion channel (VDAC)
opening, and cytochrome c from mitochondria in the cytoplasm, while VDAC opening inhibitor
DIDS suppressed 2DG/ROT toxicity. Our results suggest that 2DG/ROT treatment stimulates
mitochondrial swelling, release of hexokinase II and subsequent opening of VDAC in the outer
mitochondrial membrane. These events allow cytochrome c to exit and activate caspases, which
are unable to stimulate PARP and consequent DNA fragmentation in the energy-depleted state.
On the other hand, superoxide synthesized in mitochondria upon 2DG/ROT treatment also exits
through VDAC and triggers energy-independent necrosis. Simultaneous inhibition of glycolysis
and oxidative phosphorylation appears to be promising strategy for further development of
novel anticancer therapeutics.
PB  - Elsevier Inc.
C3  - Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
T1  - Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression
DO  - 10.1016/j.freeradbiomed.2021.08.205
SP  - 203
ER  - 
@conference{
author = "Kosić, Milica and Paunović, Verica and Ristić, Biljana and Mirčić, Aleksandar and Bošnjak, Mihajlo and Stevanović, Danijela and Mandić, Miloš and Stamenković, Marina and Janjetović, Kristina and Vučićević, Ljubica and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2021",
abstract = "There is no effective therapy for melanoma, a malignant tumor of melanocytes with an
increasing incidence. High energy demands of melanoma cells are predominantly satisfied by
aerobic glycolysis. When glycolysis is suppressed, these metabolically plastic cells switch to
oxidative phosphorylation. The aim of this study was to investigate the antimelanoma effects of
simultaneous inhibition of glycolysis by 2-deoxy-D-glucose (2DG) and oxidative phosphorylation
by rotenone (ROT). 2DG synergized with ROT in inducing death of B16 melanoma, but not
primary mesenchymal cells. Combined treatment stimulated caspase activation, but not PARP
cleavage and DNA fragmentation. Disintegration of plasma membrane and inability of caspase
inhibitors and necrostatin to suppress toxicity of 2DG/ROT implied that combined treatment
induced necrosis, rather than apoptosis and necroptosis. 2DG/ROT stimulated ATP depletion,
mitochondrial superoxide production, and mitochondrial swelling, but not depolarization
of mitochondria. 2DG/ROT-induced toxicity was suppressed by antioxidant α-tocopherol,
but not mitochondrial depolarization inhibitor cyclosporine. Combined treatment induced
the translocation of hexokinase II, a suppressor of voltage-dependent anion channel (VDAC)
opening, and cytochrome c from mitochondria in the cytoplasm, while VDAC opening inhibitor
DIDS suppressed 2DG/ROT toxicity. Our results suggest that 2DG/ROT treatment stimulates
mitochondrial swelling, release of hexokinase II and subsequent opening of VDAC in the outer
mitochondrial membrane. These events allow cytochrome c to exit and activate caspases, which
are unable to stimulate PARP and consequent DNA fragmentation in the energy-depleted state.
On the other hand, superoxide synthesized in mitochondria upon 2DG/ROT treatment also exits
through VDAC and triggers energy-independent necrosis. Simultaneous inhibition of glycolysis
and oxidative phosphorylation appears to be promising strategy for further development of
novel anticancer therapeutics.",
publisher = "Elsevier Inc.",
journal = "Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia",
title = "Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression",
doi = "10.1016/j.freeradbiomed.2021.08.205",
pages = "203"
}
Kosić, M., Paunović, V., Ristić, B., Mirčić, A., Bošnjak, M., Stevanović, D., Mandić, M., Stamenković, M., Janjetović, K., Vučićević, L., Trajković, V.,& Harhaji-Trajković, L.. (2021). Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
Elsevier Inc.., 203.
https://doi.org/10.1016/j.freeradbiomed.2021.08.205
Kosić M, Paunović V, Ristić B, Mirčić A, Bošnjak M, Stevanović D, Mandić M, Stamenković M, Janjetović K, Vučićević L, Trajković V, Harhaji-Trajković L. Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia. 2021;:203.
doi:10.1016/j.freeradbiomed.2021.08.205 .
Kosić, Milica, Paunović, Verica, Ristić, Biljana, Mirčić, Aleksandar, Bošnjak, Mihajlo, Stevanović, Danijela, Mandić, Miloš, Stamenković, Marina, Janjetović, Kristina, Vučićević, Ljubica, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression" in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia (2021):203,
https://doi.org/10.1016/j.freeradbiomed.2021.08.205 . .

3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK

Paunović, Verica; Kosić, Milica; Ristić, Biljana; Bošnjak, Mihajlo; Stevanović, Danijela; Misirkić Marjanović, Maja; Mandić, Miloš; Mirčić, Aleksandar; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Elsevier Inc., 2021)

TY  - CONF
AU  - Paunović, Verica
AU  - Kosić, Milica
AU  - Ristić, Biljana
AU  - Bošnjak, Mihajlo
AU  - Stevanović, Danijela
AU  - Misirkić Marjanović, Maja
AU  - Mandić, Miloš
AU  - Mirčić, Aleksandar
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2021
UR  - https://www.sfrre2021belgrade.rs/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4728
AB  - We investigated the effect of 3-methyladenine (3MA), a class III phosphatidylinositol 3-
kinase (PI3K)-blocking autophagy inhibitor, on the melanoma cell death induced by simultaneous
inhibition of glycolysis by 2-deoxyglucose (2DG) and mitochondrial respiration by rotenone. We
have elsewhere shown that 2DG/rotenone caused oxidative stress, ATP depletion, swelling
of mitochondria, ultimately leading to necrosis. Energy stress is known to induce autophagy,
a tightly regulated self-degradation process, which by recycling damaged organelles and
macromolecules provides building blocks and energy. However, 2DG/rotenone did not induce
proautophagic beclin-1 expression and autophagic flux in melanoma cells despite activation
of AMP-activated protein kinase (AMPK) and subsequent inhibition of mammalian target of
rapamycin complex 1 (mTORC1). 3MA, but not autophagy inhibition with other PI3K and lysosomal
inhibitors, attenuated 2DG/rotenone-induced mitochondrial damage, oxidative stress, ATP
depletion, and cell death. 3MA increased both AMPK and mTORC1 activation in energy stressed
cells, but neither AMPK nor mTORC1 inhibition reduced its cytoprotective effect. 3MA reduced
superoxide generation and c-Jun N-terminal kinase (JNK) activation, and both antioxidant and
JNK blockade mimicked its protective activity. Therefore, 3MA prevents energy stress-triggered
melanoma cell death through autophagy-independent decrease of oxidative stress and JNK
activation. Our results warrant caution in use of 3MA as an autophagy inhibitor.
PB  - Elsevier Inc.
C3  - Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
T1  - 3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK
DO  - 10.1016/j.freeradbiomed.2021.08.223
SP  - 221
ER  - 
@conference{
author = "Paunović, Verica and Kosić, Milica and Ristić, Biljana and Bošnjak, Mihajlo and Stevanović, Danijela and Misirkić Marjanović, Maja and Mandić, Miloš and Mirčić, Aleksandar and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2021",
abstract = "We investigated the effect of 3-methyladenine (3MA), a class III phosphatidylinositol 3-
kinase (PI3K)-blocking autophagy inhibitor, on the melanoma cell death induced by simultaneous
inhibition of glycolysis by 2-deoxyglucose (2DG) and mitochondrial respiration by rotenone. We
have elsewhere shown that 2DG/rotenone caused oxidative stress, ATP depletion, swelling
of mitochondria, ultimately leading to necrosis. Energy stress is known to induce autophagy,
a tightly regulated self-degradation process, which by recycling damaged organelles and
macromolecules provides building blocks and energy. However, 2DG/rotenone did not induce
proautophagic beclin-1 expression and autophagic flux in melanoma cells despite activation
of AMP-activated protein kinase (AMPK) and subsequent inhibition of mammalian target of
rapamycin complex 1 (mTORC1). 3MA, but not autophagy inhibition with other PI3K and lysosomal
inhibitors, attenuated 2DG/rotenone-induced mitochondrial damage, oxidative stress, ATP
depletion, and cell death. 3MA increased both AMPK and mTORC1 activation in energy stressed
cells, but neither AMPK nor mTORC1 inhibition reduced its cytoprotective effect. 3MA reduced
superoxide generation and c-Jun N-terminal kinase (JNK) activation, and both antioxidant and
JNK blockade mimicked its protective activity. Therefore, 3MA prevents energy stress-triggered
melanoma cell death through autophagy-independent decrease of oxidative stress and JNK
activation. Our results warrant caution in use of 3MA as an autophagy inhibitor.",
publisher = "Elsevier Inc.",
journal = "Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia",
title = "3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK",
doi = "10.1016/j.freeradbiomed.2021.08.223",
pages = "221"
}
Paunović, V., Kosić, M., Ristić, B., Bošnjak, M., Stevanović, D., Misirkić Marjanović, M., Mandić, M., Mirčić, A., Trajković, V.,& Harhaji-Trajković, L.. (2021). 3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
Elsevier Inc.., 221.
https://doi.org/10.1016/j.freeradbiomed.2021.08.223
Paunović V, Kosić M, Ristić B, Bošnjak M, Stevanović D, Misirkić Marjanović M, Mandić M, Mirčić A, Trajković V, Harhaji-Trajković L. 3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia. 2021;:221.
doi:10.1016/j.freeradbiomed.2021.08.223 .
Paunović, Verica, Kosić, Milica, Ristić, Biljana, Bošnjak, Mihajlo, Stevanović, Danijela, Misirkić Marjanović, Maja, Mandić, Miloš, Mirčić, Aleksandar, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK" in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia (2021):221,
https://doi.org/10.1016/j.freeradbiomed.2021.08.223 . .

Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging

Ristić, Biljana; Krunić, Matija; Bošnjak, Mihajlo; Paunović, Verica; Zogović, Nevena; Tovilović-Kovačević, Gordana; Mirčić, Aleksandar; Misirkić Marjanović, Maja; Vučićević, Ljubica; Kosić, Milica; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Elsevier Inc., 2021)

TY  - CONF
AU  - Ristić, Biljana
AU  - Krunić, Matija
AU  - Bošnjak, Mihajlo
AU  - Paunović, Verica
AU  - Zogović, Nevena
AU  - Tovilović-Kovačević, Gordana
AU  - Mirčić, Aleksandar
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Kosić, Milica
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2021
UR  - https://www.sfrre2021belgrade.rs/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4726
AB  - We here investigated the ability of graphene quantum dots (GQD), graphene nanoparticles with antioxidative capacity, to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). Although GQD diminished the levels of nitric oxide (NO) in both cell free condition and SNPexposed cells, NO scavengers (PTIO and uric acid), displayed only slight protection from SNP, suggesting that NO scavenging was not the main protective mechanism of GQD. Moreover, GQD significantly protected SH-SY5Y cells from neurotoxicity of light exhausted SNP, incapable of producing NO, implying the existence of protective mechanism independent of NO-scavenging. GQD lowered the increase in the concentration of hydroxyl radical (•OH) and superoxide anion (O2•−) caused by SNP both in the cell-free condition and inside cells, as well as ensuing oxidative stress and lipid peroxidation. Nonspecific antioxidants (glutathione, NAC), •OH scavenger (DMSO), and iron chelators (DTPA, BPDSA), but not superoxide dismutase, mimicked the cytoprotective activity of GQD, suggesting that GQD protect cells by neutralizing •OH generated in the presence of iron released from SNP. GQD were readily internalized by SH-SY5Y cells, while extensive washing of cells pre-incubated with GQD only partly reduced their protective activity, suggesting that GQD exerted neuroprotective effect both intra- and extracellularly. By demonstrating that GQD protect neuroblastoma cells from SNP-induced neurotoxicity by both extracellular •OH/NO scavenging and some unknown intracellular mechanism, our results suggest that GQD could be valuable candidate for treatment of neurodegenerative and neuroinflammatory disorders associated with oxidative/nitrosative stress.
PB  - Elsevier Inc.
C3  - Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
T1  - Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging
DO  - 10.1016/j.freeradbiomed.2021.08.167
SP  - 165
ER  - 
@conference{
author = "Ristić, Biljana and Krunić, Matija and Bošnjak, Mihajlo and Paunović, Verica and Zogović, Nevena and Tovilović-Kovačević, Gordana and Mirčić, Aleksandar and Misirkić Marjanović, Maja and Vučićević, Ljubica and Kosić, Milica and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2021",
abstract = "We here investigated the ability of graphene quantum dots (GQD), graphene nanoparticles with antioxidative capacity, to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). Although GQD diminished the levels of nitric oxide (NO) in both cell free condition and SNPexposed cells, NO scavengers (PTIO and uric acid), displayed only slight protection from SNP, suggesting that NO scavenging was not the main protective mechanism of GQD. Moreover, GQD significantly protected SH-SY5Y cells from neurotoxicity of light exhausted SNP, incapable of producing NO, implying the existence of protective mechanism independent of NO-scavenging. GQD lowered the increase in the concentration of hydroxyl radical (•OH) and superoxide anion (O2•−) caused by SNP both in the cell-free condition and inside cells, as well as ensuing oxidative stress and lipid peroxidation. Nonspecific antioxidants (glutathione, NAC), •OH scavenger (DMSO), and iron chelators (DTPA, BPDSA), but not superoxide dismutase, mimicked the cytoprotective activity of GQD, suggesting that GQD protect cells by neutralizing •OH generated in the presence of iron released from SNP. GQD were readily internalized by SH-SY5Y cells, while extensive washing of cells pre-incubated with GQD only partly reduced their protective activity, suggesting that GQD exerted neuroprotective effect both intra- and extracellularly. By demonstrating that GQD protect neuroblastoma cells from SNP-induced neurotoxicity by both extracellular •OH/NO scavenging and some unknown intracellular mechanism, our results suggest that GQD could be valuable candidate for treatment of neurodegenerative and neuroinflammatory disorders associated with oxidative/nitrosative stress.",
publisher = "Elsevier Inc.",
journal = "Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia",
title = "Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging",
doi = "10.1016/j.freeradbiomed.2021.08.167",
pages = "165"
}
Ristić, B., Krunić, M., Bošnjak, M., Paunović, V., Zogović, N., Tovilović-Kovačević, G., Mirčić, A., Misirkić Marjanović, M., Vučićević, L., Kosić, M., Trajković, V.,& Harhaji-Trajković, L.. (2021). Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
Elsevier Inc.., 165.
https://doi.org/10.1016/j.freeradbiomed.2021.08.167
Ristić B, Krunić M, Bošnjak M, Paunović V, Zogović N, Tovilović-Kovačević G, Mirčić A, Misirkić Marjanović M, Vučićević L, Kosić M, Trajković V, Harhaji-Trajković L. Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia. 2021;:165.
doi:10.1016/j.freeradbiomed.2021.08.167 .
Ristić, Biljana, Krunić, Matija, Bošnjak, Mihajlo, Paunović, Verica, Zogović, Nevena, Tovilović-Kovačević, Gordana, Mirčić, Aleksandar, Misirkić Marjanović, Maja, Vučićević, Ljubica, Kosić, Milica, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging" in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia (2021):165,
https://doi.org/10.1016/j.freeradbiomed.2021.08.167 . .

Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.

Krunić, Matija; Ristić, Biljana; Bošnjak, Mihajlo; Paunović, Verica; Tovilović-Kovačević, Gordana; Zogović, Nevena; Mirčić, Aleksandar; Marković, Zoran; Todorović-Marković, Biljana; Jovanović, Svetlana; Kleut, Duška; Mojović, Miloš; Nakarada, Đura; Marković, Olivera; Vuković, Irena; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(Elsevier Inc., 2021)

TY  - JOUR
AU  - Krunić, Matija
AU  - Ristić, Biljana
AU  - Bošnjak, Mihajlo
AU  - Paunović, Verica
AU  - Tovilović-Kovačević, Gordana
AU  - Zogović, Nevena
AU  - Mirčić, Aleksandar
AU  - Marković, Zoran
AU  - Todorović-Marković, Biljana
AU  - Jovanović, Svetlana
AU  - Kleut, Duška
AU  - Mojović, Miloš
AU  - Nakarada, Đura
AU  - Marković, Olivera
AU  - Vuković, Irena
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2021
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0891584921007760
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4655
AB  - We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•-), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagy-limiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.
PB  - Elsevier Inc.
T2  - Free Radical Biology and Medicine
T1  - Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.
VL  - 177
DO  - 10.1016/j.freeradbiomed.2021.10.025
SP  - 167
EP  - 180
ER  - 
@article{
author = "Krunić, Matija and Ristić, Biljana and Bošnjak, Mihajlo and Paunović, Verica and Tovilović-Kovačević, Gordana and Zogović, Nevena and Mirčić, Aleksandar and Marković, Zoran and Todorović-Marković, Biljana and Jovanović, Svetlana and Kleut, Duška and Mojović, Miloš and Nakarada, Đura and Marković, Olivera and Vuković, Irena and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2021",
abstract = "We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•-), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagy-limiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.",
publisher = "Elsevier Inc.",
journal = "Free Radical Biology and Medicine",
title = "Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.",
volume = "177",
doi = "10.1016/j.freeradbiomed.2021.10.025",
pages = "167-180"
}
Krunić, M., Ristić, B., Bošnjak, M., Paunović, V., Tovilović-Kovačević, G., Zogović, N., Mirčić, A., Marković, Z., Todorović-Marković, B., Jovanović, S., Kleut, D., Mojović, M., Nakarada, Đ., Marković, O., Vuković, I., Harhaji-Trajković, L.,& Trajković, V.. (2021). Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.. in Free Radical Biology and Medicine
Elsevier Inc.., 177, 167-180.
https://doi.org/10.1016/j.freeradbiomed.2021.10.025
Krunić M, Ristić B, Bošnjak M, Paunović V, Tovilović-Kovačević G, Zogović N, Mirčić A, Marković Z, Todorović-Marković B, Jovanović S, Kleut D, Mojović M, Nakarada Đ, Marković O, Vuković I, Harhaji-Trajković L, Trajković V. Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death.. in Free Radical Biology and Medicine. 2021;177:167-180.
doi:10.1016/j.freeradbiomed.2021.10.025 .
Krunić, Matija, Ristić, Biljana, Bošnjak, Mihajlo, Paunović, Verica, Tovilović-Kovačević, Gordana, Zogović, Nevena, Mirčić, Aleksandar, Marković, Zoran, Todorović-Marković, Biljana, Jovanović, Svetlana, Kleut, Duška, Mojović, Miloš, Nakarada, Đura, Marković, Olivera, Vuković, Irena, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death." in Free Radical Biology and Medicine, 177 (2021):167-180,
https://doi.org/10.1016/j.freeradbiomed.2021.10.025 . .
10
7

3-Methyladenine prevents energy stress-induced necrotic death of melanoma cells through autophagy-independent mechanisms

Kosić, Milica; Paunović, Verica; Ristić, Biljana; Mirčić, Aleksandar; Bošnjak, Mihajlo; Stevanović, Danijela; Kravić-Stevović, Tamara K; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Kyoto : Japanese Pharmacological Society, 2021)

TY  - JOUR
AU  - Kosić, Milica
AU  - Paunović, Verica
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Bošnjak, Mihajlo
AU  - Stevanović, Danijela
AU  - Kravić-Stevović, Tamara K
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S1347861321000591
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4427
AB  - We investigated the effect of 3-methyladenine (3MA), a class III phosphatidylinositol 3-kinase (PI3K)-blocking autophagy inhibitor, on cancer cell death induced by simultaneous inhibition of glycolysis by 2-deoxyglucose (2DG) and mitochondrial respiration by rotenone. 2DG/rotenone reduced ATP levels and increased mitochondrial superoxide production, causing mitochondrial swelling and necrotic death in various cancer cell lines. 2DG/rotenone failed to increase proautophagic beclin-1 and autophagic flux in melanoma cells despite the activation of AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin complex 1 (mTORC1). 3MA, but not autophagy inhibition with other PI3K and lysosomal inhibitors, attenuated 2DG/rotenone-induced mitochondrial damage, oxidative stress, ATP depletion, and cell death, while antioxidant treatment mimicked its protective action. The protection was not mediated by autophagy upregulation via class I PI3K/Akt inhibition, as it was preserved in cells with genetically inhibited autophagy. 3MA increased AMPK and mTORC1 activation in energy-stressed cells, but neither AMPK nor mTORC1 inhibition reduced its cytoprotective effect. 3MA reduced JNK activation, and JNK pharmacological/genetic suppression mimicked its mitochondria-preserving and cytoprotective activity. Therefore, 3MA prevents energy stress-triggered cancer cell death through autophagy-independent mechanisms possibly involving JNK suppression and decrease of oxidative stress. Our results warrant caution when using 3MA as an autophagy inhibitor.
PB  - Kyoto : Japanese Pharmacological Society
T2  - Journal of Pharmacological Sciences
T1  - 3-Methyladenine prevents energy stress-induced necrotic death of melanoma cells through autophagy-independent mechanisms
IS  - 1
VL  - 147
DO  - 10.1016/j.jphs.2021.06.003
SP  - 156
EP  - 167
ER  - 
@article{
author = "Kosić, Milica and Paunović, Verica and Ristić, Biljana and Mirčić, Aleksandar and Bošnjak, Mihajlo and Stevanović, Danijela and Kravić-Stevović, Tamara K and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2021",
abstract = "We investigated the effect of 3-methyladenine (3MA), a class III phosphatidylinositol 3-kinase (PI3K)-blocking autophagy inhibitor, on cancer cell death induced by simultaneous inhibition of glycolysis by 2-deoxyglucose (2DG) and mitochondrial respiration by rotenone. 2DG/rotenone reduced ATP levels and increased mitochondrial superoxide production, causing mitochondrial swelling and necrotic death in various cancer cell lines. 2DG/rotenone failed to increase proautophagic beclin-1 and autophagic flux in melanoma cells despite the activation of AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin complex 1 (mTORC1). 3MA, but not autophagy inhibition with other PI3K and lysosomal inhibitors, attenuated 2DG/rotenone-induced mitochondrial damage, oxidative stress, ATP depletion, and cell death, while antioxidant treatment mimicked its protective action. The protection was not mediated by autophagy upregulation via class I PI3K/Akt inhibition, as it was preserved in cells with genetically inhibited autophagy. 3MA increased AMPK and mTORC1 activation in energy-stressed cells, but neither AMPK nor mTORC1 inhibition reduced its cytoprotective effect. 3MA reduced JNK activation, and JNK pharmacological/genetic suppression mimicked its mitochondria-preserving and cytoprotective activity. Therefore, 3MA prevents energy stress-triggered cancer cell death through autophagy-independent mechanisms possibly involving JNK suppression and decrease of oxidative stress. Our results warrant caution when using 3MA as an autophagy inhibitor.",
publisher = "Kyoto : Japanese Pharmacological Society",
journal = "Journal of Pharmacological Sciences",
title = "3-Methyladenine prevents energy stress-induced necrotic death of melanoma cells through autophagy-independent mechanisms",
number = "1",
volume = "147",
doi = "10.1016/j.jphs.2021.06.003",
pages = "156-167"
}
Kosić, M., Paunović, V., Ristić, B., Mirčić, A., Bošnjak, M., Stevanović, D., Kravić-Stevović, T. K., Trajković, V.,& Harhaji-Trajković, L.. (2021). 3-Methyladenine prevents energy stress-induced necrotic death of melanoma cells through autophagy-independent mechanisms. in Journal of Pharmacological Sciences
Kyoto : Japanese Pharmacological Society., 147(1), 156-167.
https://doi.org/10.1016/j.jphs.2021.06.003
Kosić M, Paunović V, Ristić B, Mirčić A, Bošnjak M, Stevanović D, Kravić-Stevović TK, Trajković V, Harhaji-Trajković L. 3-Methyladenine prevents energy stress-induced necrotic death of melanoma cells through autophagy-independent mechanisms. in Journal of Pharmacological Sciences. 2021;147(1):156-167.
doi:10.1016/j.jphs.2021.06.003 .
Kosić, Milica, Paunović, Verica, Ristić, Biljana, Mirčić, Aleksandar, Bošnjak, Mihajlo, Stevanović, Danijela, Kravić-Stevović, Tamara K, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "3-Methyladenine prevents energy stress-induced necrotic death of melanoma cells through autophagy-independent mechanisms" in Journal of Pharmacological Sciences, 147, no. 1 (2021):156-167,
https://doi.org/10.1016/j.jphs.2021.06.003 . .
1
12
1
9

Dual role of mitochondrial damage in anticancer and antipsychotic treatment

Misirkić Marjanović, Maja; Vučićević, Ljubica; Kosić, Milica; Paunović, Verica; Arsikin-Csordas, Katarina; Ristić, Biljana; Marić, Nađa; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Kravić-Stevović, Tamara; Martinović, Tamara; Ćirić, Darko; Mirčić, Aleksandar; Petričević, Saša; Bumbaširević, Vladimir; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(The Mitochondrial Physiology Society, 2019)

TY  - CONF
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Kosić, Milica
AU  - Paunović, Verica
AU  - Arsikin-Csordas, Katarina
AU  - Ristić, Biljana
AU  - Marić, Nađa
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Kravić-Stevović, Tamara
AU  - Martinović, Tamara
AU  - Ćirić, Darko
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bumbaširević, Vladimir
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2019
UR  - https://www.mitoeagle.org/index.php/MiP2019/MitoEAGLE_Belgrade_RS
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6353
AB  - We analyzed the impact of mitochondrial damage in anticancer action of combining lysosomal
membrane permeabilization (LMP)-inducing agent N- dodecylimidazole (NDI)[1] with
glycolytic inhibitor 2-deoxy-D-glucose (2DG) and in antipsychotic action of atypical antipsychotic
olanzapine.
NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing ATP depletion,
mitochondrial damage and reactive oxygen species production, eventually leading to necrotic
death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma
cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant tocopherol, suggesting
the involvement of LMP and oxidative stress in the observed cytotoxicity. Moreover, the
combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6
mice by inducing necrotic death of tumor cells.
Based on these results, we propose that NDI-triggered LMPcauses initial mitochondrial damage
that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial
health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss,
and reactive oxygen species production, culminating in necrotic cell death.
We also investigated the role of autophagy, a controlled cellular self-digestion process, in regulating
survival of neurons exposed to olanzapine. Olanzapine induced autophagy in human
SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of
autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression
of autophagy-related (ATG) genes ATG4B, ATG5, andATG7. The production of reactive oxygen
species, but not modulation of the main autophagy repressor mTOR or its upstream regulators
AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy.
Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage,
and the autophagic clearance of dysfunctional mitochondria [2] was confirmed by electron microscopy,
colocalization of autophagosome associated MAP1LC3B (LC3B) and mitochondria,
and mitochondrial association with the autophagic cargo receptor p62. While olanzapine-triggered
mitochondrial damage was not visibly toxic to SH-SY5Ycells, their death was readily initiated
upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown
of BECN1 and LC3B. The treatment of mice with olanzapine increased the brain levels of
LC3B-II and mRNA encoding Atg4b,Atg5, Atg7, Atg12, Gabarap, and Becn1.
These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal
mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action
of the drug.
References;
1. Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death.
Mitochondrion10: 662-669.
2. Wang K, Klionsky DJ(2011) Mitochondrial removal by autophagy. Autophagy 7:297-300.
PB  - The Mitochondrial Physiology Society
C3  - Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia
T1  - Dual role of mitochondrial damage in anticancer and antipsychotic treatment
SP  - 29
EP  - 29
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6353
ER  - 
@conference{
author = "Misirkić Marjanović, Maja and Vučićević, Ljubica and Kosić, Milica and Paunović, Verica and Arsikin-Csordas, Katarina and Ristić, Biljana and Marić, Nađa and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Kravić-Stevović, Tamara and Martinović, Tamara and Ćirić, Darko and Mirčić, Aleksandar and Petričević, Saša and Bumbaširević, Vladimir and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2019",
abstract = "We analyzed the impact of mitochondrial damage in anticancer action of combining lysosomal
membrane permeabilization (LMP)-inducing agent N- dodecylimidazole (NDI)[1] with
glycolytic inhibitor 2-deoxy-D-glucose (2DG) and in antipsychotic action of atypical antipsychotic
olanzapine.
NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing ATP depletion,
mitochondrial damage and reactive oxygen species production, eventually leading to necrotic
death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma
cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant tocopherol, suggesting
the involvement of LMP and oxidative stress in the observed cytotoxicity. Moreover, the
combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6
mice by inducing necrotic death of tumor cells.
Based on these results, we propose that NDI-triggered LMPcauses initial mitochondrial damage
that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial
health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss,
and reactive oxygen species production, culminating in necrotic cell death.
We also investigated the role of autophagy, a controlled cellular self-digestion process, in regulating
survival of neurons exposed to olanzapine. Olanzapine induced autophagy in human
SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of
autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression
of autophagy-related (ATG) genes ATG4B, ATG5, andATG7. The production of reactive oxygen
species, but not modulation of the main autophagy repressor mTOR or its upstream regulators
AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy.
Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage,
and the autophagic clearance of dysfunctional mitochondria [2] was confirmed by electron microscopy,
colocalization of autophagosome associated MAP1LC3B (LC3B) and mitochondria,
and mitochondrial association with the autophagic cargo receptor p62. While olanzapine-triggered
mitochondrial damage was not visibly toxic to SH-SY5Ycells, their death was readily initiated
upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown
of BECN1 and LC3B. The treatment of mice with olanzapine increased the brain levels of
LC3B-II and mRNA encoding Atg4b,Atg5, Atg7, Atg12, Gabarap, and Becn1.
These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal
mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action
of the drug.
References;
1. Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death.
Mitochondrion10: 662-669.
2. Wang K, Klionsky DJ(2011) Mitochondrial removal by autophagy. Autophagy 7:297-300.",
publisher = "The Mitochondrial Physiology Society",
journal = "Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia",
title = "Dual role of mitochondrial damage in anticancer and antipsychotic treatment",
pages = "29-29",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6353"
}
Misirkić Marjanović, M., Vučićević, L., Kosić, M., Paunović, V., Arsikin-Csordas, K., Ristić, B., Marić, N., Bošnjak, M., Zogović, N., Mandić, M., Kravić-Stevović, T., Martinović, T., Ćirić, D., Mirčić, A., Petričević, S., Bumbaširević, V., Harhaji-Trajković, L.,& Trajković, V.. (2019). Dual role of mitochondrial damage in anticancer and antipsychotic treatment. in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia
The Mitochondrial Physiology Society., 29-29.
https://hdl.handle.net/21.15107/rcub_ibiss_6353
Misirkić Marjanović M, Vučićević L, Kosić M, Paunović V, Arsikin-Csordas K, Ristić B, Marić N, Bošnjak M, Zogović N, Mandić M, Kravić-Stevović T, Martinović T, Ćirić D, Mirčić A, Petričević S, Bumbaširević V, Harhaji-Trajković L, Trajković V. Dual role of mitochondrial damage in anticancer and antipsychotic treatment. in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia. 2019;:29-29.
https://hdl.handle.net/21.15107/rcub_ibiss_6353 .
Misirkić Marjanović, Maja, Vučićević, Ljubica, Kosić, Milica, Paunović, Verica, Arsikin-Csordas, Katarina, Ristić, Biljana, Marić, Nađa, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Kravić-Stevović, Tamara, Martinović, Tamara, Ćirić, Darko, Mirčić, Aleksandar, Petričević, Saša, Bumbaširević, Vladimir, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Dual role of mitochondrial damage in anticancer and antipsychotic treatment" in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia (2019):29-29,
https://hdl.handle.net/21.15107/rcub_ibiss_6353 .

Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition

Paunović, Verica; Kosić, Milica; Arsikin-Csordas, Katarina; Firestone, Raymond A; Ristić, Biljana; Mirčić, Aleksandar; Petričević, Saša; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Bumbaširević, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Belgrade: Serbian Neuroscience Society, 2019)

TY  - CONF
AU  - Paunović, Verica
AU  - Kosić, Milica
AU  - Arsikin-Csordas, Katarina
AU  - Firestone, Raymond A
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Bumbaširević, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2019
UR  - https://www.fens.org/news-activities/fens-and-societies-calendar/meeting-event/fens-regional-meeting-2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6355
AB  - During malignant transformation cells acquire changes in metabolism, signaling pathways as well as organelle content. The preferential use of aerobic glycolysis (Warburg effect), along with the increased number and volume of lysosomes can be viewed as glioma cells’ Achilles heels. In the present study, we aimed to examine the in vitro antiglioma effects of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG).
NDI-triggered LMP and 2DG-mediated glycolysis block synergistically induced rapid ATP depletion, mitochondrial damage, and reactive oxygen species (ROS) production causing necrotic cell death of U251 glioma cells, but not primary astrocytes. Lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol partially prevented NDI/2DG-induced glioma cell death, thus implying the involvement of LMP and oxidative stress in the observed cytotoxicity. Likewise, LMP-inducing agent chloroquine
showed synergistic cytotoxic effect with 2DG. Similarly, glucose deprivation as well as other glycolytic inhibitors, iodoacetate and sodium fluoride, synergistically cooperated with NDI, further corroborating that the observed antiglioma effect of the NDI/2DG combined treatment was indeed based on LMP and glycolysis block. Based on these results, we concluded that NDI-triggered LMP caused initial mitochondrial damage, which was further increased by 2DG causing the lack of glycolytic ATP
required to maintain mitochondrial health. This created a positive feedback loop of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrosis. Therefore, the combination of glycolysis inhibitors and LMP-inducing agents seems promising antiglioma strategy.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
T1  - Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition
SP  - 213
EP  - 213
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6355
ER  - 
@conference{
author = "Paunović, Verica and Kosić, Milica and Arsikin-Csordas, Katarina and Firestone, Raymond A and Ristić, Biljana and Mirčić, Aleksandar and Petričević, Saša and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Bumbaširević, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2019",
abstract = "During malignant transformation cells acquire changes in metabolism, signaling pathways as well as organelle content. The preferential use of aerobic glycolysis (Warburg effect), along with the increased number and volume of lysosomes can be viewed as glioma cells’ Achilles heels. In the present study, we aimed to examine the in vitro antiglioma effects of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG).
NDI-triggered LMP and 2DG-mediated glycolysis block synergistically induced rapid ATP depletion, mitochondrial damage, and reactive oxygen species (ROS) production causing necrotic cell death of U251 glioma cells, but not primary astrocytes. Lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol partially prevented NDI/2DG-induced glioma cell death, thus implying the involvement of LMP and oxidative stress in the observed cytotoxicity. Likewise, LMP-inducing agent chloroquine
showed synergistic cytotoxic effect with 2DG. Similarly, glucose deprivation as well as other glycolytic inhibitors, iodoacetate and sodium fluoride, synergistically cooperated with NDI, further corroborating that the observed antiglioma effect of the NDI/2DG combined treatment was indeed based on LMP and glycolysis block. Based on these results, we concluded that NDI-triggered LMP caused initial mitochondrial damage, which was further increased by 2DG causing the lack of glycolytic ATP
required to maintain mitochondrial health. This created a positive feedback loop of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrosis. Therefore, the combination of glycolysis inhibitors and LMP-inducing agents seems promising antiglioma strategy.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia",
title = "Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition",
pages = "213-213",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6355"
}
Paunović, V., Kosić, M., Arsikin-Csordas, K., Firestone, R. A., Ristić, B., Mirčić, A., Petričević, S., Bošnjak, M., Zogović, N., Mandić, M., Bumbaširević, V., Trajković, V.,& Harhaji-Trajković, L.. (2019). Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 213-213.
https://hdl.handle.net/21.15107/rcub_ibiss_6355
Paunović V, Kosić M, Arsikin-Csordas K, Firestone RA, Ristić B, Mirčić A, Petričević S, Bošnjak M, Zogović N, Mandić M, Bumbaširević V, Trajković V, Harhaji-Trajković L. Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia. 2019;:213-213.
https://hdl.handle.net/21.15107/rcub_ibiss_6355 .
Paunović, Verica, Kosić, Milica, Arsikin-Csordas, Katarina, Firestone, Raymond A, Ristić, Biljana, Mirčić, Aleksandar, Petričević, Saša, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Bumbaširević, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition" in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia (2019):213-213,
https://hdl.handle.net/21.15107/rcub_ibiss_6355 .

Effects of Vitamin D3 on the NADPH Oxidase and Matrix Metalloproteinase 9 in an Animal Model of Global Cerebral Ischemia.

Velimirović, Milica; Jevtić Dožudić, Gordana; Selaković, Vesna; Stojković, Tihomir; Puškaš, Nela; Zaletel, Ivan; Živković, Milica; Dragutinović, Vesna; Nikolić, Tatjana; Jelenković, Ankica; Đorović, Đorđe; Mirčić, Aleksandar; Petronijević, Nataša D.

(2018)

TY  - JOUR
AU  - Velimirović, Milica
AU  - Jevtić Dožudić, Gordana
AU  - Selaković, Vesna
AU  - Stojković, Tihomir
AU  - Puškaš, Nela
AU  - Zaletel, Ivan
AU  - Živković, Milica
AU  - Dragutinović, Vesna
AU  - Nikolić, Tatjana
AU  - Jelenković, Ankica
AU  - Đorović, Đorđe
AU  - Mirčić, Aleksandar
AU  - Petronijević, Nataša D.
PY  - 2018
UR  - https://www.hindawi.com/journals/omcl/2018/3273654/
UR  - http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5932460
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3167
AB  - Decreased blood flow in the brain leads to a rapid increase in reactive oxygen species (ROS). NADPH oxidase (NOX) is an enzyme family that has the physiological function to produce ROS. NOX2 and NOX4 overexpression is associated with aggravated ischemic injury, while NOX2/4-deficient mice had reduced stroke size. Dysregulation of matrix metalloproteinases (MMPs) contributes to tissue damage. The active form of vitamin D3 expresses neuroprotective, immunomodulatory, and anti-inflammatory effects in the CNS. The present study examines the effects of the vitamin D3 pretreatment on the oxidative stress parameters and the expression of NOX subunits, MMP9, microglial marker Iba1, and vitamin D receptor (VDR), in the cortex and hippocampus of Mongolian gerbils subjected to ten minutes of global cerebral ischemia, followed by 24 hours of reperfusion. The ischemia/reperfusion procedure has induced oxidative stress, changes in the expression of NOX2 subunits and MMP9 in the brain, and increased MMP9 activity in the serum of experimental animals. Pretreatment with vitamin D3 was especially effective on NOX2 subunits, MMP9, and the level of malondialdehyde and superoxide anion. These results outline the significance of the NOX and MMP9 investigation in brain ischemia and the importance of adequate vitamin D supplementation in ameliorating the injury caused by I/R.
T2  - Oxidative medicine and cellular longevity
T1  - Effects of Vitamin D3 on the NADPH Oxidase and Matrix Metalloproteinase 9 in an Animal Model of Global Cerebral Ischemia.
VL  - 2018
DO  - 10.1155/2018/3273654
SP  - 3273654
ER  - 
@article{
author = "Velimirović, Milica and Jevtić Dožudić, Gordana and Selaković, Vesna and Stojković, Tihomir and Puškaš, Nela and Zaletel, Ivan and Živković, Milica and Dragutinović, Vesna and Nikolić, Tatjana and Jelenković, Ankica and Đorović, Đorđe and Mirčić, Aleksandar and Petronijević, Nataša D.",
year = "2018",
abstract = "Decreased blood flow in the brain leads to a rapid increase in reactive oxygen species (ROS). NADPH oxidase (NOX) is an enzyme family that has the physiological function to produce ROS. NOX2 and NOX4 overexpression is associated with aggravated ischemic injury, while NOX2/4-deficient mice had reduced stroke size. Dysregulation of matrix metalloproteinases (MMPs) contributes to tissue damage. The active form of vitamin D3 expresses neuroprotective, immunomodulatory, and anti-inflammatory effects in the CNS. The present study examines the effects of the vitamin D3 pretreatment on the oxidative stress parameters and the expression of NOX subunits, MMP9, microglial marker Iba1, and vitamin D receptor (VDR), in the cortex and hippocampus of Mongolian gerbils subjected to ten minutes of global cerebral ischemia, followed by 24 hours of reperfusion. The ischemia/reperfusion procedure has induced oxidative stress, changes in the expression of NOX2 subunits and MMP9 in the brain, and increased MMP9 activity in the serum of experimental animals. Pretreatment with vitamin D3 was especially effective on NOX2 subunits, MMP9, and the level of malondialdehyde and superoxide anion. These results outline the significance of the NOX and MMP9 investigation in brain ischemia and the importance of adequate vitamin D supplementation in ameliorating the injury caused by I/R.",
journal = "Oxidative medicine and cellular longevity",
title = "Effects of Vitamin D3 on the NADPH Oxidase and Matrix Metalloproteinase 9 in an Animal Model of Global Cerebral Ischemia.",
volume = "2018",
doi = "10.1155/2018/3273654",
pages = "3273654"
}
Velimirović, M., Jevtić Dožudić, G., Selaković, V., Stojković, T., Puškaš, N., Zaletel, I., Živković, M., Dragutinović, V., Nikolić, T., Jelenković, A., Đorović, Đ., Mirčić, A.,& Petronijević, N. D.. (2018). Effects of Vitamin D3 on the NADPH Oxidase and Matrix Metalloproteinase 9 in an Animal Model of Global Cerebral Ischemia.. in Oxidative medicine and cellular longevity, 2018, 3273654.
https://doi.org/10.1155/2018/3273654
Velimirović M, Jevtić Dožudić G, Selaković V, Stojković T, Puškaš N, Zaletel I, Živković M, Dragutinović V, Nikolić T, Jelenković A, Đorović Đ, Mirčić A, Petronijević ND. Effects of Vitamin D3 on the NADPH Oxidase and Matrix Metalloproteinase 9 in an Animal Model of Global Cerebral Ischemia.. in Oxidative medicine and cellular longevity. 2018;2018:3273654.
doi:10.1155/2018/3273654 .
Velimirović, Milica, Jevtić Dožudić, Gordana, Selaković, Vesna, Stojković, Tihomir, Puškaš, Nela, Zaletel, Ivan, Živković, Milica, Dragutinović, Vesna, Nikolić, Tatjana, Jelenković, Ankica, Đorović, Đorđe, Mirčić, Aleksandar, Petronijević, Nataša D., "Effects of Vitamin D3 on the NADPH Oxidase and Matrix Metalloproteinase 9 in an Animal Model of Global Cerebral Ischemia." in Oxidative medicine and cellular longevity, 2018 (2018):3273654,
https://doi.org/10.1155/2018/3273654 . .
36
17
33

Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition

Kosić, Milica; Arsikin-Csordas, Katarina; Paunović, Verica; Firestone, Raymond A; Ristić, Biljana; Mirčić, Aleksandar; Petričević, Saša; Bošnjak, Mihajlo; Zogović, Nevena; Bumbaširević, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology, 2015)

TY  - CONF
AU  - Kosić, Milica
AU  - Arsikin-Csordas, Katarina
AU  - Paunović, Verica
AU  - Firestone, Raymond A
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Bumbaširević, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2015
UR  - http://ssmfrp.edu.rs/article-12
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6356
AB  - We investigated the in vitro anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). Cell viability was measured by MTT and LDH tests. Oxidative stress, lysosomal permeabilization, mitochondrial depolarization and apoptosis/necrosis were analyzed by flow cytometry. Cell morphology was examined by electron microscopy. Intracellular ATP content was measured by bioluminescence assay. NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial
damage, and reactive oxygen species (ROS) production, eventually leading to necrotic death
of U251 glioma cells, but not primary astrocytes. NDI/2DG-induced death of glioma cells was
partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, indicating the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agents chloroquine and NH4Cl also displayed synergistic anticancer effect with 2DG, while glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus confirming that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block, respectively. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive
feedback cycle of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy.
PB  - Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology
C3  - Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia
T1  - Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition
SP  - 71
EP  - 71
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6356
ER  - 
@conference{
author = "Kosić, Milica and Arsikin-Csordas, Katarina and Paunović, Verica and Firestone, Raymond A and Ristić, Biljana and Mirčić, Aleksandar and Petričević, Saša and Bošnjak, Mihajlo and Zogović, Nevena and Bumbaširević, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2015",
abstract = "We investigated the in vitro anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). Cell viability was measured by MTT and LDH tests. Oxidative stress, lysosomal permeabilization, mitochondrial depolarization and apoptosis/necrosis were analyzed by flow cytometry. Cell morphology was examined by electron microscopy. Intracellular ATP content was measured by bioluminescence assay. NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial
damage, and reactive oxygen species (ROS) production, eventually leading to necrotic death
of U251 glioma cells, but not primary astrocytes. NDI/2DG-induced death of glioma cells was
partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, indicating the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agents chloroquine and NH4Cl also displayed synergistic anticancer effect with 2DG, while glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus confirming that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block, respectively. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive
feedback cycle of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy.",
publisher = "Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology",
journal = "Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia",
title = "Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition",
pages = "71-71",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6356"
}
Kosić, M., Arsikin-Csordas, K., Paunović, V., Firestone, R. A., Ristić, B., Mirčić, A., Petričević, S., Bošnjak, M., Zogović, N., Bumbaširević, V., Trajković, V.,& Harhaji-Trajković, L.. (2015). Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia
Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology., 71-71.
https://hdl.handle.net/21.15107/rcub_ibiss_6356
Kosić M, Arsikin-Csordas K, Paunović V, Firestone RA, Ristić B, Mirčić A, Petričević S, Bošnjak M, Zogović N, Bumbaširević V, Trajković V, Harhaji-Trajković L. Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia. 2015;:71-71.
https://hdl.handle.net/21.15107/rcub_ibiss_6356 .
Kosić, Milica, Arsikin-Csordas, Katarina, Paunović, Verica, Firestone, Raymond A, Ristić, Biljana, Mirčić, Aleksandar, Petričević, Saša, Bošnjak, Mihajlo, Zogović, Nevena, Bumbaširević, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition" in Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia (2015):71-71,
https://hdl.handle.net/21.15107/rcub_ibiss_6356 .