Trajković, Vladimir

Link to this page

Authority KeyName Variants
581695e4-cd2a-46cb-bc10-9dbaf4a0bb6f
  • Trajković, Vladimir (27)
Projects

Author's Bibliography

Autophagy receptor P62 regulates SARS-CoV-2-induced inflammation in COVID-19

Stevanović, Danijela; Paunović, Verica; Vučićević, Ljubica; Misirkić Marjanović, Maja; Perović, Vladimir; Ristić, Biljana; Bošnjak, Mihajlo; Mandić, Miloš; Harhaji-Trajković, Ljubica; Janjetović, Kristina; Kosić, Milica; Lalošević, Jovan; Nikolić, Miloš; Bonači-Nikolić, Branka; Trajković, Vladimir

(Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 2023)

TY  - CONF
AU  - Stevanović, Danijela
AU  - Paunović, Verica
AU  - Vučićević, Ljubica
AU  - Misirkić Marjanović, Maja
AU  - Perović, Vladimir
AU  - Ristić, Biljana
AU  - Bošnjak, Mihajlo
AU  - Mandić, Miloš
AU  - Harhaji-Trajković, Ljubica
AU  - Janjetović, Kristina
AU  - Kosić, Milica
AU  - Lalošević, Jovan
AU  - Nikolić, Miloš
AU  - Bonači-Nikolić, Branka
AU  - Trajković, Vladimir
PY  - 2023
UR  - https://indico.bio.bg.ac.rs/event/4/attachments/6/492/Abstract%20Book-CoMBoS2-TMB.pdf
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6286
AB  - Introduction: Since the interaction between autophagy and virus-induced inflammation is complex,
we investigated the interplay between autophagy and inflammation in COVID-19 patients and THP-1
cells expressing SARS-Cov2 proteins NSP5 and ORF3a.
Methods: Autophagy markers in blood from 19 control subjects and 26 COVID-19 patients at hospital
admission and one week later were measured by ELISA, while cytokine levels were examined by flow cytometric bead immunoassay. The level of p62 in cells and its concentration in cell culture supernatants
was measured by immunoblot/ELISA. The mRNA levels of proinflammatory cytokines were measured
by RT-qPCR.
Results: IFN-α, TNF, IL-6, IL-8, IL-17, IL-33, and IFN-γ were elevated in COVID-19 patients at both time
points, whereasIL-10 and IL-1β were elevated at admission and one week later, respectively. Autophagy
markers LC3 and ATG5 were unchanged in COVID-19. The concentration of autophagic cargo receptor
p62 was significantly lower and positively correlated with TNF, IL-10, IL-17, and IL-33 at hospital admission, returning to normal levels after one week. The expression of SARS-CoV-2 proteins NSP5 or ORF3a
in THP-1 cells caused an autophagy-independent decrease/autophagy-inhibition-dependent increase
of intracellular and secreted p62. This was associated with an NSP5-mediated decrease inTNF/IL-10 mRNA
and an ORF3a-mediated increase inTNF/IL-1β/IL-6/IL-10/IL-33 mRNA levels. A genetic knockdown of p62
mimicked the immunosuppressive effect of NSP5, while a p62 increase in autophagy-deficient cells mirrored the immunostimulatory action of ORF3a.
Conclusion: The autophagy receptor p62 is reduced in acute COVID-19, and the balance between autophagy-independent decrease and autophagy blockade-dependent increase of p62 levels could affect
SARS-CoV-induced inflammation.
PB  - Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade
C3  - Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia
T1  - Autophagy receptor P62 regulates SARS-CoV-2-induced inflammation in COVID-19
SP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6286
ER  - 
@conference{
author = "Stevanović, Danijela and Paunović, Verica and Vučićević, Ljubica and Misirkić Marjanović, Maja and Perović, Vladimir and Ristić, Biljana and Bošnjak, Mihajlo and Mandić, Miloš and Harhaji-Trajković, Ljubica and Janjetović, Kristina and Kosić, Milica and Lalošević, Jovan and Nikolić, Miloš and Bonači-Nikolić, Branka and Trajković, Vladimir",
year = "2023",
abstract = "Introduction: Since the interaction between autophagy and virus-induced inflammation is complex,
we investigated the interplay between autophagy and inflammation in COVID-19 patients and THP-1
cells expressing SARS-Cov2 proteins NSP5 and ORF3a.
Methods: Autophagy markers in blood from 19 control subjects and 26 COVID-19 patients at hospital
admission and one week later were measured by ELISA, while cytokine levels were examined by flow cytometric bead immunoassay. The level of p62 in cells and its concentration in cell culture supernatants
was measured by immunoblot/ELISA. The mRNA levels of proinflammatory cytokines were measured
by RT-qPCR.
Results: IFN-α, TNF, IL-6, IL-8, IL-17, IL-33, and IFN-γ were elevated in COVID-19 patients at both time
points, whereasIL-10 and IL-1β were elevated at admission and one week later, respectively. Autophagy
markers LC3 and ATG5 were unchanged in COVID-19. The concentration of autophagic cargo receptor
p62 was significantly lower and positively correlated with TNF, IL-10, IL-17, and IL-33 at hospital admission, returning to normal levels after one week. The expression of SARS-CoV-2 proteins NSP5 or ORF3a
in THP-1 cells caused an autophagy-independent decrease/autophagy-inhibition-dependent increase
of intracellular and secreted p62. This was associated with an NSP5-mediated decrease inTNF/IL-10 mRNA
and an ORF3a-mediated increase inTNF/IL-1β/IL-6/IL-10/IL-33 mRNA levels. A genetic knockdown of p62
mimicked the immunosuppressive effect of NSP5, while a p62 increase in autophagy-deficient cells mirrored the immunostimulatory action of ORF3a.
Conclusion: The autophagy receptor p62 is reduced in acute COVID-19, and the balance between autophagy-independent decrease and autophagy blockade-dependent increase of p62 levels could affect
SARS-CoV-induced inflammation.",
publisher = "Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade",
journal = "Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia",
title = "Autophagy receptor P62 regulates SARS-CoV-2-induced inflammation in COVID-19",
pages = "76",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6286"
}
Stevanović, D., Paunović, V., Vučićević, L., Misirkić Marjanović, M., Perović, V., Ristić, B., Bošnjak, M., Mandić, M., Harhaji-Trajković, L., Janjetović, K., Kosić, M., Lalošević, J., Nikolić, M., Bonači-Nikolić, B.,& Trajković, V.. (2023). Autophagy receptor P62 regulates SARS-CoV-2-induced inflammation in COVID-19. in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia
Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade., 76.
https://hdl.handle.net/21.15107/rcub_ibiss_6286
Stevanović D, Paunović V, Vučićević L, Misirkić Marjanović M, Perović V, Ristić B, Bošnjak M, Mandić M, Harhaji-Trajković L, Janjetović K, Kosić M, Lalošević J, Nikolić M, Bonači-Nikolić B, Trajković V. Autophagy receptor P62 regulates SARS-CoV-2-induced inflammation in COVID-19. in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia. 2023;:76.
https://hdl.handle.net/21.15107/rcub_ibiss_6286 .
Stevanović, Danijela, Paunović, Verica, Vučićević, Ljubica, Misirkić Marjanović, Maja, Perović, Vladimir, Ristić, Biljana, Bošnjak, Mihajlo, Mandić, Miloš, Harhaji-Trajković, Ljubica, Janjetović, Kristina, Kosić, Milica, Lalošević, Jovan, Nikolić, Miloš, Bonači-Nikolić, Branka, Trajković, Vladimir, "Autophagy receptor P62 regulates SARS-CoV-2-induced inflammation in COVID-19" in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia (2023):76,
https://hdl.handle.net/21.15107/rcub_ibiss_6286 .

The role of ROS in MAPK-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells

Mandić, Miloš; Misirkić Marjanović, Maja; Vučićević, Ljubica; Bošnjak, Mihajlo; Perović, Vladimir; Janjetović, Kristina; Paunović, Verica; Stevanović, Danijela; Kosić, Milica; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(Belgrade: Serbian Association for Cancer Research, 2023)

TY  - CONF
AU  - Mandić, Miloš
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Bošnjak, Mihajlo
AU  - Perović, Vladimir
AU  - Janjetović, Kristina
AU  - Paunović, Verica
AU  - Stevanović, Danijela
AU  - Kosić, Milica
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2023
UR  - https://www.sdir.ac.rs/en/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6301
AB  - Background: Reactive oxygen species (ROS) have been implicated in autophagy induction and mitogen activated protein kinases (MAPK) activation which both participate in the differentiation of hematopoietic and leukemic cells. 
We assessed the role of ROS in MAPK activation and autophagy induction in phorbol myristate acetate-(PMA) induced macrophage differentiation of HL-60 leukemia cells. Material and methods: The macrophage markers CD11b, EGR1, 
CSF1R, and IL-8 were assessed by RT-qPCR and flow cytometry. The activation of MAPK was assessed by ERK and JNK immunoblotting, while autophagy was monitored by LC3-II and p62 immunoblotting. Pharmacological inhibition 
was used to determine the role of MAPK and autophagy in HL60 cell differentiation. Intracellular ROS production was determined by flow cytometric analysis of the green fluorescence emitted by non-selective redox-sensitive dye 2',7'-dichlorodihydrofluorescein diacetate. Antioxidant N-acetylcysteine (NAC) was used to determine the role of ROS in MAPK activation, induction of autophagy and HL-60 macrophage differentiation. Results: PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by elevated expression of macrophage markers 
CD11b, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by the increase of autophagic flux. Pharmacological inhibition of ERK or JNK suppressed PMA-triggered autophagy induction and differentiation of HL-60 cells into macrophage-like cells. PMA increased the intracellular ROS generation and the antioxidant NAC reduced the expression of macrophage markers EGR-1, CSF1R, IL-8 and CD11b in PMA-treated HL-60 cells. NAC also blocked PMA-induced LC3-II and ERK phosphorylation, but only slightly reduced the phosphorylation of JNK and did not affect 
the levels of p62. Conclusion: Our study revealed the partial involvement of ROS in MAPK-dependent autophagy in the differentiation of HL60 cells, indicating ROS/MAPK-mediated autophagy for further investigation in differentiation therapy of AML.
PB  - Belgrade: Serbian Association for Cancer Research
C3  - Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
T1  - The role of ROS in MAPK-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells
SP  - 104
EP  - 105
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6301
ER  - 
@conference{
author = "Mandić, Miloš and Misirkić Marjanović, Maja and Vučićević, Ljubica and Bošnjak, Mihajlo and Perović, Vladimir and Janjetović, Kristina and Paunović, Verica and Stevanović, Danijela and Kosić, Milica and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2023",
abstract = "Background: Reactive oxygen species (ROS) have been implicated in autophagy induction and mitogen activated protein kinases (MAPK) activation which both participate in the differentiation of hematopoietic and leukemic cells. 
We assessed the role of ROS in MAPK activation and autophagy induction in phorbol myristate acetate-(PMA) induced macrophage differentiation of HL-60 leukemia cells. Material and methods: The macrophage markers CD11b, EGR1, 
CSF1R, and IL-8 were assessed by RT-qPCR and flow cytometry. The activation of MAPK was assessed by ERK and JNK immunoblotting, while autophagy was monitored by LC3-II and p62 immunoblotting. Pharmacological inhibition 
was used to determine the role of MAPK and autophagy in HL60 cell differentiation. Intracellular ROS production was determined by flow cytometric analysis of the green fluorescence emitted by non-selective redox-sensitive dye 2',7'-dichlorodihydrofluorescein diacetate. Antioxidant N-acetylcysteine (NAC) was used to determine the role of ROS in MAPK activation, induction of autophagy and HL-60 macrophage differentiation. Results: PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by elevated expression of macrophage markers 
CD11b, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by the increase of autophagic flux. Pharmacological inhibition of ERK or JNK suppressed PMA-triggered autophagy induction and differentiation of HL-60 cells into macrophage-like cells. PMA increased the intracellular ROS generation and the antioxidant NAC reduced the expression of macrophage markers EGR-1, CSF1R, IL-8 and CD11b in PMA-treated HL-60 cells. NAC also blocked PMA-induced LC3-II and ERK phosphorylation, but only slightly reduced the phosphorylation of JNK and did not affect 
the levels of p62. Conclusion: Our study revealed the partial involvement of ROS in MAPK-dependent autophagy in the differentiation of HL60 cells, indicating ROS/MAPK-mediated autophagy for further investigation in differentiation therapy of AML.",
publisher = "Belgrade: Serbian Association for Cancer Research",
journal = "Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia",
title = "The role of ROS in MAPK-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells",
pages = "104-105",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6301"
}
Mandić, M., Misirkić Marjanović, M., Vučićević, L., Bošnjak, M., Perović, V., Janjetović, K., Paunović, V., Stevanović, D., Kosić, M., Harhaji-Trajković, L.,& Trajković, V.. (2023). The role of ROS in MAPK-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
Belgrade: Serbian Association for Cancer Research., 104-105.
https://hdl.handle.net/21.15107/rcub_ibiss_6301
Mandić M, Misirkić Marjanović M, Vučićević L, Bošnjak M, Perović V, Janjetović K, Paunović V, Stevanović D, Kosić M, Harhaji-Trajković L, Trajković V. The role of ROS in MAPK-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia. 2023;:104-105.
https://hdl.handle.net/21.15107/rcub_ibiss_6301 .
Mandić, Miloš, Misirkić Marjanović, Maja, Vučićević, Ljubica, Bošnjak, Mihajlo, Perović, Vladimir, Janjetović, Kristina, Paunović, Verica, Stevanović, Danijela, Kosić, Milica, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "The role of ROS in MAPK-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells" in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia (2023):104-105,
https://hdl.handle.net/21.15107/rcub_ibiss_6301 .

MAP kinases activate TFEB/FOXO-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells

Mandić, Miloš; Misirkić Marjanović, Maja; Vučićević, Ljubica; Bošnjak, Mihajlo; Perović, Vladimir; Ristić, Biljana; Ćirić, Darko; Janjetović, Kristina; Paunović, Verica; Stevanović, Danijela; Kosić, Milica; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 2023)

TY  - CONF
AU  - Mandić, Miloš
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Bošnjak, Mihajlo
AU  - Perović, Vladimir
AU  - Ristić, Biljana
AU  - Ćirić, Darko
AU  - Janjetović, Kristina
AU  - Paunović, Verica
AU  - Stevanović, Danijela
AU  - Kosić, Milica
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2023
UR  - https://indico.bio.bg.ac.rs/event/4/attachments/6/492/Abstract%20Book-CoMBoS2-TMB.pdf
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6285
AB  - Introduction: Autophagy has been shown to participate in the differentiation of hematopoietic and
leukemic cells. We investigated the mechanisms of autophagy action in the differentiation induced by
PKC activator phorbol myristate acetate (PMA) in HL-60 acute myeloid leukemia cells.
Methods: The macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8 were assessed by
flow cytometry and RT-qPCR. Autophagy was monitored by RT-qPCR analysis of autophagy-related (ATG)
gene expression, LC3-II/p62 immunoblotting, beclin-1/Bcl-2 interaction, nuclear translocation of TFEB
and FOXO1/3. The activation of MAP kinases, ERK and JNK was assessed by immunoblotting. Pharmacological inhibition and RNA interference were used to determine the role of MAP kinases and autophagy
in HL60 cell differentiation.
Results: PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by elevated expression of macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by accumulation/punctuation of LC3-II, and the increase in
autophagic flux. PMA also increased nuclear translocation of TFEB, FOXO1/3, as well asthe expression of
several ATG genesin HL-60 cells. PMA stimulated the phosphorylation of ERK and JNK via PKC-dependent
mechanism. Pharmacological or genetic inhibition of ERK or JNK suppressed PMA-triggered nuclear
translocation of TFEB and FOXO1/3, ATG expression, dissociation of beclin-1 from Bcl-2, autophagy induction, and differentiation of HL-60 cells into macrophage-like cells.
Conclusion: Our study revealed the involvement of ERK and JNK in TFEB/FOXO-dependent autophagy
and differentiation of HL60 cells, indicating MAP kinase-mediated autophagy as a possible target in differentiation therapy of AML.
PB  - Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade
C3  - Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia
T1  - MAP kinases activate TFEB/FOXO-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells
SP  - 56
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6285
ER  - 
@conference{
author = "Mandić, Miloš and Misirkić Marjanović, Maja and Vučićević, Ljubica and Bošnjak, Mihajlo and Perović, Vladimir and Ristić, Biljana and Ćirić, Darko and Janjetović, Kristina and Paunović, Verica and Stevanović, Danijela and Kosić, Milica and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2023",
abstract = "Introduction: Autophagy has been shown to participate in the differentiation of hematopoietic and
leukemic cells. We investigated the mechanisms of autophagy action in the differentiation induced by
PKC activator phorbol myristate acetate (PMA) in HL-60 acute myeloid leukemia cells.
Methods: The macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8 were assessed by
flow cytometry and RT-qPCR. Autophagy was monitored by RT-qPCR analysis of autophagy-related (ATG)
gene expression, LC3-II/p62 immunoblotting, beclin-1/Bcl-2 interaction, nuclear translocation of TFEB
and FOXO1/3. The activation of MAP kinases, ERK and JNK was assessed by immunoblotting. Pharmacological inhibition and RNA interference were used to determine the role of MAP kinases and autophagy
in HL60 cell differentiation.
Results: PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by elevated expression of macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by accumulation/punctuation of LC3-II, and the increase in
autophagic flux. PMA also increased nuclear translocation of TFEB, FOXO1/3, as well asthe expression of
several ATG genesin HL-60 cells. PMA stimulated the phosphorylation of ERK and JNK via PKC-dependent
mechanism. Pharmacological or genetic inhibition of ERK or JNK suppressed PMA-triggered nuclear
translocation of TFEB and FOXO1/3, ATG expression, dissociation of beclin-1 from Bcl-2, autophagy induction, and differentiation of HL-60 cells into macrophage-like cells.
Conclusion: Our study revealed the involvement of ERK and JNK in TFEB/FOXO-dependent autophagy
and differentiation of HL60 cells, indicating MAP kinase-mediated autophagy as a possible target in differentiation therapy of AML.",
publisher = "Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade",
journal = "Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia",
title = "MAP kinases activate TFEB/FOXO-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells",
pages = "56",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6285"
}
Mandić, M., Misirkić Marjanović, M., Vučićević, L., Bošnjak, M., Perović, V., Ristić, B., Ćirić, D., Janjetović, K., Paunović, V., Stevanović, D., Kosić, M., Harhaji-Trajković, L.,& Trajković, V.. (2023). MAP kinases activate TFEB/FOXO-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells. in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia
Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade., 56.
https://hdl.handle.net/21.15107/rcub_ibiss_6285
Mandić M, Misirkić Marjanović M, Vučićević L, Bošnjak M, Perović V, Ristić B, Ćirić D, Janjetović K, Paunović V, Stevanović D, Kosić M, Harhaji-Trajković L, Trajković V. MAP kinases activate TFEB/FOXO-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells. in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia. 2023;:56.
https://hdl.handle.net/21.15107/rcub_ibiss_6285 .
Mandić, Miloš, Misirkić Marjanović, Maja, Vučićević, Ljubica, Bošnjak, Mihajlo, Perović, Vladimir, Ristić, Biljana, Ćirić, Darko, Janjetović, Kristina, Paunović, Verica, Stevanović, Danijela, Kosić, Milica, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "MAP kinases activate TFEB/FOXO-dependent autophagy involved in phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells" in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia (2023):56,
https://hdl.handle.net/21.15107/rcub_ibiss_6285 .

Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death

Ristić, Biljana; Krunić, Matija; Paunović, Verica; Bošnjak, Mihajlo; Tovilović-Kovačević, Gordana; Zogović, Nevena; Mirčić, Aleksandar; Vuković, Irena; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 2023)

TY  - CONF
AU  - Ristić, Biljana
AU  - Krunić, Matija
AU  - Paunović, Verica
AU  - Bošnjak, Mihajlo
AU  - Tovilović-Kovačević, Gordana
AU  - Zogović, Nevena
AU  - Mirčić, Aleksandar
AU  - Vuković, Irena
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2023
UR  - https://indico.bio.bg.ac.rs/event/4/attachments/6/492/Abstract%20Book-CoMBoS2-TMB.pdf
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6284
AB  - Introduction: We examined the molecular mechanisms of graphene quantum dot (GQD)- mediated
protection of SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP).
Methods: GQD was produced by electrochemical oxidation of graphite and characterized by AFM, UVVIS and FTIR spectroscopy. The antioxidant activity of GQD in cell-free conditions was assessed by DPPH,
NBT and EPR analysis. The neuroprotective potential of GQD was determined by cell viability assays MTT,
CV. Flow cytometry was used to assess markers of apoptosis and GQD scavenging of intracellular
ROS/RNS as well. Cellular internalization of GQD was determined using TEM.
Results: GQD prevented SNP-induced apoptosis, caspase activation and mitochondrial depolarization
in neuroblastoma cells. Although GQD diminished the NO levelsin SNP-treated cells, NO scavengers displayed only a slight protection. GQD significantly protected SH-SY5Y cells from neurotoxicity of lightexhausted SNP, incapable of producing NO, implying that protective mechanism is independent of
NO-scavenging. GQD reduced SNP-triggered increase in intracellular levels of ROS, particularly •OH, O2•−
in cells and cell-free condition. Nonselective antioxidants, •OH scavengers and iron chelators, mimicked
GQD cytoprotection, indicating that GQD protect cells by neutralizing •OH generated in the Fenton reaction. Cellular GQD internalization wasrequired for optimal protection since the removal of extracellular GQD by extensive washing partly diminished their protective effect, suggesting that GQD exerted
neuroprotective effect intra- and extracellularly.
Conclusion: By demonstrating that GQD protect neuroblastoma cells from SNP-induced apoptosis by
•OH/NO scavenging, our results suggest that GQD could be valuable candidates for treatment of neurodegenerative diseases associated with oxidative/nitrosative stress.
PB  - Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade
C3  - Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia
T1  - Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death
SP  - 27
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6284
ER  - 
@conference{
author = "Ristić, Biljana and Krunić, Matija and Paunović, Verica and Bošnjak, Mihajlo and Tovilović-Kovačević, Gordana and Zogović, Nevena and Mirčić, Aleksandar and Vuković, Irena and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2023",
abstract = "Introduction: We examined the molecular mechanisms of graphene quantum dot (GQD)- mediated
protection of SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP).
Methods: GQD was produced by electrochemical oxidation of graphite and characterized by AFM, UVVIS and FTIR spectroscopy. The antioxidant activity of GQD in cell-free conditions was assessed by DPPH,
NBT and EPR analysis. The neuroprotective potential of GQD was determined by cell viability assays MTT,
CV. Flow cytometry was used to assess markers of apoptosis and GQD scavenging of intracellular
ROS/RNS as well. Cellular internalization of GQD was determined using TEM.
Results: GQD prevented SNP-induced apoptosis, caspase activation and mitochondrial depolarization
in neuroblastoma cells. Although GQD diminished the NO levelsin SNP-treated cells, NO scavengers displayed only a slight protection. GQD significantly protected SH-SY5Y cells from neurotoxicity of lightexhausted SNP, incapable of producing NO, implying that protective mechanism is independent of
NO-scavenging. GQD reduced SNP-triggered increase in intracellular levels of ROS, particularly •OH, O2•−
in cells and cell-free condition. Nonselective antioxidants, •OH scavengers and iron chelators, mimicked
GQD cytoprotection, indicating that GQD protect cells by neutralizing •OH generated in the Fenton reaction. Cellular GQD internalization wasrequired for optimal protection since the removal of extracellular GQD by extensive washing partly diminished their protective effect, suggesting that GQD exerted
neuroprotective effect intra- and extracellularly.
Conclusion: By demonstrating that GQD protect neuroblastoma cells from SNP-induced apoptosis by
•OH/NO scavenging, our results suggest that GQD could be valuable candidates for treatment of neurodegenerative diseases associated with oxidative/nitrosative stress.",
publisher = "Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade",
journal = "Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia",
title = "Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death",
pages = "27",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6284"
}
Ristić, B., Krunić, M., Paunović, V., Bošnjak, M., Tovilović-Kovačević, G., Zogović, N., Mirčić, A., Vuković, I., Harhaji-Trajković, L.,& Trajković, V.. (2023). Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death. in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia
Belgrade: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade., 27.
https://hdl.handle.net/21.15107/rcub_ibiss_6284
Ristić B, Krunić M, Paunović V, Bošnjak M, Tovilović-Kovačević G, Zogović N, Mirčić A, Vuković I, Harhaji-Trajković L, Trajković V. Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death. in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia. 2023;:27.
https://hdl.handle.net/21.15107/rcub_ibiss_6284 .
Ristić, Biljana, Krunić, Matija, Paunović, Verica, Bošnjak, Mihajlo, Tovilović-Kovačević, Gordana, Zogović, Nevena, Mirčić, Aleksandar, Vuković, Irena, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Graphen quantum dots protect SH-SY5Y neuronal cells from SNP-indced apoptotic death" in Abstract Book: CoMBoS2 - the Second Congress of Molecular Biologists of Serbia; 2023 Oct 6-8; Belgrade, Serbia (2023):27,
https://hdl.handle.net/21.15107/rcub_ibiss_6284 .

Modulation of autophagy by SARS-CoV-2 proteins

Paunović, Verica; Misirkić Marjanović, Maja; Vučićević, Ljubica; Stevanović, Danijela; Ristić, Biljana; Bošnjak, Mihajlo; Mandić, Miloš; Trajković, Vladimir

(Beograd: Srpska akademija nauka i umetnosti, 2022)

TY  - CONF
AU  - Paunović, Verica
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Stevanović, Danijela
AU  - Ristić, Biljana
AU  - Bošnjak, Mihajlo
AU  - Mandić, Miloš
AU  - Trajković, Vladimir
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6570
AB  - Autophagy is a homeostatic lysosome-dependent catabolic process that eliminates damaged organelles, dysfunctional proteins, and macromolecular aggregates. Autophagy plays an important role in host response to viral infection as it enables degradation of viruses in autophagolysosomes and regulates innate and adaptive immunity. However, some viruses, including SARS-CoV-2, have evolved a variety of mechanisms to avoid autophagic degradation and use it for their own benefit. The aim of this study is to investigate the impact of the individual SARS-CoV-2 proteins (M, E, N, NSP4, NSP5, NSP6, NSP7, NSP8, NSP10, NSP12, NSP14, and NSP15) on autophagy in human lung epithelial cells by analyzing the expression of autophagy-related proteins, LC3-II, p62, and beclin1. The immunoblot analysis revealed that intracellular expression of non-structural proteins NSP4, NSP6, and NSP8 increased the levels of autophagy markers LC3-II and beclin-1, while the structural N protein and non-structural proteins NSP5, NSP10, and NSP15, reduced the degradation of autophagy-selective target p62. These data indicate that some SARS-CoV-2 proteins induce autophagic response, while others block its completion, thus providing grounds for further investigation of the complex interaction between the virus and the autophagic pathway.
AB  - Аутофагија је лизозомски посредован хомеостатски катаболички процес током којег долази до елиминисања оштећених органела, дисфункционалних протеина и макромолекуларних комплекса. Аутофагија игра важну улогу у одговору домаћина на вирусну инфекцију јер омогућава деградацију вируса у аутофаголизозомима и регулише урођени и стечени имунитет. Међутим, неки вируси, укључујући и SARS-CoV-2, су развили различите механизме како би избегли деградацију која се дешава током процеса аутофагије и подредили је у своју корист. Ова студија има за циљ да испита утицај појединачних SARS-CoV-2 протеина (M, E, N, NSP4, NSP5, NSP6, NSP7, NSP8, NSP10, NSP12, NSP14 и NSP15) на процес аутофагије који се одвија у ћелијама респираторног епитела код људи анализом експресије протеина повезаних са аутофагијом, LC3-II, p62, и беклин 1. Имуноблот анализа је открила да је унутарћелијска експресија неструктурних протеина NSP4, NSP6 и NSP8 повећала нивое маркера аутофагије LC3-II и беклин-1, док су структурни N протеин и неструктурни протеини NSP5, NSP10 и NSP15 довели до смањења деградације рецептора аутофагије p62. Ови подаци указују на то да неки SARS-CoV-2 протеини индукују аутофагни одговор, док други блокирају завршетак процеса аутофагије, чиме се ствара основа за даље истраживање комплексне интеракције између вируса и процеса аутофагије.
PB  - Beograd: Srpska akademija nauka i umetnosti
C3  - Proceedings: COVID-19 Pandemic: Messages, New Information and Dilemmas; 2021 Jun 4; Belgrade, Serbia
T1  - Modulation of autophagy by SARS-CoV-2 proteins
T1  - Модулација аутофагије SARS-CoV-2 протеинима
SP  - 205
EP  - 212
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6570
ER  - 
@conference{
author = "Paunović, Verica and Misirkić Marjanović, Maja and Vučićević, Ljubica and Stevanović, Danijela and Ristić, Biljana and Bošnjak, Mihajlo and Mandić, Miloš and Trajković, Vladimir",
year = "2022",
abstract = "Autophagy is a homeostatic lysosome-dependent catabolic process that eliminates damaged organelles, dysfunctional proteins, and macromolecular aggregates. Autophagy plays an important role in host response to viral infection as it enables degradation of viruses in autophagolysosomes and regulates innate and adaptive immunity. However, some viruses, including SARS-CoV-2, have evolved a variety of mechanisms to avoid autophagic degradation and use it for their own benefit. The aim of this study is to investigate the impact of the individual SARS-CoV-2 proteins (M, E, N, NSP4, NSP5, NSP6, NSP7, NSP8, NSP10, NSP12, NSP14, and NSP15) on autophagy in human lung epithelial cells by analyzing the expression of autophagy-related proteins, LC3-II, p62, and beclin1. The immunoblot analysis revealed that intracellular expression of non-structural proteins NSP4, NSP6, and NSP8 increased the levels of autophagy markers LC3-II and beclin-1, while the structural N protein and non-structural proteins NSP5, NSP10, and NSP15, reduced the degradation of autophagy-selective target p62. These data indicate that some SARS-CoV-2 proteins induce autophagic response, while others block its completion, thus providing grounds for further investigation of the complex interaction between the virus and the autophagic pathway., Аутофагија је лизозомски посредован хомеостатски катаболички процес током којег долази до елиминисања оштећених органела, дисфункционалних протеина и макромолекуларних комплекса. Аутофагија игра важну улогу у одговору домаћина на вирусну инфекцију јер омогућава деградацију вируса у аутофаголизозомима и регулише урођени и стечени имунитет. Међутим, неки вируси, укључујући и SARS-CoV-2, су развили различите механизме како би избегли деградацију која се дешава током процеса аутофагије и подредили је у своју корист. Ова студија има за циљ да испита утицај појединачних SARS-CoV-2 протеина (M, E, N, NSP4, NSP5, NSP6, NSP7, NSP8, NSP10, NSP12, NSP14 и NSP15) на процес аутофагије који се одвија у ћелијама респираторног епитела код људи анализом експресије протеина повезаних са аутофагијом, LC3-II, p62, и беклин 1. Имуноблот анализа је открила да је унутарћелијска експресија неструктурних протеина NSP4, NSP6 и NSP8 повећала нивое маркера аутофагије LC3-II и беклин-1, док су структурни N протеин и неструктурни протеини NSP5, NSP10 и NSP15 довели до смањења деградације рецептора аутофагије p62. Ови подаци указују на то да неки SARS-CoV-2 протеини индукују аутофагни одговор, док други блокирају завршетак процеса аутофагије, чиме се ствара основа за даље истраживање комплексне интеракције између вируса и процеса аутофагије.",
publisher = "Beograd: Srpska akademija nauka i umetnosti",
journal = "Proceedings: COVID-19 Pandemic: Messages, New Information and Dilemmas; 2021 Jun 4; Belgrade, Serbia",
title = "Modulation of autophagy by SARS-CoV-2 proteins, Модулација аутофагије SARS-CoV-2 протеинима",
pages = "205-212",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6570"
}
Paunović, V., Misirkić Marjanović, M., Vučićević, L., Stevanović, D., Ristić, B., Bošnjak, M., Mandić, M.,& Trajković, V.. (2022). Modulation of autophagy by SARS-CoV-2 proteins. in Proceedings: COVID-19 Pandemic: Messages, New Information and Dilemmas; 2021 Jun 4; Belgrade, Serbia
Beograd: Srpska akademija nauka i umetnosti., 205-212.
https://hdl.handle.net/21.15107/rcub_ibiss_6570
Paunović V, Misirkić Marjanović M, Vučićević L, Stevanović D, Ristić B, Bošnjak M, Mandić M, Trajković V. Modulation of autophagy by SARS-CoV-2 proteins. in Proceedings: COVID-19 Pandemic: Messages, New Information and Dilemmas; 2021 Jun 4; Belgrade, Serbia. 2022;:205-212.
https://hdl.handle.net/21.15107/rcub_ibiss_6570 .
Paunović, Verica, Misirkić Marjanović, Maja, Vučićević, Ljubica, Stevanović, Danijela, Ristić, Biljana, Bošnjak, Mihajlo, Mandić, Miloš, Trajković, Vladimir, "Modulation of autophagy by SARS-CoV-2 proteins" in Proceedings: COVID-19 Pandemic: Messages, New Information and Dilemmas; 2021 Jun 4; Belgrade, Serbia (2022):205-212,
https://hdl.handle.net/21.15107/rcub_ibiss_6570 .

Antigliomski efekat ekstrakta korena Gentiana dinarica Beck. obogaćenog ksantonima

Tovilović-Kovačević, Gordana; Krstić-Milošević, Dijana; Vinterhalter, Branka; Toljić, Mina; Perović, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica; Zogović, Nevena

(Belgrade: Serbian Biological Society, 2022)

TY  - CONF
AU  - Tovilović-Kovačević, Gordana
AU  - Krstić-Milošević, Dijana
AU  - Vinterhalter, Branka
AU  - Toljić, Mina
AU  - Perović, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
AU  - Zogović, Nevena
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5317
AB  - Глиобластом je најчешћи и најагресивнији тип тумора централног нервног система код одраслих. Циљ ове студије је био да се процени антиглиомски потенцијал екстраката коренова Gentiana dinarica у култури U251 ћелија хуманог глиобластома. Метанолни екстракти су добијени из нетрансформисаних коренова G. dinarica (екстракт 1, Е1) и трансгених коренова добијених коришћењем два соја Agrobacterium rhizogenes: A4M70GUS (екстракт 2, Е2) и 15834/PI (екстракт 3, Е3). Трансформацијом коренова са A. rhizogenes стимулисана је продукција ксантона, секундарних метаболита са доказаним антиканцерским ефектом. За разлику од Е1 и Е2, Е3 је снажно инхибирао раст U251 ћелија, изазвао застој ћелијског циклуса у G2/M фази и повећао експресију маркера диференцијације – астроцитног глијалног фибриларног киселог протеина (GFAP) и неуронског β-тубулина. Е3 је стимулисао Akt/mTOR-зависну аутофагију, на шта је указивало повећање нивоа аутофагног маркера LC3-II протеина и појачана деградација селективне аутофагне мете протеина p62. Инхибиција аутофагије је спречила експресију маркера диференцијације, без утицаја на застој у ћелијском циклусу. Е3 је повећао и нивое оксидативног стреса у ћелији, а антиоксиданси N-ацетил цистеин (NAC) и витамин Е су инхибирали и аутофагију и диференцијацију U251 ћелија изазвану Е3. Активна компонента Е3 је највероватније ксантонски агликон норсверцијанин, најзаступљеније једињење у Е3. Норсверцијанин је, као и Е3, зауставио пролиферацију U251 ћелија у G2/M фази ћелијског циклуса и изазвао диференцијацију, аутофагију и оксидативни стрес. Резултати ове студије указују да би Е3 и норсверцијанин могли бити кандидати за диференцијациону терапију глиобластома.
AB  - Glioblastom je najčešći i najagresivniji tip tumora centralnog nervnog sistema kod odraslih. Cilj ove studije je bio da se proceni antigliomski potencijal ekstrakata korenova Gentiana dinarica u kulturi U251 ćelija humanog glioblastoma. Metanolni ekstrakti su dobijeni iz netransformisanih korenova G. dinarica (ekstrakt 1, E1) i transgenih korenova dobijenih korišćenjem dva soja Agrobacterium rhizogenes: A4M70GUS (ekstrakt 2, E2) i 15834/PI (ekstrakt 3, E3). Transformacijom korenova sa A. rhizogenes stimulisana je produkcija ksantona, sekundarnih metabolita sa dokazanim antikancerskim efektom. Za razliku od E1 i E2, E3 je snažno inhibirao rast U251 ćelija, izazvao zastoj ćelijskog ciklusa u G2/M fazi i povećao ekspresiju markera diferencijacije – astrocitnog glijalnog fibrilarnog kiselog proteina (GFAP) i neuronskog β-tubulina. E3 je stimulisao Akt/mTOR-zavisnu autofagiju, na šta je ukazivalo povećanje nivoa autofagnog markera LC3-II proteina i pojačana degradacija selektivne autofagne mete proteina p62. Inhibicija autofagije je sprečila ekspresiju markera diferencijacije, bez uticaja na zastoj u ćelijskom ciklusu. E3 je povećao i nivoe oksidativnog stresa u ćeliji, a antioksidansi N-acetil cistein (NAC) i vitamin E su inhibirali i autofagiju i diferencijaciju U251 ćelija izazvanu E3. Aktivna komponenta E3 je najverovatnije ksantonski aglikon norsvercijanin, najzastupljenije jedinjenje u E3. Norsvercijanin je, kao i E3, zaustavio proliferaciju U251 ćelija u G2/M fazi ćelijskog ciklusa i izazvao diferencijaciju, autofagiju i oksidativni stres. Rezultati ove studije ukazuju da bi E3 i norsvercijanin mogli biti kandidati za diferencijacionu terapiju glioblastoma.
PB  - Belgrade: Serbian Biological Society
C3  - Knjiga sažetaka: Treći Kongres biologa Srbije: Osnovna i primenjena istraživanja: Metodika nastave; 2022 Sep 21-25; Zlatibor, Serbia
T1  - Antigliomski efekat ekstrakta korena Gentiana dinarica Beck. obogaćenog ksantonima
T1  - Антиглиомски ефекат екстракта корена Gentiana dinarica Beck. обогаћеног ксантонима
SP  - 280
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5317
ER  - 
@conference{
author = "Tovilović-Kovačević, Gordana and Krstić-Milošević, Dijana and Vinterhalter, Branka and Toljić, Mina and Perović, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica and Zogović, Nevena",
year = "2022",
abstract = "Глиобластом je најчешћи и најагресивнији тип тумора централног нервног система код одраслих. Циљ ове студије је био да се процени антиглиомски потенцијал екстраката коренова Gentiana dinarica у култури U251 ћелија хуманог глиобластома. Метанолни екстракти су добијени из нетрансформисаних коренова G. dinarica (екстракт 1, Е1) и трансгених коренова добијених коришћењем два соја Agrobacterium rhizogenes: A4M70GUS (екстракт 2, Е2) и 15834/PI (екстракт 3, Е3). Трансформацијом коренова са A. rhizogenes стимулисана је продукција ксантона, секундарних метаболита са доказаним антиканцерским ефектом. За разлику од Е1 и Е2, Е3 је снажно инхибирао раст U251 ћелија, изазвао застој ћелијског циклуса у G2/M фази и повећао експресију маркера диференцијације – астроцитног глијалног фибриларног киселог протеина (GFAP) и неуронског β-тубулина. Е3 је стимулисао Akt/mTOR-зависну аутофагију, на шта је указивало повећање нивоа аутофагног маркера LC3-II протеина и појачана деградација селективне аутофагне мете протеина p62. Инхибиција аутофагије је спречила експресију маркера диференцијације, без утицаја на застој у ћелијском циклусу. Е3 је повећао и нивое оксидативног стреса у ћелији, а антиоксиданси N-ацетил цистеин (NAC) и витамин Е су инхибирали и аутофагију и диференцијацију U251 ћелија изазвану Е3. Активна компонента Е3 је највероватније ксантонски агликон норсверцијанин, најзаступљеније једињење у Е3. Норсверцијанин је, као и Е3, зауставио пролиферацију U251 ћелија у G2/M фази ћелијског циклуса и изазвао диференцијацију, аутофагију и оксидативни стрес. Резултати ове студије указују да би Е3 и норсверцијанин могли бити кандидати за диференцијациону терапију глиобластома., Glioblastom je najčešći i najagresivniji tip tumora centralnog nervnog sistema kod odraslih. Cilj ove studije je bio da se proceni antigliomski potencijal ekstrakata korenova Gentiana dinarica u kulturi U251 ćelija humanog glioblastoma. Metanolni ekstrakti su dobijeni iz netransformisanih korenova G. dinarica (ekstrakt 1, E1) i transgenih korenova dobijenih korišćenjem dva soja Agrobacterium rhizogenes: A4M70GUS (ekstrakt 2, E2) i 15834/PI (ekstrakt 3, E3). Transformacijom korenova sa A. rhizogenes stimulisana je produkcija ksantona, sekundarnih metabolita sa dokazanim antikancerskim efektom. Za razliku od E1 i E2, E3 je snažno inhibirao rast U251 ćelija, izazvao zastoj ćelijskog ciklusa u G2/M fazi i povećao ekspresiju markera diferencijacije – astrocitnog glijalnog fibrilarnog kiselog proteina (GFAP) i neuronskog β-tubulina. E3 je stimulisao Akt/mTOR-zavisnu autofagiju, na šta je ukazivalo povećanje nivoa autofagnog markera LC3-II proteina i pojačana degradacija selektivne autofagne mete proteina p62. Inhibicija autofagije je sprečila ekspresiju markera diferencijacije, bez uticaja na zastoj u ćelijskom ciklusu. E3 je povećao i nivoe oksidativnog stresa u ćeliji, a antioksidansi N-acetil cistein (NAC) i vitamin E su inhibirali i autofagiju i diferencijaciju U251 ćelija izazvanu E3. Aktivna komponenta E3 je najverovatnije ksantonski aglikon norsvercijanin, najzastupljenije jedinjenje u E3. Norsvercijanin je, kao i E3, zaustavio proliferaciju U251 ćelija u G2/M fazi ćelijskog ciklusa i izazvao diferencijaciju, autofagiju i oksidativni stres. Rezultati ove studije ukazuju da bi E3 i norsvercijanin mogli biti kandidati za diferencijacionu terapiju glioblastoma.",
publisher = "Belgrade: Serbian Biological Society",
journal = "Knjiga sažetaka: Treći Kongres biologa Srbije: Osnovna i primenjena istraživanja: Metodika nastave; 2022 Sep 21-25; Zlatibor, Serbia",
title = "Antigliomski efekat ekstrakta korena Gentiana dinarica Beck. obogaćenog ksantonima, Антиглиомски ефекат екстракта корена Gentiana dinarica Beck. обогаћеног ксантонима",
pages = "280",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5317"
}
Tovilović-Kovačević, G., Krstić-Milošević, D., Vinterhalter, B., Toljić, M., Perović, V., Trajković, V., Harhaji-Trajković, L.,& Zogović, N.. (2022). Antigliomski efekat ekstrakta korena Gentiana dinarica Beck. obogaćenog ksantonima. in Knjiga sažetaka: Treći Kongres biologa Srbije: Osnovna i primenjena istraživanja: Metodika nastave; 2022 Sep 21-25; Zlatibor, Serbia
Belgrade: Serbian Biological Society., 280.
https://hdl.handle.net/21.15107/rcub_ibiss_5317
Tovilović-Kovačević G, Krstić-Milošević D, Vinterhalter B, Toljić M, Perović V, Trajković V, Harhaji-Trajković L, Zogović N. Antigliomski efekat ekstrakta korena Gentiana dinarica Beck. obogaćenog ksantonima. in Knjiga sažetaka: Treći Kongres biologa Srbije: Osnovna i primenjena istraživanja: Metodika nastave; 2022 Sep 21-25; Zlatibor, Serbia. 2022;:280.
https://hdl.handle.net/21.15107/rcub_ibiss_5317 .
Tovilović-Kovačević, Gordana, Krstić-Milošević, Dijana, Vinterhalter, Branka, Toljić, Mina, Perović, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, Zogović, Nevena, "Antigliomski efekat ekstrakta korena Gentiana dinarica Beck. obogaćenog ksantonima" in Knjiga sažetaka: Treći Kongres biologa Srbije: Osnovna i primenjena istraživanja: Metodika nastave; 2022 Sep 21-25; Zlatibor, Serbia (2022):280,
https://hdl.handle.net/21.15107/rcub_ibiss_5317 .

Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells

Despotović, Ana; Mirčić, Aleksandar; Misirlić-Denčić, Sonja; Harhaji-Trajković, Ljubica; Trajković, Vladimir; Zogović, Nevena; Tovilović-Kovačević, Gordana

(London: Hindawi Ltd., 2022)

TY  - JOUR
AU  - Despotović, Ana
AU  - Mirčić, Aleksandar
AU  - Misirlić-Denčić, Sonja
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
AU  - Zogović, Nevena
AU  - Tovilović-Kovačević, Gordana
PY  - 2022
UR  - https://www.hindawi.com/journals/omcl/2022/2998132/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5078
AB  - We investigated the ability of the ascorbic acid (AA) and menadione (MD) combination, the well-known reactive oxidative species- (ROS-) generating system, to induce autophagy in human U251 glioblastoma cells. A combination of AA and MD (AA+MD), in contrast to single treatments, induced necrosis-like cell death mediated by mitochondrial membrane depolarization and extremely high oxidative stress. AA+MD, and to a lesser extent MD alone, prompted the appearance of autophagy markers such as autophagic vacuoles, autophagosome-associated LC3-II protein, degradation of p62, and increased expression of beclin-1. While both MD and AA+MD increased phosphorylation of AMP-activated protein kinase (AMPK), the well-known autophagy promotor, only the combined treatment affected its downstream targets, mechanistic target of rapamycin complex 1 (mTORC1), Unc 51-like kinase 1 (ULK1), and increased the expression of several autophagy-related genes. Antioxidant N-acetyl cysteine reduced both MD- and AA+MD-induced autophagy, as well as changes in AMPK/mTORC1/ULK1 activity and cell death triggered by the drug combination. Pharmacological and genetic autophagy silencing abolished the toxicity of AA+MD, while autophagy upregulation enhanced the toxicity of both AA+MD and MD. Therefore, by upregulating oxidative stress, inhibiting mTORC1, and activating ULK1, AA converts MD-induced AMPK-dependent autophagy from nontoxic to cytotoxic. These results suggest that AA+MD or MD treatment in combination with autophagy inducers could be further investigated as a novel approach for glioblastoma therapy.
PB  - London: Hindawi Ltd.
T2  - Oxidative Medicine and Cellular Longevity
T1  - Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells
VL  - 2022
DO  - 10.1155/2022/2998132
SP  - 2998132
ER  - 
@article{
author = "Despotović, Ana and Mirčić, Aleksandar and Misirlić-Denčić, Sonja and Harhaji-Trajković, Ljubica and Trajković, Vladimir and Zogović, Nevena and Tovilović-Kovačević, Gordana",
year = "2022",
abstract = "We investigated the ability of the ascorbic acid (AA) and menadione (MD) combination, the well-known reactive oxidative species- (ROS-) generating system, to induce autophagy in human U251 glioblastoma cells. A combination of AA and MD (AA+MD), in contrast to single treatments, induced necrosis-like cell death mediated by mitochondrial membrane depolarization and extremely high oxidative stress. AA+MD, and to a lesser extent MD alone, prompted the appearance of autophagy markers such as autophagic vacuoles, autophagosome-associated LC3-II protein, degradation of p62, and increased expression of beclin-1. While both MD and AA+MD increased phosphorylation of AMP-activated protein kinase (AMPK), the well-known autophagy promotor, only the combined treatment affected its downstream targets, mechanistic target of rapamycin complex 1 (mTORC1), Unc 51-like kinase 1 (ULK1), and increased the expression of several autophagy-related genes. Antioxidant N-acetyl cysteine reduced both MD- and AA+MD-induced autophagy, as well as changes in AMPK/mTORC1/ULK1 activity and cell death triggered by the drug combination. Pharmacological and genetic autophagy silencing abolished the toxicity of AA+MD, while autophagy upregulation enhanced the toxicity of both AA+MD and MD. Therefore, by upregulating oxidative stress, inhibiting mTORC1, and activating ULK1, AA converts MD-induced AMPK-dependent autophagy from nontoxic to cytotoxic. These results suggest that AA+MD or MD treatment in combination with autophagy inducers could be further investigated as a novel approach for glioblastoma therapy.",
publisher = "London: Hindawi Ltd.",
journal = "Oxidative Medicine and Cellular Longevity",
title = "Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells",
volume = "2022",
doi = "10.1155/2022/2998132",
pages = "2998132"
}
Despotović, A., Mirčić, A., Misirlić-Denčić, S., Harhaji-Trajković, L., Trajković, V., Zogović, N.,& Tovilović-Kovačević, G.. (2022). Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells. in Oxidative Medicine and Cellular Longevity
London: Hindawi Ltd.., 2022, 2998132.
https://doi.org/10.1155/2022/2998132
Despotović A, Mirčić A, Misirlić-Denčić S, Harhaji-Trajković L, Trajković V, Zogović N, Tovilović-Kovačević G. Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells. in Oxidative Medicine and Cellular Longevity. 2022;2022:2998132.
doi:10.1155/2022/2998132 .
Despotović, Ana, Mirčić, Aleksandar, Misirlić-Denčić, Sonja, Harhaji-Trajković, Ljubica, Trajković, Vladimir, Zogović, Nevena, Tovilović-Kovačević, Gordana, "Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells" in Oxidative Medicine and Cellular Longevity, 2022 (2022):2998132,
https://doi.org/10.1155/2022/2998132 . .
2
12
12

Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression

Kosić, Milica; Paunović, Verica; Ristić, Biljana; Mirčić, Aleksandar; Bošnjak, Mihajlo; Stevanović, Danijela; Mandić, Miloš; Stamenković, Marina; Janjetović, Kristina; Vučićević, Ljubica; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Elsevier Inc., 2021)

TY  - CONF
AU  - Kosić, Milica
AU  - Paunović, Verica
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Bošnjak, Mihajlo
AU  - Stevanović, Danijela
AU  - Mandić, Miloš
AU  - Stamenković, Marina
AU  - Janjetović, Kristina
AU  - Vučićević, Ljubica
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2021
UR  - https://www.sfrre2021belgrade.rs/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4727
AB  - There is no effective therapy for melanoma, a malignant tumor of melanocytes with an
increasing incidence. High energy demands of melanoma cells are predominantly satisfied by
aerobic glycolysis. When glycolysis is suppressed, these metabolically plastic cells switch to
oxidative phosphorylation. The aim of this study was to investigate the antimelanoma effects of
simultaneous inhibition of glycolysis by 2-deoxy-D-glucose (2DG) and oxidative phosphorylation
by rotenone (ROT). 2DG synergized with ROT in inducing death of B16 melanoma, but not
primary mesenchymal cells. Combined treatment stimulated caspase activation, but not PARP
cleavage and DNA fragmentation. Disintegration of plasma membrane and inability of caspase
inhibitors and necrostatin to suppress toxicity of 2DG/ROT implied that combined treatment
induced necrosis, rather than apoptosis and necroptosis. 2DG/ROT stimulated ATP depletion,
mitochondrial superoxide production, and mitochondrial swelling, but not depolarization
of mitochondria. 2DG/ROT-induced toxicity was suppressed by antioxidant α-tocopherol,
but not mitochondrial depolarization inhibitor cyclosporine. Combined treatment induced
the translocation of hexokinase II, a suppressor of voltage-dependent anion channel (VDAC)
opening, and cytochrome c from mitochondria in the cytoplasm, while VDAC opening inhibitor
DIDS suppressed 2DG/ROT toxicity. Our results suggest that 2DG/ROT treatment stimulates
mitochondrial swelling, release of hexokinase II and subsequent opening of VDAC in the outer
mitochondrial membrane. These events allow cytochrome c to exit and activate caspases, which
are unable to stimulate PARP and consequent DNA fragmentation in the energy-depleted state.
On the other hand, superoxide synthesized in mitochondria upon 2DG/ROT treatment also exits
through VDAC and triggers energy-independent necrosis. Simultaneous inhibition of glycolysis
and oxidative phosphorylation appears to be promising strategy for further development of
novel anticancer therapeutics.
PB  - Elsevier Inc.
C3  - Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
T1  - Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression
DO  - 10.1016/j.freeradbiomed.2021.08.205
SP  - 203
ER  - 
@conference{
author = "Kosić, Milica and Paunović, Verica and Ristić, Biljana and Mirčić, Aleksandar and Bošnjak, Mihajlo and Stevanović, Danijela and Mandić, Miloš and Stamenković, Marina and Janjetović, Kristina and Vučićević, Ljubica and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2021",
abstract = "There is no effective therapy for melanoma, a malignant tumor of melanocytes with an
increasing incidence. High energy demands of melanoma cells are predominantly satisfied by
aerobic glycolysis. When glycolysis is suppressed, these metabolically plastic cells switch to
oxidative phosphorylation. The aim of this study was to investigate the antimelanoma effects of
simultaneous inhibition of glycolysis by 2-deoxy-D-glucose (2DG) and oxidative phosphorylation
by rotenone (ROT). 2DG synergized with ROT in inducing death of B16 melanoma, but not
primary mesenchymal cells. Combined treatment stimulated caspase activation, but not PARP
cleavage and DNA fragmentation. Disintegration of plasma membrane and inability of caspase
inhibitors and necrostatin to suppress toxicity of 2DG/ROT implied that combined treatment
induced necrosis, rather than apoptosis and necroptosis. 2DG/ROT stimulated ATP depletion,
mitochondrial superoxide production, and mitochondrial swelling, but not depolarization
of mitochondria. 2DG/ROT-induced toxicity was suppressed by antioxidant α-tocopherol,
but not mitochondrial depolarization inhibitor cyclosporine. Combined treatment induced
the translocation of hexokinase II, a suppressor of voltage-dependent anion channel (VDAC)
opening, and cytochrome c from mitochondria in the cytoplasm, while VDAC opening inhibitor
DIDS suppressed 2DG/ROT toxicity. Our results suggest that 2DG/ROT treatment stimulates
mitochondrial swelling, release of hexokinase II and subsequent opening of VDAC in the outer
mitochondrial membrane. These events allow cytochrome c to exit and activate caspases, which
are unable to stimulate PARP and consequent DNA fragmentation in the energy-depleted state.
On the other hand, superoxide synthesized in mitochondria upon 2DG/ROT treatment also exits
through VDAC and triggers energy-independent necrosis. Simultaneous inhibition of glycolysis
and oxidative phosphorylation appears to be promising strategy for further development of
novel anticancer therapeutics.",
publisher = "Elsevier Inc.",
journal = "Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia",
title = "Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression",
doi = "10.1016/j.freeradbiomed.2021.08.205",
pages = "203"
}
Kosić, M., Paunović, V., Ristić, B., Mirčić, A., Bošnjak, M., Stevanović, D., Mandić, M., Stamenković, M., Janjetović, K., Vučićević, L., Trajković, V.,& Harhaji-Trajković, L.. (2021). Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
Elsevier Inc.., 203.
https://doi.org/10.1016/j.freeradbiomed.2021.08.205
Kosić M, Paunović V, Ristić B, Mirčić A, Bošnjak M, Stevanović D, Mandić M, Stamenković M, Janjetović K, Vučićević L, Trajković V, Harhaji-Trajković L. Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia. 2021;:203.
doi:10.1016/j.freeradbiomed.2021.08.205 .
Kosić, Milica, Paunović, Verica, Ristić, Biljana, Mirčić, Aleksandar, Bošnjak, Mihajlo, Stevanović, Danijela, Mandić, Miloš, Stamenković, Marina, Janjetović, Kristina, Vučićević, Ljubica, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Synergistic anticancer effect of glycolysis inhibition and oxidative phosphorylation suppression" in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia (2021):203,
https://doi.org/10.1016/j.freeradbiomed.2021.08.205 . .

Necrostatin-1 enhances menadione/ascorbic acid–induced oxidative stress and their cytotoxic potential in human glioblastoma U251 cell line

Despotović, Ana; Harhaji-Trajković, Ljubica; Trajković, Vladimir; Tovilović-Kovačević, Gordana; Zogović, Nevena

(Elsevier Inc., 2021)

TY  - CONF
AU  - Despotović, Ana
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
AU  - Tovilović-Kovačević, Gordana
AU  - Zogović, Nevena
PY  - 2021
UR  - https://www.sfrre2021belgrade.rs/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4724
AB  - The aim of this study was to investigate the role of necroptosis inhibitor necrostatin-1
(Nec-1) in death of human glioblastoma U251 cells exposed to ascorbic acid (AA), menadione(MD),
and their combination, in vitro. Nec-1 augmented cytotoxicity of AA+MD, and slightly increased
death of MD-treated U251 cells, as assessed by crystal violet (CV) assay. In line with previous, flow
cytometric analysis of annexin/propidium iodide-stained cells showed that Nec-1 triggered cell
death in MD and significantly enhanced ability of AA+MD to increase number of necrotic cells,
substantiating necrosis as the mechanism of U251 cell death induced by combined treatments
– AA+MD, Nec-1+MD, and Nec-1+AA+MD. Further, Nec-1 elevated mitochondrial and cellular
reactive oxygen species (ROS) generated by both MD and AA+MD co-treatment, as assessed
by flow cytometry analysis of MitoSOX- and DHR-stained cells, respectively. N-acetyl cysteine
(NAC), a well-known antioxidant, opposed U251 cell death induced by AA+MD, Nec-1+MD, and
Nec-1+AA+MD, indicating crucial role of oxidative stress in Nec-1-potentiated cytotoxicity of
MD and AA+MD. Also, Nec-1 activated AMP-activated protein kinase (AMPK), and its effector
molecule ULK1 (Ser317) over the level induced by MD and AA+MD, as showed by immunoblot.
AMPK, highly conserved serine/threonine protein kinase, is activated under the conditions of
oxidative stress probably as a consequence of depleted cellular ATP and elevated AMP levels.
This result implies important role of AMPK in necrosis detected in AA+MD-, Nec-1+MD-, and
Nec-1+AA+MD-treated U251 cells. Therefore, it can be concluded that ability of Nec-1 to enhance
cytotoxic potential of AA+MD co-treatment and trigger cytotoxicity of MD is associated with its
capacity to amplify cellular and mitochondrial ROS production, leading to necrosis-like cell
death of U251 cells. Obtained results reveal potential use of Nec-1 as anti-glioblastoma agent,
especially in combination with AA+MD.
PB  - Elsevier Inc.
C3  - Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
T1  - Necrostatin-1 enhances menadione/ascorbic acid–induced oxidative stress and their cytotoxic potential in human glioblastoma U251 cell line
DO  - 10.1016/j.freeradbiomed.2021.08.081
SP  - 78
ER  - 
@conference{
author = "Despotović, Ana and Harhaji-Trajković, Ljubica and Trajković, Vladimir and Tovilović-Kovačević, Gordana and Zogović, Nevena",
year = "2021",
abstract = "The aim of this study was to investigate the role of necroptosis inhibitor necrostatin-1
(Nec-1) in death of human glioblastoma U251 cells exposed to ascorbic acid (AA), menadione(MD),
and their combination, in vitro. Nec-1 augmented cytotoxicity of AA+MD, and slightly increased
death of MD-treated U251 cells, as assessed by crystal violet (CV) assay. In line with previous, flow
cytometric analysis of annexin/propidium iodide-stained cells showed that Nec-1 triggered cell
death in MD and significantly enhanced ability of AA+MD to increase number of necrotic cells,
substantiating necrosis as the mechanism of U251 cell death induced by combined treatments
– AA+MD, Nec-1+MD, and Nec-1+AA+MD. Further, Nec-1 elevated mitochondrial and cellular
reactive oxygen species (ROS) generated by both MD and AA+MD co-treatment, as assessed
by flow cytometry analysis of MitoSOX- and DHR-stained cells, respectively. N-acetyl cysteine
(NAC), a well-known antioxidant, opposed U251 cell death induced by AA+MD, Nec-1+MD, and
Nec-1+AA+MD, indicating crucial role of oxidative stress in Nec-1-potentiated cytotoxicity of
MD and AA+MD. Also, Nec-1 activated AMP-activated protein kinase (AMPK), and its effector
molecule ULK1 (Ser317) over the level induced by MD and AA+MD, as showed by immunoblot.
AMPK, highly conserved serine/threonine protein kinase, is activated under the conditions of
oxidative stress probably as a consequence of depleted cellular ATP and elevated AMP levels.
This result implies important role of AMPK in necrosis detected in AA+MD-, Nec-1+MD-, and
Nec-1+AA+MD-treated U251 cells. Therefore, it can be concluded that ability of Nec-1 to enhance
cytotoxic potential of AA+MD co-treatment and trigger cytotoxicity of MD is associated with its
capacity to amplify cellular and mitochondrial ROS production, leading to necrosis-like cell
death of U251 cells. Obtained results reveal potential use of Nec-1 as anti-glioblastoma agent,
especially in combination with AA+MD.",
publisher = "Elsevier Inc.",
journal = "Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia",
title = "Necrostatin-1 enhances menadione/ascorbic acid–induced oxidative stress and their cytotoxic potential in human glioblastoma U251 cell line",
doi = "10.1016/j.freeradbiomed.2021.08.081",
pages = "78"
}
Despotović, A., Harhaji-Trajković, L., Trajković, V., Tovilović-Kovačević, G.,& Zogović, N.. (2021). Necrostatin-1 enhances menadione/ascorbic acid–induced oxidative stress and their cytotoxic potential in human glioblastoma U251 cell line. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
Elsevier Inc.., 78.
https://doi.org/10.1016/j.freeradbiomed.2021.08.081
Despotović A, Harhaji-Trajković L, Trajković V, Tovilović-Kovačević G, Zogović N. Necrostatin-1 enhances menadione/ascorbic acid–induced oxidative stress and their cytotoxic potential in human glioblastoma U251 cell line. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia. 2021;:78.
doi:10.1016/j.freeradbiomed.2021.08.081 .
Despotović, Ana, Harhaji-Trajković, Ljubica, Trajković, Vladimir, Tovilović-Kovačević, Gordana, Zogović, Nevena, "Necrostatin-1 enhances menadione/ascorbic acid–induced oxidative stress and their cytotoxic potential in human glioblastoma U251 cell line" in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia (2021):78,
https://doi.org/10.1016/j.freeradbiomed.2021.08.081 . .

Dual targeting of energy metabolism and lysosomes as an anticancer strategy; It is not all about autophagy

Harhaji-Trajković, Ljubica; Kosić, Milica; Paunović, Verica; Ristić, Biljana; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Tovilović-Kovačević, Gordana; Janjetović, Kristina; Trajković, Vladimir

(Beograd : Srpsko društvo istraživača raka, 2021)

TY  - CONF
AU  - Harhaji-Trajković, Ljubica
AU  - Kosić, Milica
AU  - Paunović, Verica
AU  - Ristić, Biljana
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Tovilović-Kovačević, Gordana
AU  - Janjetović, Kristina
AU  - Trajković, Vladimir
PY  - 2021
UR  - https://www.sdir.ac.rs/apstrakti-SDIR-5/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4709
AB  - Background: Intensive proliferation of tumor cells consumes a lot of energy. In nutrient deficiency 
substrates for energy metabolism are obtained by lysosomal degradation of unnecessary/dysfunctional 
intracellular organelles/molecules in the process of autophagy. Leakage of enlarged unstable lysosomes, 
which characterize tumor cells, causes cell death. We investigated antitumor effect of combined targeting 
of lysosomes/autophagy and energy metabolism. Material and Methods: Toxicity against U251 human 
glioma and B16 mouse melanoma cells was measured by viability tests. Type/mechanisms of cell death 
were determined by flow cytometry, immunoblot, fluorescent/electron microscopy and confirmed by 
appropriate genetic/pharmacological inhibitors. Therapeutic potential was estimated in B16 melanoma bearing C57Bl/6 mice. Results: In the first study, lysosomotropic autophagy inhibitor chloroquine (CQ) 
rapidly killed tumor cells incubated in the absence of serum. CQ-induced lysosomal destabilization 
triggered: oxidative stress, mitochondrial depolarization, and mixed apoptosis/necrosis of serum-deprived 
cells. In the second study, lysosomal detergent N-dodecylimidazole (NDI) synergized in antitumor activity 
with the glycolytic inhibitor 2-deoxy-D-glucose (2DG). NDI-triggered release of lysosomal enzymes into the 
cytoplasm caused mitochondrial damage and blocked oxidative phosphorylation, which synergized with 
2DG-mediated glycolysis block in ATP reduction, oxidative stress, and necrosis. Interestingly, although both 
serum deprivation and 2DG stimulated autophagy, CQ- and NDI-induced autophagy suppression was 
irrelevant for their cytotoxicity. Importantly, CQ+food restriction and 2DG+NDI reduced melanoma growth 
in vivo. Conclusion: Autophagy independent antitumor effects of combined energy metabolism suppression 
and lysosomal destabilization might be exploited in cancer therapy.
PB  - Beograd : Srpsko društvo istraživača raka
C3  - 5th Congress of the Serbian Association for Cancer Research – SDIR-5 with international participation „Translational potential of cancer research in Serbia“
T1  - Dual targeting of energy metabolism and lysosomes as an anticancer strategy; It is not all about autophagy
SP  - 8
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_4709
ER  - 
@conference{
author = "Harhaji-Trajković, Ljubica and Kosić, Milica and Paunović, Verica and Ristić, Biljana and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Tovilović-Kovačević, Gordana and Janjetović, Kristina and Trajković, Vladimir",
year = "2021",
abstract = "Background: Intensive proliferation of tumor cells consumes a lot of energy. In nutrient deficiency 
substrates for energy metabolism are obtained by lysosomal degradation of unnecessary/dysfunctional 
intracellular organelles/molecules in the process of autophagy. Leakage of enlarged unstable lysosomes, 
which characterize tumor cells, causes cell death. We investigated antitumor effect of combined targeting 
of lysosomes/autophagy and energy metabolism. Material and Methods: Toxicity against U251 human 
glioma and B16 mouse melanoma cells was measured by viability tests. Type/mechanisms of cell death 
were determined by flow cytometry, immunoblot, fluorescent/electron microscopy and confirmed by 
appropriate genetic/pharmacological inhibitors. Therapeutic potential was estimated in B16 melanoma bearing C57Bl/6 mice. Results: In the first study, lysosomotropic autophagy inhibitor chloroquine (CQ) 
rapidly killed tumor cells incubated in the absence of serum. CQ-induced lysosomal destabilization 
triggered: oxidative stress, mitochondrial depolarization, and mixed apoptosis/necrosis of serum-deprived 
cells. In the second study, lysosomal detergent N-dodecylimidazole (NDI) synergized in antitumor activity 
with the glycolytic inhibitor 2-deoxy-D-glucose (2DG). NDI-triggered release of lysosomal enzymes into the 
cytoplasm caused mitochondrial damage and blocked oxidative phosphorylation, which synergized with 
2DG-mediated glycolysis block in ATP reduction, oxidative stress, and necrosis. Interestingly, although both 
serum deprivation and 2DG stimulated autophagy, CQ- and NDI-induced autophagy suppression was 
irrelevant for their cytotoxicity. Importantly, CQ+food restriction and 2DG+NDI reduced melanoma growth 
in vivo. Conclusion: Autophagy independent antitumor effects of combined energy metabolism suppression 
and lysosomal destabilization might be exploited in cancer therapy.",
publisher = "Beograd : Srpsko društvo istraživača raka",
journal = "5th Congress of the Serbian Association for Cancer Research – SDIR-5 with international participation „Translational potential of cancer research in Serbia“",
title = "Dual targeting of energy metabolism and lysosomes as an anticancer strategy; It is not all about autophagy",
pages = "8",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_4709"
}
Harhaji-Trajković, L., Kosić, M., Paunović, V., Ristić, B., Bošnjak, M., Zogović, N., Mandić, M., Tovilović-Kovačević, G., Janjetović, K.,& Trajković, V.. (2021). Dual targeting of energy metabolism and lysosomes as an anticancer strategy; It is not all about autophagy. in 5th Congress of the Serbian Association for Cancer Research – SDIR-5 with international participation „Translational potential of cancer research in Serbia“
Beograd : Srpsko društvo istraživača raka., 8.
https://hdl.handle.net/21.15107/rcub_ibiss_4709
Harhaji-Trajković L, Kosić M, Paunović V, Ristić B, Bošnjak M, Zogović N, Mandić M, Tovilović-Kovačević G, Janjetović K, Trajković V. Dual targeting of energy metabolism and lysosomes as an anticancer strategy; It is not all about autophagy. in 5th Congress of the Serbian Association for Cancer Research – SDIR-5 with international participation „Translational potential of cancer research in Serbia“. 2021;:8.
https://hdl.handle.net/21.15107/rcub_ibiss_4709 .
Harhaji-Trajković, Ljubica, Kosić, Milica, Paunović, Verica, Ristić, Biljana, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Tovilović-Kovačević, Gordana, Janjetović, Kristina, Trajković, Vladimir, "Dual targeting of energy metabolism and lysosomes as an anticancer strategy; It is not all about autophagy" in 5th Congress of the Serbian Association for Cancer Research – SDIR-5 with international participation „Translational potential of cancer research in Serbia“ (2021):8,
https://hdl.handle.net/21.15107/rcub_ibiss_4709 .

3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK

Paunović, Verica; Kosić, Milica; Ristić, Biljana; Bošnjak, Mihajlo; Stevanović, Danijela; Misirkić Marjanović, Maja; Mandić, Miloš; Mirčić, Aleksandar; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Elsevier Inc., 2021)

TY  - CONF
AU  - Paunović, Verica
AU  - Kosić, Milica
AU  - Ristić, Biljana
AU  - Bošnjak, Mihajlo
AU  - Stevanović, Danijela
AU  - Misirkić Marjanović, Maja
AU  - Mandić, Miloš
AU  - Mirčić, Aleksandar
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2021
UR  - https://www.sfrre2021belgrade.rs/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4728
AB  - We investigated the effect of 3-methyladenine (3MA), a class III phosphatidylinositol 3-
kinase (PI3K)-blocking autophagy inhibitor, on the melanoma cell death induced by simultaneous
inhibition of glycolysis by 2-deoxyglucose (2DG) and mitochondrial respiration by rotenone. We
have elsewhere shown that 2DG/rotenone caused oxidative stress, ATP depletion, swelling
of mitochondria, ultimately leading to necrosis. Energy stress is known to induce autophagy,
a tightly regulated self-degradation process, which by recycling damaged organelles and
macromolecules provides building blocks and energy. However, 2DG/rotenone did not induce
proautophagic beclin-1 expression and autophagic flux in melanoma cells despite activation
of AMP-activated protein kinase (AMPK) and subsequent inhibition of mammalian target of
rapamycin complex 1 (mTORC1). 3MA, but not autophagy inhibition with other PI3K and lysosomal
inhibitors, attenuated 2DG/rotenone-induced mitochondrial damage, oxidative stress, ATP
depletion, and cell death. 3MA increased both AMPK and mTORC1 activation in energy stressed
cells, but neither AMPK nor mTORC1 inhibition reduced its cytoprotective effect. 3MA reduced
superoxide generation and c-Jun N-terminal kinase (JNK) activation, and both antioxidant and
JNK blockade mimicked its protective activity. Therefore, 3MA prevents energy stress-triggered
melanoma cell death through autophagy-independent decrease of oxidative stress and JNK
activation. Our results warrant caution in use of 3MA as an autophagy inhibitor.
PB  - Elsevier Inc.
C3  - Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
T1  - 3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK
DO  - 10.1016/j.freeradbiomed.2021.08.223
SP  - 221
ER  - 
@conference{
author = "Paunović, Verica and Kosić, Milica and Ristić, Biljana and Bošnjak, Mihajlo and Stevanović, Danijela and Misirkić Marjanović, Maja and Mandić, Miloš and Mirčić, Aleksandar and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2021",
abstract = "We investigated the effect of 3-methyladenine (3MA), a class III phosphatidylinositol 3-
kinase (PI3K)-blocking autophagy inhibitor, on the melanoma cell death induced by simultaneous
inhibition of glycolysis by 2-deoxyglucose (2DG) and mitochondrial respiration by rotenone. We
have elsewhere shown that 2DG/rotenone caused oxidative stress, ATP depletion, swelling
of mitochondria, ultimately leading to necrosis. Energy stress is known to induce autophagy,
a tightly regulated self-degradation process, which by recycling damaged organelles and
macromolecules provides building blocks and energy. However, 2DG/rotenone did not induce
proautophagic beclin-1 expression and autophagic flux in melanoma cells despite activation
of AMP-activated protein kinase (AMPK) and subsequent inhibition of mammalian target of
rapamycin complex 1 (mTORC1). 3MA, but not autophagy inhibition with other PI3K and lysosomal
inhibitors, attenuated 2DG/rotenone-induced mitochondrial damage, oxidative stress, ATP
depletion, and cell death. 3MA increased both AMPK and mTORC1 activation in energy stressed
cells, but neither AMPK nor mTORC1 inhibition reduced its cytoprotective effect. 3MA reduced
superoxide generation and c-Jun N-terminal kinase (JNK) activation, and both antioxidant and
JNK blockade mimicked its protective activity. Therefore, 3MA prevents energy stress-triggered
melanoma cell death through autophagy-independent decrease of oxidative stress and JNK
activation. Our results warrant caution in use of 3MA as an autophagy inhibitor.",
publisher = "Elsevier Inc.",
journal = "Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia",
title = "3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK",
doi = "10.1016/j.freeradbiomed.2021.08.223",
pages = "221"
}
Paunović, V., Kosić, M., Ristić, B., Bošnjak, M., Stevanović, D., Misirkić Marjanović, M., Mandić, M., Mirčić, A., Trajković, V.,& Harhaji-Trajković, L.. (2021). 3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
Elsevier Inc.., 221.
https://doi.org/10.1016/j.freeradbiomed.2021.08.223
Paunović V, Kosić M, Ristić B, Bošnjak M, Stevanović D, Misirkić Marjanović M, Mandić M, Mirčić A, Trajković V, Harhaji-Trajković L. 3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia. 2021;:221.
doi:10.1016/j.freeradbiomed.2021.08.223 .
Paunović, Verica, Kosić, Milica, Ristić, Biljana, Bošnjak, Mihajlo, Stevanović, Danijela, Misirkić Marjanović, Maja, Mandić, Miloš, Mirčić, Aleksandar, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "3-methyladenine protects melanoma cells against energy stress-induced necrosis by autophagy-independent decrease in oxidative stress and partial involvement of JNK" in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia (2021):221,
https://doi.org/10.1016/j.freeradbiomed.2021.08.223 . .

Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging

Ristić, Biljana; Krunić, Matija; Bošnjak, Mihajlo; Paunović, Verica; Zogović, Nevena; Tovilović-Kovačević, Gordana; Mirčić, Aleksandar; Misirkić Marjanović, Maja; Vučićević, Ljubica; Kosić, Milica; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Elsevier Inc., 2021)

TY  - CONF
AU  - Ristić, Biljana
AU  - Krunić, Matija
AU  - Bošnjak, Mihajlo
AU  - Paunović, Verica
AU  - Zogović, Nevena
AU  - Tovilović-Kovačević, Gordana
AU  - Mirčić, Aleksandar
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Kosić, Milica
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2021
UR  - https://www.sfrre2021belgrade.rs/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4726
AB  - We here investigated the ability of graphene quantum dots (GQD), graphene nanoparticles with antioxidative capacity, to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). Although GQD diminished the levels of nitric oxide (NO) in both cell free condition and SNPexposed cells, NO scavengers (PTIO and uric acid), displayed only slight protection from SNP, suggesting that NO scavenging was not the main protective mechanism of GQD. Moreover, GQD significantly protected SH-SY5Y cells from neurotoxicity of light exhausted SNP, incapable of producing NO, implying the existence of protective mechanism independent of NO-scavenging. GQD lowered the increase in the concentration of hydroxyl radical (•OH) and superoxide anion (O2•−) caused by SNP both in the cell-free condition and inside cells, as well as ensuing oxidative stress and lipid peroxidation. Nonspecific antioxidants (glutathione, NAC), •OH scavenger (DMSO), and iron chelators (DTPA, BPDSA), but not superoxide dismutase, mimicked the cytoprotective activity of GQD, suggesting that GQD protect cells by neutralizing •OH generated in the presence of iron released from SNP. GQD were readily internalized by SH-SY5Y cells, while extensive washing of cells pre-incubated with GQD only partly reduced their protective activity, suggesting that GQD exerted neuroprotective effect both intra- and extracellularly. By demonstrating that GQD protect neuroblastoma cells from SNP-induced neurotoxicity by both extracellular •OH/NO scavenging and some unknown intracellular mechanism, our results suggest that GQD could be valuable candidate for treatment of neurodegenerative and neuroinflammatory disorders associated with oxidative/nitrosative stress.
PB  - Elsevier Inc.
C3  - Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
T1  - Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging
DO  - 10.1016/j.freeradbiomed.2021.08.167
SP  - 165
ER  - 
@conference{
author = "Ristić, Biljana and Krunić, Matija and Bošnjak, Mihajlo and Paunović, Verica and Zogović, Nevena and Tovilović-Kovačević, Gordana and Mirčić, Aleksandar and Misirkić Marjanović, Maja and Vučićević, Ljubica and Kosić, Milica and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2021",
abstract = "We here investigated the ability of graphene quantum dots (GQD), graphene nanoparticles with antioxidative capacity, to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). Although GQD diminished the levels of nitric oxide (NO) in both cell free condition and SNPexposed cells, NO scavengers (PTIO and uric acid), displayed only slight protection from SNP, suggesting that NO scavenging was not the main protective mechanism of GQD. Moreover, GQD significantly protected SH-SY5Y cells from neurotoxicity of light exhausted SNP, incapable of producing NO, implying the existence of protective mechanism independent of NO-scavenging. GQD lowered the increase in the concentration of hydroxyl radical (•OH) and superoxide anion (O2•−) caused by SNP both in the cell-free condition and inside cells, as well as ensuing oxidative stress and lipid peroxidation. Nonspecific antioxidants (glutathione, NAC), •OH scavenger (DMSO), and iron chelators (DTPA, BPDSA), but not superoxide dismutase, mimicked the cytoprotective activity of GQD, suggesting that GQD protect cells by neutralizing •OH generated in the presence of iron released from SNP. GQD were readily internalized by SH-SY5Y cells, while extensive washing of cells pre-incubated with GQD only partly reduced their protective activity, suggesting that GQD exerted neuroprotective effect both intra- and extracellularly. By demonstrating that GQD protect neuroblastoma cells from SNP-induced neurotoxicity by both extracellular •OH/NO scavenging and some unknown intracellular mechanism, our results suggest that GQD could be valuable candidate for treatment of neurodegenerative and neuroinflammatory disorders associated with oxidative/nitrosative stress.",
publisher = "Elsevier Inc.",
journal = "Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia",
title = "Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging",
doi = "10.1016/j.freeradbiomed.2021.08.167",
pages = "165"
}
Ristić, B., Krunić, M., Bošnjak, M., Paunović, V., Zogović, N., Tovilović-Kovačević, G., Mirčić, A., Misirkić Marjanović, M., Vučićević, L., Kosić, M., Trajković, V.,& Harhaji-Trajković, L.. (2021). Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
Elsevier Inc.., 165.
https://doi.org/10.1016/j.freeradbiomed.2021.08.167
Ristić B, Krunić M, Bošnjak M, Paunović V, Zogović N, Tovilović-Kovačević G, Mirčić A, Misirkić Marjanović M, Vučićević L, Kosić M, Trajković V, Harhaji-Trajković L. Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia. 2021;:165.
doi:10.1016/j.freeradbiomed.2021.08.167 .
Ristić, Biljana, Krunić, Matija, Bošnjak, Mihajlo, Paunović, Verica, Zogović, Nevena, Tovilović-Kovačević, Gordana, Mirčić, Aleksandar, Misirkić Marjanović, Maja, Vučićević, Ljubica, Kosić, Milica, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Graphene quantum dots protect SH-SY5Y cells from SNP-induced neurotoxicity by ROS/RNS scavenging" in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia (2021):165,
https://doi.org/10.1016/j.freeradbiomed.2021.08.167 . .

The opposite effects of trehalose on 6-hydroxydopamine and 1-methyl-4- phenylpyridinium induced oxidative stress in human neuroblastoma SH-SY5Y cells

Stevanović, Danijela; Vučićević, Ljubica; Misirkić Marjanović, Maja; Paunović, Verica; Kosić, Milica; Mandić, Miloš; Ristić, Biljana; Bošnjak, Mihajlo; Janjetović, Kristina; Zogović, Nevena; Tovilović-Kovačević, Gordana; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(Elsevier Inc., 2021)

TY  - CONF
AU  - Stevanović, Danijela
AU  - Vučićević, Ljubica
AU  - Misirkić Marjanović, Maja
AU  - Paunović, Verica
AU  - Kosić, Milica
AU  - Mandić, Miloš
AU  - Ristić, Biljana
AU  - Bošnjak, Mihajlo
AU  - Janjetović, Kristina
AU  - Zogović, Nevena
AU  - Tovilović-Kovačević, Gordana
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2021
UR  - https://www.sfrre2021belgrade.rs/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4725
AB  - 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+) are the most common neurotoxins used to induce experimental model of Parkinson’s disease both in vivo and in vitro. Neurotoxic action of 6-OHDA and MPP+
 is mediated by oxidative stress, mitochondrial damage and induction of apoptotic cell death. Natural disaccharide trehalose exhibits antioxidative properties and stimulates removal of damaged proteins, and thus exhibits powerful
neuroprotective effect in certain brain injury models. We investigated the effects of trehalose in 6-OHDA and MPP+
 - induced oxidative stress and neurotoxicity in human neuroblastoma SH-SY5Y cells. The effects of trehalose on the cell viability and death were assessed by MTT, crystal violet, lactate dehydrogenase assay and AnnexinV-FITC/propidium iodide staining. The production of reactive oxygen species was analyzed by flow cytometry using redox-sensitive dyes dihydrorhodamine 123 (DHR) and MitoSOX Red. Further, activation of stress-related MAP kinases, p38 and JNK were investigated by immunoblot analysis. Our study demonstrated that trehalose pretreatment significantly improved cell viability and reduced neurotoxic effect of 6-OHDA, while slightly decreased cell viability and increased neurotoxic effect of MPP+. Trehalose decreased the number of 6-OHDA-induced apoptotic cells (shown by the reduced % of Annexin V+ and AnnexinV+ PI+ cells) whereas it increased apoptosis in MPP+ treated cells. Flow
cytometric analysis of DHR and MitoSOX stained cells demonstrated that trehalose pretreatment significantly reduced 6-OHDA-triggered ROS and superoxide anion radical generation. However, in MPP+-treated neurons trehalose augmented oxidative stress and production of superoxide anion. Immunoblot analysis showed that trehalose significantly decreased p38 and JNK activation only in 6-OHDA treated cells. These results indicate that trehalose has different effects on oxidative stress induced by two different neurotoxins, 6-OHDA and MPP+, and suggests further
exploration of the mechanism of its antioxidative action.
PB  - Elsevier Inc.
C3  - Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
T1  - The opposite effects of trehalose on 6-hydroxydopamine and 1-methyl-4- phenylpyridinium induced oxidative stress in human neuroblastoma SH-SY5Y cells
DO  - 10.1016/j.freeradbiomed.2021.08.097
SP  - 94
ER  - 
@conference{
author = "Stevanović, Danijela and Vučićević, Ljubica and Misirkić Marjanović, Maja and Paunović, Verica and Kosić, Milica and Mandić, Miloš and Ristić, Biljana and Bošnjak, Mihajlo and Janjetović, Kristina and Zogović, Nevena and Tovilović-Kovačević, Gordana and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2021",
abstract = "6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+) are the most common neurotoxins used to induce experimental model of Parkinson’s disease both in vivo and in vitro. Neurotoxic action of 6-OHDA and MPP+
 is mediated by oxidative stress, mitochondrial damage and induction of apoptotic cell death. Natural disaccharide trehalose exhibits antioxidative properties and stimulates removal of damaged proteins, and thus exhibits powerful
neuroprotective effect in certain brain injury models. We investigated the effects of trehalose in 6-OHDA and MPP+
 - induced oxidative stress and neurotoxicity in human neuroblastoma SH-SY5Y cells. The effects of trehalose on the cell viability and death were assessed by MTT, crystal violet, lactate dehydrogenase assay and AnnexinV-FITC/propidium iodide staining. The production of reactive oxygen species was analyzed by flow cytometry using redox-sensitive dyes dihydrorhodamine 123 (DHR) and MitoSOX Red. Further, activation of stress-related MAP kinases, p38 and JNK were investigated by immunoblot analysis. Our study demonstrated that trehalose pretreatment significantly improved cell viability and reduced neurotoxic effect of 6-OHDA, while slightly decreased cell viability and increased neurotoxic effect of MPP+. Trehalose decreased the number of 6-OHDA-induced apoptotic cells (shown by the reduced % of Annexin V+ and AnnexinV+ PI+ cells) whereas it increased apoptosis in MPP+ treated cells. Flow
cytometric analysis of DHR and MitoSOX stained cells demonstrated that trehalose pretreatment significantly reduced 6-OHDA-triggered ROS and superoxide anion radical generation. However, in MPP+-treated neurons trehalose augmented oxidative stress and production of superoxide anion. Immunoblot analysis showed that trehalose significantly decreased p38 and JNK activation only in 6-OHDA treated cells. These results indicate that trehalose has different effects on oxidative stress induced by two different neurotoxins, 6-OHDA and MPP+, and suggests further
exploration of the mechanism of its antioxidative action.",
publisher = "Elsevier Inc.",
journal = "Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia",
title = "The opposite effects of trehalose on 6-hydroxydopamine and 1-methyl-4- phenylpyridinium induced oxidative stress in human neuroblastoma SH-SY5Y cells",
doi = "10.1016/j.freeradbiomed.2021.08.097",
pages = "94"
}
Stevanović, D., Vučićević, L., Misirkić Marjanović, M., Paunović, V., Kosić, M., Mandić, M., Ristić, B., Bošnjak, M., Janjetović, K., Zogović, N., Tovilović-Kovačević, G., Harhaji-Trajković, L.,& Trajković, V.. (2021). The opposite effects of trehalose on 6-hydroxydopamine and 1-methyl-4- phenylpyridinium induced oxidative stress in human neuroblastoma SH-SY5Y cells. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
Elsevier Inc.., 94.
https://doi.org/10.1016/j.freeradbiomed.2021.08.097
Stevanović D, Vučićević L, Misirkić Marjanović M, Paunović V, Kosić M, Mandić M, Ristić B, Bošnjak M, Janjetović K, Zogović N, Tovilović-Kovačević G, Harhaji-Trajković L, Trajković V. The opposite effects of trehalose on 6-hydroxydopamine and 1-methyl-4- phenylpyridinium induced oxidative stress in human neuroblastoma SH-SY5Y cells. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia. 2021;:94.
doi:10.1016/j.freeradbiomed.2021.08.097 .
Stevanović, Danijela, Vučićević, Ljubica, Misirkić Marjanović, Maja, Paunović, Verica, Kosić, Milica, Mandić, Miloš, Ristić, Biljana, Bošnjak, Mihajlo, Janjetović, Kristina, Zogović, Nevena, Tovilović-Kovačević, Gordana, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "The opposite effects of trehalose on 6-hydroxydopamine and 1-methyl-4- phenylpyridinium induced oxidative stress in human neuroblastoma SH-SY5Y cells" in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia (2021):94,
https://doi.org/10.1016/j.freeradbiomed.2021.08.097 . .

Antiglioma effect of ascorbic acid and menadione combination in U251 glioblastoma cell line is mediated by ROS-dependent downregulation of Akt

Despotović, Ana; Zogović, Nevena; Trajković, Vladimir; Harhaji-Trajković, Ljubica; Tovilović-Kovačević, Gordana

(Amsterdam : Elsevier, 2021)

TY  - CONF
AU  - Despotović, Ana
AU  - Zogović, Nevena
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
AU  - Tovilović-Kovačević, Gordana
PY  - 2021
UR  - https://www.sfrre2021belgrade.rs/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4723
AB  - Glioblastoma multiforme (GBM) represents the most common and aggressive brain tumor that still lacks effective treatment options. Tumorigenesis and progression of GBM is tightly connected with over-activation of PI3K/Akt pathway, as well as with perturbed reactive oxygen species (ROS) generation in tumor cells and microenvironment. Breaking the redox balance within the tumor cells by enhancing ROS production is one of the proposed strategies for the treatment of malignancies. The aim of this study was to investigate potential antiglioma effect of ascorbic acid (AA) and menadione (MD) combination (AA+MD), the well-known oxidative stress inducer, and determine the interplay between Akt kinase activity and ROS generation in AA+MD-treated human U251 glioblastoma cells. To this end, U251 cells were treated with AA, MD and AA+MD, in the presence or absence of antioxidant N-acetylcysteine (NAC) or selective Akt inhibitor 10-DEBC hydrochloride (DEBC). Cell viability was assessed using crystal violet and MTT assays, ROS production was evaluated by flow cytometry of dihydrorhodamine-labeled cells, while Akt activity was determined using immunoblot. In contrast to AA and MD alone, combined treatment significantly decreased viability of U251 cells. The prominent toxicity of AA+MD was accompanied by an increase in ROS generation and Akt inhibition. ROS scavenger NAC diminished both Akt inhibition and cytotoxic effect of AA+MD, suggesting that Akt inactivation and cell death induced by AA+MD are ROS-dependent. Additionally, specific Akt inhibitor DEBC further enhanced death of U251 cells and elevated AA+MD-induced ROS production. Collectively, these results suggest that PI3K/Akt serves as pro-survival pathway, and its abolishing due to excessive ROS accumulation leads to glioblastoma cell death. Further, a pro-survival role of PI3K/Akt might encompass ROS removal. In conclusion, treatment with AA and MD, particularly in combination with Akt-targeted therapy, has great potential in combating GBM which is worthy of further investigation.
PB  - Amsterdam : Elsevier
C3  - Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
T1  - Antiglioma effect of ascorbic acid and menadione combination in U251 glioblastoma  cell line is mediated by ROS-dependent downregulation of Akt
DO  - 10.1016/j.freeradbiomed.2021.08.072
SP  - 69
ER  - 
@conference{
author = "Despotović, Ana and Zogović, Nevena and Trajković, Vladimir and Harhaji-Trajković, Ljubica and Tovilović-Kovačević, Gordana",
year = "2021",
abstract = "Glioblastoma multiforme (GBM) represents the most common and aggressive brain tumor that still lacks effective treatment options. Tumorigenesis and progression of GBM is tightly connected with over-activation of PI3K/Akt pathway, as well as with perturbed reactive oxygen species (ROS) generation in tumor cells and microenvironment. Breaking the redox balance within the tumor cells by enhancing ROS production is one of the proposed strategies for the treatment of malignancies. The aim of this study was to investigate potential antiglioma effect of ascorbic acid (AA) and menadione (MD) combination (AA+MD), the well-known oxidative stress inducer, and determine the interplay between Akt kinase activity and ROS generation in AA+MD-treated human U251 glioblastoma cells. To this end, U251 cells were treated with AA, MD and AA+MD, in the presence or absence of antioxidant N-acetylcysteine (NAC) or selective Akt inhibitor 10-DEBC hydrochloride (DEBC). Cell viability was assessed using crystal violet and MTT assays, ROS production was evaluated by flow cytometry of dihydrorhodamine-labeled cells, while Akt activity was determined using immunoblot. In contrast to AA and MD alone, combined treatment significantly decreased viability of U251 cells. The prominent toxicity of AA+MD was accompanied by an increase in ROS generation and Akt inhibition. ROS scavenger NAC diminished both Akt inhibition and cytotoxic effect of AA+MD, suggesting that Akt inactivation and cell death induced by AA+MD are ROS-dependent. Additionally, specific Akt inhibitor DEBC further enhanced death of U251 cells and elevated AA+MD-induced ROS production. Collectively, these results suggest that PI3K/Akt serves as pro-survival pathway, and its abolishing due to excessive ROS accumulation leads to glioblastoma cell death. Further, a pro-survival role of PI3K/Akt might encompass ROS removal. In conclusion, treatment with AA and MD, particularly in combination with Akt-targeted therapy, has great potential in combating GBM which is worthy of further investigation.",
publisher = "Amsterdam : Elsevier",
journal = "Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia",
title = "Antiglioma effect of ascorbic acid and menadione combination in U251 glioblastoma  cell line is mediated by ROS-dependent downregulation of Akt",
doi = "10.1016/j.freeradbiomed.2021.08.072",
pages = "69"
}
Despotović, A., Zogović, N., Trajković, V., Harhaji-Trajković, L.,& Tovilović-Kovačević, G.. (2021). Antiglioma effect of ascorbic acid and menadione combination in U251 glioblastoma  cell line is mediated by ROS-dependent downregulation of Akt. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia
Amsterdam : Elsevier., 69.
https://doi.org/10.1016/j.freeradbiomed.2021.08.072
Despotović A, Zogović N, Trajković V, Harhaji-Trajković L, Tovilović-Kovačević G. Antiglioma effect of ascorbic acid and menadione combination in U251 glioblastoma  cell line is mediated by ROS-dependent downregulation of Akt. in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia. 2021;:69.
doi:10.1016/j.freeradbiomed.2021.08.072 .
Despotović, Ana, Zogović, Nevena, Trajković, Vladimir, Harhaji-Trajković, Ljubica, Tovilović-Kovačević, Gordana, "Antiglioma effect of ascorbic acid and menadione combination in U251 glioblastoma  cell line is mediated by ROS-dependent downregulation of Akt" in Free Radical Research Europe (SFRR-E) Annual Meeting Abstracts “Redox biology in the 21st century: a new scientific discipline” 15-18 June 2021, Belgrade, Serbia (2021):69,
https://doi.org/10.1016/j.freeradbiomed.2021.08.072 . .

Dual targeting of tumor cell energy metabolism and lysosomes as an anticancer strategy.

Paunović, Verica; Kosić, Milica; Misirkić Marjanović, Maja; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Elsevier BV, 2020)

TY  - JOUR
AU  - Paunović, Verica
AU  - Kosić, Milica
AU  - Misirkić Marjanović, Maja
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2020
UR  - http://www.ncbi.nlm.nih.gov/pubmed/33383091
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4096
AB  - To sustain their proliferative and metastatic capacity, tumor cells increase the activity of energy-producing pathways and lysosomal compartment, resorting to autophagolysosomal degradation when nutrients are scarce. Consequently, large fragile lysosomes and enhanced energy metabolism may serve as targets for anticancer therapy. A simultaneous induction of energy stress (by caloric restriction and inhibition of glycolysis, oxidative phosphorylation, Krebs cycle, or amino acid/fatty acid metabolism) and lysosomal stress (by lysosomotropic detergents, vacuolar ATPase inhibitors, or cationic amphiphilic drugs) is an efficient anti-cancer strategy demonstrated in a number of studies. However, the mechanisms of lysosomal/energy stress co-amplification, apart from the protective autophagy inhibition, are poorly understood. We here summarize the established and suggest potential mechanisms and candidates for anticancer therapy based on the dual targeting of lysosomes and energy metabolism.
PB  - Elsevier BV
T2  - Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
T1  - Dual targeting of tumor cell energy metabolism and lysosomes as an anticancer strategy.
IS  - 4
VL  - 1868
DO  - 10.1016/j.bbamcr.2020.118944
SP  - 118944
ER  - 
@article{
author = "Paunović, Verica and Kosić, Milica and Misirkić Marjanović, Maja and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2020",
abstract = "To sustain their proliferative and metastatic capacity, tumor cells increase the activity of energy-producing pathways and lysosomal compartment, resorting to autophagolysosomal degradation when nutrients are scarce. Consequently, large fragile lysosomes and enhanced energy metabolism may serve as targets for anticancer therapy. A simultaneous induction of energy stress (by caloric restriction and inhibition of glycolysis, oxidative phosphorylation, Krebs cycle, or amino acid/fatty acid metabolism) and lysosomal stress (by lysosomotropic detergents, vacuolar ATPase inhibitors, or cationic amphiphilic drugs) is an efficient anti-cancer strategy demonstrated in a number of studies. However, the mechanisms of lysosomal/energy stress co-amplification, apart from the protective autophagy inhibition, are poorly understood. We here summarize the established and suggest potential mechanisms and candidates for anticancer therapy based on the dual targeting of lysosomes and energy metabolism.",
publisher = "Elsevier BV",
journal = "Biochimica et Biophysica Acta (BBA) - Molecular Cell Research",
title = "Dual targeting of tumor cell energy metabolism and lysosomes as an anticancer strategy.",
number = "4",
volume = "1868",
doi = "10.1016/j.bbamcr.2020.118944",
pages = "118944"
}
Paunović, V., Kosić, M., Misirkić Marjanović, M., Trajković, V.,& Harhaji-Trajković, L.. (2020). Dual targeting of tumor cell energy metabolism and lysosomes as an anticancer strategy.. in Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Elsevier BV., 1868(4), 118944.
https://doi.org/10.1016/j.bbamcr.2020.118944
Paunović V, Kosić M, Misirkić Marjanović M, Trajković V, Harhaji-Trajković L. Dual targeting of tumor cell energy metabolism and lysosomes as an anticancer strategy.. in Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2020;1868(4):118944.
doi:10.1016/j.bbamcr.2020.118944 .
Paunović, Verica, Kosić, Milica, Misirkić Marjanović, Maja, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Dual targeting of tumor cell energy metabolism and lysosomes as an anticancer strategy." in Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1868, no. 4 (2020):118944,
https://doi.org/10.1016/j.bbamcr.2020.118944 . .
3
11
3
9

Glutamate-mediated autophagy inhibition intensifies excitotoxic death of nutrient-deprived SH-SY5Y neuroblastoma cells

Misirkić Marjanović, Maja; Vučićević, Ljubica; Ćirić, Darko; Martinović, Tamara; Jovanović, Maja; Isaković, Aleksandra; Marković, Ivanka; Trajković, Vladimir

(Nordic Autophagy Society, 2019)

TY  - CONF
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Ćirić, Darko
AU  - Martinović, Tamara
AU  - Jovanović, Maja
AU  - Isaković, Aleksandra
AU  - Marković, Ivanka
AU  - Trajković, Vladimir
PY  - 2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6661
AB  - We investigated the role of autophagy in glutamate excitotoxicity during nutrient deprivation in vitro. Lack of serum, amino acids, and glucose markedly increased the sensitivity of SH-SY5Y human neuroblastoma cell line to glutamate-induced excitotoxic necrosis. Glutamate suppressed starvation-triggered autophagic response, as confirmed by diminished intracellular acidification, lower LC3 punctuation and conversion of LC3I to autophagosome associated LC3II, reduced levels of autophagy activators beclin-1 and ATG5, increased levels of the selective autophagic target NBR1, and reduced appearance of autophagic vesicles observed by transmission electron microscopy. Glutamate reduced starvation-triggered phosphorylation of the intracellular energy sensor AMP-activated protein kinase (AMPK), without affecting the activity of mammalian target of rapamycin complex1 as a major negative regulator of autophagy. Similar results were shown on PC12 cells, which are often exploited as a model for excitotoxicity. We also detected reduced mRNA expression of autophagy transcription factors FOXO3 and ATF4, as well as molecules involved in autophagy initiation (ULK1, ATG13, FIP200), autophagosome nucleation/elongation (ATG14, beclin 1, ATG5, ATG12), and the autophagy cargo delivery to autophagosmes (SQSTM1/p62). Genetic or pharmacological AMPK activation by AMPK overexpression or metformin, reduced the sensitivity of nutrient-deprived SH-SY5Y cells to glutamate dependent autophagy is involved in glutamate-mediated excitotoxicity during nutrient deprivation in vitro.
PB  - Nordic Autophagy Society
C3  - 3rd Nordic Autophagy Society (NAS) Conference; 2019 May 22-24; Utrecht, Nederlands
T1  - Glutamate-mediated autophagy inhibition intensifies excitotoxic death of nutrient-deprived SH-SY5Y neuroblastoma cells
SP  - 34
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6661
ER  - 
@conference{
author = "Misirkić Marjanović, Maja and Vučićević, Ljubica and Ćirić, Darko and Martinović, Tamara and Jovanović, Maja and Isaković, Aleksandra and Marković, Ivanka and Trajković, Vladimir",
year = "2019",
abstract = "We investigated the role of autophagy in glutamate excitotoxicity during nutrient deprivation in vitro. Lack of serum, amino acids, and glucose markedly increased the sensitivity of SH-SY5Y human neuroblastoma cell line to glutamate-induced excitotoxic necrosis. Glutamate suppressed starvation-triggered autophagic response, as confirmed by diminished intracellular acidification, lower LC3 punctuation and conversion of LC3I to autophagosome associated LC3II, reduced levels of autophagy activators beclin-1 and ATG5, increased levels of the selective autophagic target NBR1, and reduced appearance of autophagic vesicles observed by transmission electron microscopy. Glutamate reduced starvation-triggered phosphorylation of the intracellular energy sensor AMP-activated protein kinase (AMPK), without affecting the activity of mammalian target of rapamycin complex1 as a major negative regulator of autophagy. Similar results were shown on PC12 cells, which are often exploited as a model for excitotoxicity. We also detected reduced mRNA expression of autophagy transcription factors FOXO3 and ATF4, as well as molecules involved in autophagy initiation (ULK1, ATG13, FIP200), autophagosome nucleation/elongation (ATG14, beclin 1, ATG5, ATG12), and the autophagy cargo delivery to autophagosmes (SQSTM1/p62). Genetic or pharmacological AMPK activation by AMPK overexpression or metformin, reduced the sensitivity of nutrient-deprived SH-SY5Y cells to glutamate dependent autophagy is involved in glutamate-mediated excitotoxicity during nutrient deprivation in vitro.",
publisher = "Nordic Autophagy Society",
journal = "3rd Nordic Autophagy Society (NAS) Conference; 2019 May 22-24; Utrecht, Nederlands",
title = "Glutamate-mediated autophagy inhibition intensifies excitotoxic death of nutrient-deprived SH-SY5Y neuroblastoma cells",
pages = "34",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6661"
}
Misirkić Marjanović, M., Vučićević, L., Ćirić, D., Martinović, T., Jovanović, M., Isaković, A., Marković, I.,& Trajković, V.. (2019). Glutamate-mediated autophagy inhibition intensifies excitotoxic death of nutrient-deprived SH-SY5Y neuroblastoma cells. in 3rd Nordic Autophagy Society (NAS) Conference; 2019 May 22-24; Utrecht, Nederlands
Nordic Autophagy Society., 34.
https://hdl.handle.net/21.15107/rcub_ibiss_6661
Misirkić Marjanović M, Vučićević L, Ćirić D, Martinović T, Jovanović M, Isaković A, Marković I, Trajković V. Glutamate-mediated autophagy inhibition intensifies excitotoxic death of nutrient-deprived SH-SY5Y neuroblastoma cells. in 3rd Nordic Autophagy Society (NAS) Conference; 2019 May 22-24; Utrecht, Nederlands. 2019;:34.
https://hdl.handle.net/21.15107/rcub_ibiss_6661 .
Misirkić Marjanović, Maja, Vučićević, Ljubica, Ćirić, Darko, Martinović, Tamara, Jovanović, Maja, Isaković, Aleksandra, Marković, Ivanka, Trajković, Vladimir, "Glutamate-mediated autophagy inhibition intensifies excitotoxic death of nutrient-deprived SH-SY5Y neuroblastoma cells" in 3rd Nordic Autophagy Society (NAS) Conference; 2019 May 22-24; Utrecht, Nederlands (2019):34,
https://hdl.handle.net/21.15107/rcub_ibiss_6661 .

MAP kinase-dependent autophagy is involved in phorbol myristate acetate differentiation of HL-60 leukemia cells

Mandić, Miloš; Misirkić Marjanović, Maja; Vučićević, Ljubica; Jovanović, Maja; Bošnjak, Mihajlo; Perović, Vladimir; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(Nordic Autophagy Society, 2019)

TY  - CONF
AU  - Mandić, Miloš
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Jovanović, Maja
AU  - Bošnjak, Mihajlo
AU  - Perović, Vladimir
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2019
UR  - https://nordicautophagy.org
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6597
AB  - We investigated the mechanism and the role of autophagy in phorbol myristate acetate (PMA)-induced myeloid differentiation of human acute myeloid leukemia HL-60 cells. Methods: The mRNA levels of myeloid differentiation markers colony stimulating factor 1 receptor (CSF1R), early growth response protein 1 (EGR1), and interleukin 8 (IL-8), were assessed by real-time RT-PCR. Cell cycle arrest and the expression of surface myeloid marker CD11b were analyzed by flow cytometry. Autophagy was monitored by acridine orange staining, RT-PCR analysis of autophagy-related (ATG) gene expression, LC3-II/p62 immunoblotting, Beclin-1/Bcl-2 interaction, nuclear translocation of transcription factor EB (TFEB). The activation of MAP kinases extracelluar signal-regulated kinase (ERK) and c-Jun-N terminal kinase (JNK) was assessed by immunoblotting. Pharmacological inhibition and RNA interference (RNAi) were used to determine the role of MAP kinases in autophagy and HL60 cell differentiation, while the role of autophagy in HL60 differentiation was analyzed using RNAi-mediated knockdown of ATG5 and p62. Results: PMA-induced differentiation of HL-60 cells into macrophage-like cells was confirmed by cell-cycle arrest accompanied by elevated expression of p21, CD11b, CSF1R, EGR1, and IL-8. The induction of autophagy was demonstrated by accumulation of LC3-II, the increase in autophagic flux, the increase in expression of ATG genes, nuclear translocation of TFEB and dissociation of Beclin1from Bcl-2.The suppression of autophagy by RNAi–mediated knockdown of ATG5 or p62 counteracted myeloid differentiation of HL60 cells. Both ERK and JNK were activated by PMA, and their pharmacological and genetic inhibition decreased PMA-induced autophagy and differentiation of HL60 cells. Conclusion: Our study revealed the involvement of JNK and ERK in autophagy-dependent myeloid differentiation of HL60 cells, indicating MAP kinase-mediated autophagy as a possible target for treatment of acute myeloid leukemia
PB  - Nordic Autophagy Society
C3  - 3rd Nordic Autophagy Society (NAS) Conference; 2019 May 22-24; Utrecht, Netherlands
T1  - MAP kinase-dependent autophagy is involved in phorbol myristate acetate differentiation of HL-60 leukemia cells
SP  - 33
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6597
ER  - 
@conference{
author = "Mandić, Miloš and Misirkić Marjanović, Maja and Vučićević, Ljubica and Jovanović, Maja and Bošnjak, Mihajlo and Perović, Vladimir and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2019",
abstract = "We investigated the mechanism and the role of autophagy in phorbol myristate acetate (PMA)-induced myeloid differentiation of human acute myeloid leukemia HL-60 cells. Methods: The mRNA levels of myeloid differentiation markers colony stimulating factor 1 receptor (CSF1R), early growth response protein 1 (EGR1), and interleukin 8 (IL-8), were assessed by real-time RT-PCR. Cell cycle arrest and the expression of surface myeloid marker CD11b were analyzed by flow cytometry. Autophagy was monitored by acridine orange staining, RT-PCR analysis of autophagy-related (ATG) gene expression, LC3-II/p62 immunoblotting, Beclin-1/Bcl-2 interaction, nuclear translocation of transcription factor EB (TFEB). The activation of MAP kinases extracelluar signal-regulated kinase (ERK) and c-Jun-N terminal kinase (JNK) was assessed by immunoblotting. Pharmacological inhibition and RNA interference (RNAi) were used to determine the role of MAP kinases in autophagy and HL60 cell differentiation, while the role of autophagy in HL60 differentiation was analyzed using RNAi-mediated knockdown of ATG5 and p62. Results: PMA-induced differentiation of HL-60 cells into macrophage-like cells was confirmed by cell-cycle arrest accompanied by elevated expression of p21, CD11b, CSF1R, EGR1, and IL-8. The induction of autophagy was demonstrated by accumulation of LC3-II, the increase in autophagic flux, the increase in expression of ATG genes, nuclear translocation of TFEB and dissociation of Beclin1from Bcl-2.The suppression of autophagy by RNAi–mediated knockdown of ATG5 or p62 counteracted myeloid differentiation of HL60 cells. Both ERK and JNK were activated by PMA, and their pharmacological and genetic inhibition decreased PMA-induced autophagy and differentiation of HL60 cells. Conclusion: Our study revealed the involvement of JNK and ERK in autophagy-dependent myeloid differentiation of HL60 cells, indicating MAP kinase-mediated autophagy as a possible target for treatment of acute myeloid leukemia",
publisher = "Nordic Autophagy Society",
journal = "3rd Nordic Autophagy Society (NAS) Conference; 2019 May 22-24; Utrecht, Netherlands",
title = "MAP kinase-dependent autophagy is involved in phorbol myristate acetate differentiation of HL-60 leukemia cells",
pages = "33",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6597"
}
Mandić, M., Misirkić Marjanović, M., Vučićević, L., Jovanović, M., Bošnjak, M., Perović, V., Harhaji-Trajković, L.,& Trajković, V.. (2019). MAP kinase-dependent autophagy is involved in phorbol myristate acetate differentiation of HL-60 leukemia cells. in 3rd Nordic Autophagy Society (NAS) Conference; 2019 May 22-24; Utrecht, Netherlands
Nordic Autophagy Society., 33.
https://hdl.handle.net/21.15107/rcub_ibiss_6597
Mandić M, Misirkić Marjanović M, Vučićević L, Jovanović M, Bošnjak M, Perović V, Harhaji-Trajković L, Trajković V. MAP kinase-dependent autophagy is involved in phorbol myristate acetate differentiation of HL-60 leukemia cells. in 3rd Nordic Autophagy Society (NAS) Conference; 2019 May 22-24; Utrecht, Netherlands. 2019;:33.
https://hdl.handle.net/21.15107/rcub_ibiss_6597 .
Mandić, Miloš, Misirkić Marjanović, Maja, Vučićević, Ljubica, Jovanović, Maja, Bošnjak, Mihajlo, Perović, Vladimir, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "MAP kinase-dependent autophagy is involved in phorbol myristate acetate differentiation of HL-60 leukemia cells" in 3rd Nordic Autophagy Society (NAS) Conference; 2019 May 22-24; Utrecht, Netherlands (2019):33,
https://hdl.handle.net/21.15107/rcub_ibiss_6597 .

Dual role of mitochondrial damage in anticancer and antipsychotic treatment

Misirkić Marjanović, Maja; Vučićević, Ljubica; Kosić, Milica; Paunović, Verica; Arsikin-Csordas, Katarina; Ristić, Biljana; Marić, Nađa; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Kravić-Stevović, Tamara; Martinović, Tamara; Ćirić, Darko; Mirčić, Aleksandar; Petričević, Saša; Bumbaširević, Vladimir; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(The Mitochondrial Physiology Society, 2019)

TY  - CONF
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Kosić, Milica
AU  - Paunović, Verica
AU  - Arsikin-Csordas, Katarina
AU  - Ristić, Biljana
AU  - Marić, Nađa
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Kravić-Stevović, Tamara
AU  - Martinović, Tamara
AU  - Ćirić, Darko
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bumbaširević, Vladimir
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2019
UR  - https://www.mitoeagle.org/index.php/MiP2019/MitoEAGLE_Belgrade_RS
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6353
AB  - We analyzed the impact of mitochondrial damage in anticancer action of combining lysosomal
membrane permeabilization (LMP)-inducing agent N- dodecylimidazole (NDI)[1] with
glycolytic inhibitor 2-deoxy-D-glucose (2DG) and in antipsychotic action of atypical antipsychotic
olanzapine.
NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing ATP depletion,
mitochondrial damage and reactive oxygen species production, eventually leading to necrotic
death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma
cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant tocopherol, suggesting
the involvement of LMP and oxidative stress in the observed cytotoxicity. Moreover, the
combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6
mice by inducing necrotic death of tumor cells.
Based on these results, we propose that NDI-triggered LMPcauses initial mitochondrial damage
that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial
health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss,
and reactive oxygen species production, culminating in necrotic cell death.
We also investigated the role of autophagy, a controlled cellular self-digestion process, in regulating
survival of neurons exposed to olanzapine. Olanzapine induced autophagy in human
SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of
autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression
of autophagy-related (ATG) genes ATG4B, ATG5, andATG7. The production of reactive oxygen
species, but not modulation of the main autophagy repressor mTOR or its upstream regulators
AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy.
Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage,
and the autophagic clearance of dysfunctional mitochondria [2] was confirmed by electron microscopy,
colocalization of autophagosome associated MAP1LC3B (LC3B) and mitochondria,
and mitochondrial association with the autophagic cargo receptor p62. While olanzapine-triggered
mitochondrial damage was not visibly toxic to SH-SY5Ycells, their death was readily initiated
upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown
of BECN1 and LC3B. The treatment of mice with olanzapine increased the brain levels of
LC3B-II and mRNA encoding Atg4b,Atg5, Atg7, Atg12, Gabarap, and Becn1.
These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal
mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action
of the drug.
References;
1. Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death.
Mitochondrion10: 662-669.
2. Wang K, Klionsky DJ(2011) Mitochondrial removal by autophagy. Autophagy 7:297-300.
PB  - The Mitochondrial Physiology Society
C3  - Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia
T1  - Dual role of mitochondrial damage in anticancer and antipsychotic treatment
SP  - 29
EP  - 29
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6353
ER  - 
@conference{
author = "Misirkić Marjanović, Maja and Vučićević, Ljubica and Kosić, Milica and Paunović, Verica and Arsikin-Csordas, Katarina and Ristić, Biljana and Marić, Nađa and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Kravić-Stevović, Tamara and Martinović, Tamara and Ćirić, Darko and Mirčić, Aleksandar and Petričević, Saša and Bumbaširević, Vladimir and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2019",
abstract = "We analyzed the impact of mitochondrial damage in anticancer action of combining lysosomal
membrane permeabilization (LMP)-inducing agent N- dodecylimidazole (NDI)[1] with
glycolytic inhibitor 2-deoxy-D-glucose (2DG) and in antipsychotic action of atypical antipsychotic
olanzapine.
NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing ATP depletion,
mitochondrial damage and reactive oxygen species production, eventually leading to necrotic
death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma
cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant tocopherol, suggesting
the involvement of LMP and oxidative stress in the observed cytotoxicity. Moreover, the
combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6
mice by inducing necrotic death of tumor cells.
Based on these results, we propose that NDI-triggered LMPcauses initial mitochondrial damage
that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial
health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss,
and reactive oxygen species production, culminating in necrotic cell death.
We also investigated the role of autophagy, a controlled cellular self-digestion process, in regulating
survival of neurons exposed to olanzapine. Olanzapine induced autophagy in human
SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of
autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression
of autophagy-related (ATG) genes ATG4B, ATG5, andATG7. The production of reactive oxygen
species, but not modulation of the main autophagy repressor mTOR or its upstream regulators
AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy.
Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage,
and the autophagic clearance of dysfunctional mitochondria [2] was confirmed by electron microscopy,
colocalization of autophagosome associated MAP1LC3B (LC3B) and mitochondria,
and mitochondrial association with the autophagic cargo receptor p62. While olanzapine-triggered
mitochondrial damage was not visibly toxic to SH-SY5Ycells, their death was readily initiated
upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown
of BECN1 and LC3B. The treatment of mice with olanzapine increased the brain levels of
LC3B-II and mRNA encoding Atg4b,Atg5, Atg7, Atg12, Gabarap, and Becn1.
These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal
mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action
of the drug.
References;
1. Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death.
Mitochondrion10: 662-669.
2. Wang K, Klionsky DJ(2011) Mitochondrial removal by autophagy. Autophagy 7:297-300.",
publisher = "The Mitochondrial Physiology Society",
journal = "Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia",
title = "Dual role of mitochondrial damage in anticancer and antipsychotic treatment",
pages = "29-29",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6353"
}
Misirkić Marjanović, M., Vučićević, L., Kosić, M., Paunović, V., Arsikin-Csordas, K., Ristić, B., Marić, N., Bošnjak, M., Zogović, N., Mandić, M., Kravić-Stevović, T., Martinović, T., Ćirić, D., Mirčić, A., Petričević, S., Bumbaširević, V., Harhaji-Trajković, L.,& Trajković, V.. (2019). Dual role of mitochondrial damage in anticancer and antipsychotic treatment. in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia
The Mitochondrial Physiology Society., 29-29.
https://hdl.handle.net/21.15107/rcub_ibiss_6353
Misirkić Marjanović M, Vučićević L, Kosić M, Paunović V, Arsikin-Csordas K, Ristić B, Marić N, Bošnjak M, Zogović N, Mandić M, Kravić-Stevović T, Martinović T, Ćirić D, Mirčić A, Petričević S, Bumbaširević V, Harhaji-Trajković L, Trajković V. Dual role of mitochondrial damage in anticancer and antipsychotic treatment. in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia. 2019;:29-29.
https://hdl.handle.net/21.15107/rcub_ibiss_6353 .
Misirkić Marjanović, Maja, Vučićević, Ljubica, Kosić, Milica, Paunović, Verica, Arsikin-Csordas, Katarina, Ristić, Biljana, Marić, Nađa, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Kravić-Stevović, Tamara, Martinović, Tamara, Ćirić, Darko, Mirčić, Aleksandar, Petričević, Saša, Bumbaširević, Vladimir, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Dual role of mitochondrial damage in anticancer and antipsychotic treatment" in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia (2019):29-29,
https://hdl.handle.net/21.15107/rcub_ibiss_6353 .

The protective role of AMPK and autophagy in neurotoxicity caused by extracellular alpha-synuclein

Jeremić, Marija; Jovanović, Maja; Dulović, Marija; Tovilović-Kovačević, Gordana; Zogović, Nevena; Harhaji-Trajković, Ljubica; Vukojević, Milica; Kostić, Vladimir; Marković, Ivanka; Trajković, Vladimir

(Belgrade: Serbian Neuroscience Society, 2019)

TY  - CONF
AU  - Jeremić, Marija
AU  - Jovanović, Maja
AU  - Dulović, Marija
AU  - Tovilović-Kovačević, Gordana
AU  - Zogović, Nevena
AU  - Harhaji-Trajković, Ljubica
AU  - Vukojević, Milica
AU  - Kostić, Vladimir
AU  - Marković, Ivanka
AU  - Trajković, Vladimir
PY  - 2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6342
AB  - Alpha-synuclein (ASYN) is regarded as one of the key culprits in pathogenesis of synucleinopathies, including Parkinson’s disease, and impaired regulation of autophagy is associated with the ASYN aggregation. Autophagy is regulated by complex mechanisms, including AMP activated protein kinase (AMPK), a key energy sensor regulating cellular metabolism to maintain energy homeostasis. The aim of our study was to investigate the role of AMPK and autophagy in neurotoxic effect of secreted ASYN, as well as dopamine-modified and nitrated recombinant wild-type ASYN oligomers, on retinoic acid (RA)-differentiated SH-SY5Y cells. The culture supernatant from neuroblastoma cells stably expressing wt ASYN was collected and used as conditioned medium (CM). The presence of wt ASYN in CM was confirmed by immunoblot, following lyophilisation. The CM, as well as recombinant dopamine-modified or nitrated ASYN, all reduced viability in differentiated SH-SY5Y cells. This decrease in viability was accompanied by reduced AMPK activation, increased conversion of LC3-I to LC3-II and increase
in Beclin-1 level, as demonstrated by immunoblot. Pharmacological activators of AMPK and autophagy (metformin and AICAR) significantly increased the cells’ viability in the presence of CM and modified ASYN forms. Pharmacological inhibitors of autophagy (chloroqine, bafilomycin A1 and ammonium-chloride), further reduced cell viability in the presence of extracellular ASYN. The shRNA-mediated LC3 downregulation, as well as the RNA interference-mediated knockdown of ATG7 gene, both important for autophagosome biogenesis/maturation, increased sensitivity of SH-SY5Y cells to the extracellular ASYN-induced toxicity. These data demonstrate the protective role of AMPK and autophagy against the toxicity of extracellular ASYN, suggesting that their modulation may be a promising neuroprotective strategy in Parkinson’s disease.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
T1  - The protective role of AMPK and autophagy in neurotoxicity caused by extracellular alpha-synuclein
SP  - 493
EP  - 493
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6342
ER  - 
@conference{
author = "Jeremić, Marija and Jovanović, Maja and Dulović, Marija and Tovilović-Kovačević, Gordana and Zogović, Nevena and Harhaji-Trajković, Ljubica and Vukojević, Milica and Kostić, Vladimir and Marković, Ivanka and Trajković, Vladimir",
year = "2019",
abstract = "Alpha-synuclein (ASYN) is regarded as one of the key culprits in pathogenesis of synucleinopathies, including Parkinson’s disease, and impaired regulation of autophagy is associated with the ASYN aggregation. Autophagy is regulated by complex mechanisms, including AMP activated protein kinase (AMPK), a key energy sensor regulating cellular metabolism to maintain energy homeostasis. The aim of our study was to investigate the role of AMPK and autophagy in neurotoxic effect of secreted ASYN, as well as dopamine-modified and nitrated recombinant wild-type ASYN oligomers, on retinoic acid (RA)-differentiated SH-SY5Y cells. The culture supernatant from neuroblastoma cells stably expressing wt ASYN was collected and used as conditioned medium (CM). The presence of wt ASYN in CM was confirmed by immunoblot, following lyophilisation. The CM, as well as recombinant dopamine-modified or nitrated ASYN, all reduced viability in differentiated SH-SY5Y cells. This decrease in viability was accompanied by reduced AMPK activation, increased conversion of LC3-I to LC3-II and increase
in Beclin-1 level, as demonstrated by immunoblot. Pharmacological activators of AMPK and autophagy (metformin and AICAR) significantly increased the cells’ viability in the presence of CM and modified ASYN forms. Pharmacological inhibitors of autophagy (chloroqine, bafilomycin A1 and ammonium-chloride), further reduced cell viability in the presence of extracellular ASYN. The shRNA-mediated LC3 downregulation, as well as the RNA interference-mediated knockdown of ATG7 gene, both important for autophagosome biogenesis/maturation, increased sensitivity of SH-SY5Y cells to the extracellular ASYN-induced toxicity. These data demonstrate the protective role of AMPK and autophagy against the toxicity of extracellular ASYN, suggesting that their modulation may be a promising neuroprotective strategy in Parkinson’s disease.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia",
title = "The protective role of AMPK and autophagy in neurotoxicity caused by extracellular alpha-synuclein",
pages = "493-493",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6342"
}
Jeremić, M., Jovanović, M., Dulović, M., Tovilović-Kovačević, G., Zogović, N., Harhaji-Trajković, L., Vukojević, M., Kostić, V., Marković, I.,& Trajković, V.. (2019). The protective role of AMPK and autophagy in neurotoxicity caused by extracellular alpha-synuclein. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 493-493.
https://hdl.handle.net/21.15107/rcub_ibiss_6342
Jeremić M, Jovanović M, Dulović M, Tovilović-Kovačević G, Zogović N, Harhaji-Trajković L, Vukojević M, Kostić V, Marković I, Trajković V. The protective role of AMPK and autophagy in neurotoxicity caused by extracellular alpha-synuclein. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia. 2019;:493-493.
https://hdl.handle.net/21.15107/rcub_ibiss_6342 .
Jeremić, Marija, Jovanović, Maja, Dulović, Marija, Tovilović-Kovačević, Gordana, Zogović, Nevena, Harhaji-Trajković, Ljubica, Vukojević, Milica, Kostić, Vladimir, Marković, Ivanka, Trajković, Vladimir, "The protective role of AMPK and autophagy in neurotoxicity caused by extracellular alpha-synuclein" in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia (2019):493-493,
https://hdl.handle.net/21.15107/rcub_ibiss_6342 .

Phorbol 12-myristate 13-acetate induces senescence of HL-60 leukemic cells

Mandić, Miloš; Vučićević, Ljubica; Misirkić Marjanović, Maja; Jovanović, Maja; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(Belgrade: Institute for Biological Research "Siniša Stanković", University of Belgrade, 2018)

TY  - CONF
AU  - Mandić, Miloš
AU  - Vučićević, Ljubica
AU  - Misirkić Marjanović, Maja
AU  - Jovanović, Maja
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2018
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6287
AB  - Introduction: Phorbol myristate acetate (PMA) is in
clinical investigation for treatment of acute myeloid
leukemia due to its differentiating ability. Cell differentiation could be accompanied by senescence, a state
of irreversible cell cycle arrest.
Our aim was to investigate the ability of PMA to initiate
senescence in HL60 human leukemia cells.
Methods: Cell morphology was analyzed using phase
contrast microscopy. Cell cycle arrest was assessed
by flow cytometric analysis of propidium iodide stained
cells and BrdU colorimetric assay. Activity of senescence-associated beta-galactosidase (SA-βgal) was
assessed by cytochemical staining and flow cytometric analysis of fluorescein di-β-D-galactopyranoside
(FDG) stained cells. Senescence-associated gene expression of: cell cycle inhibitor p21, interleukin-8 (IL-8),
lamin B1 were quantified by RT-PCR, while activation
of NF-κB, main regulator of senescence associated secretory phenotype, was examined by immunoblotting.
Results: After the PMA treatment HL60 were enlarged and flattened with cytoplasmic vacuoles resembling morphology of senescent cells. Block in
leukemia cell proliferation in G1 phase was accompanied with increase in expression of cell cycle inhibitor p21 in PMA treated cells. Finally, PMA stimulated
SA-βgal activity, expression of genes responsible for
senescence associated secretory phenotype, NF-κB
and IL-8, while downregulating Lamin B1 expression.
Conclusion: Our results suggest that in addition to
PMA-induced cellular differentiation, senescence
participates in its previously shown cytostatic effect,
further supporting its investigation as a potential antileukemic drug.
PB  - Belgrade: Institute for Biological Research "Siniša Stanković", University of Belgrade
C3  - Program & Book of Abstracts. IUBMB Advanced School Nutrition, Metabolism and Aging; 2018 Oct 15-19; Petnica, Serbia
T1  - Phorbol 12-myristate 13-acetate induces senescence of HL-60 leukemic cells
SP  - 38
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6287
ER  - 
@conference{
author = "Mandić, Miloš and Vučićević, Ljubica and Misirkić Marjanović, Maja and Jovanović, Maja and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2018",
abstract = "Introduction: Phorbol myristate acetate (PMA) is in
clinical investigation for treatment of acute myeloid
leukemia due to its differentiating ability. Cell differentiation could be accompanied by senescence, a state
of irreversible cell cycle arrest.
Our aim was to investigate the ability of PMA to initiate
senescence in HL60 human leukemia cells.
Methods: Cell morphology was analyzed using phase
contrast microscopy. Cell cycle arrest was assessed
by flow cytometric analysis of propidium iodide stained
cells and BrdU colorimetric assay. Activity of senescence-associated beta-galactosidase (SA-βgal) was
assessed by cytochemical staining and flow cytometric analysis of fluorescein di-β-D-galactopyranoside
(FDG) stained cells. Senescence-associated gene expression of: cell cycle inhibitor p21, interleukin-8 (IL-8),
lamin B1 were quantified by RT-PCR, while activation
of NF-κB, main regulator of senescence associated secretory phenotype, was examined by immunoblotting.
Results: After the PMA treatment HL60 were enlarged and flattened with cytoplasmic vacuoles resembling morphology of senescent cells. Block in
leukemia cell proliferation in G1 phase was accompanied with increase in expression of cell cycle inhibitor p21 in PMA treated cells. Finally, PMA stimulated
SA-βgal activity, expression of genes responsible for
senescence associated secretory phenotype, NF-κB
and IL-8, while downregulating Lamin B1 expression.
Conclusion: Our results suggest that in addition to
PMA-induced cellular differentiation, senescence
participates in its previously shown cytostatic effect,
further supporting its investigation as a potential antileukemic drug.",
publisher = "Belgrade: Institute for Biological Research "Siniša Stanković", University of Belgrade",
journal = "Program & Book of Abstracts. IUBMB Advanced School Nutrition, Metabolism and Aging; 2018 Oct 15-19; Petnica, Serbia",
title = "Phorbol 12-myristate 13-acetate induces senescence of HL-60 leukemic cells",
pages = "38",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6287"
}
Mandić, M., Vučićević, L., Misirkić Marjanović, M., Jovanović, M., Harhaji-Trajković, L.,& Trajković, V.. (2018). Phorbol 12-myristate 13-acetate induces senescence of HL-60 leukemic cells. in Program & Book of Abstracts. IUBMB Advanced School Nutrition, Metabolism and Aging; 2018 Oct 15-19; Petnica, Serbia
Belgrade: Institute for Biological Research "Siniša Stanković", University of Belgrade., 38.
https://hdl.handle.net/21.15107/rcub_ibiss_6287
Mandić M, Vučićević L, Misirkić Marjanović M, Jovanović M, Harhaji-Trajković L, Trajković V. Phorbol 12-myristate 13-acetate induces senescence of HL-60 leukemic cells. in Program & Book of Abstracts. IUBMB Advanced School Nutrition, Metabolism and Aging; 2018 Oct 15-19; Petnica, Serbia. 2018;:38.
https://hdl.handle.net/21.15107/rcub_ibiss_6287 .
Mandić, Miloš, Vučićević, Ljubica, Misirkić Marjanović, Maja, Jovanović, Maja, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Phorbol 12-myristate 13-acetate induces senescence of HL-60 leukemic cells" in Program & Book of Abstracts. IUBMB Advanced School Nutrition, Metabolism and Aging; 2018 Oct 15-19; Petnica, Serbia (2018):38,
https://hdl.handle.net/21.15107/rcub_ibiss_6287 .

Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition

Kosić, Milica; Arsikin-Csordas, Katarina; Paunović, Verica; Firestone, Raymond A; Ristić, Biljana; Mirčić, Aleksandar; Petričević, Saša; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Bumbaširević, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Amsterdam: Elsevier, 2016)

TY  - JOUR
AU  - Kosić, Milica
AU  - Arsikin-Csordas, Katarina
AU  - Paunović, Verica
AU  - Firestone, Raymond A
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Bumbaširević, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2016
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6364
AB  - We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). NDI-triggered LMP and 2DG-me diated glycolysis block synergized in inducing rapid ATP
depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant a-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer
effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an
anticancer strategy.
PB  - Amsterdam: Elsevier
T2  - Journal of Biological Chemistry
T1  - Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition
IS  - 44
VL  - 291
DO  - 10.1074/jbc.M116.752113
SP  - 22936
EP  - 22948
ER  - 
@article{
author = "Kosić, Milica and Arsikin-Csordas, Katarina and Paunović, Verica and Firestone, Raymond A and Ristić, Biljana and Mirčić, Aleksandar and Petričević, Saša and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Bumbaširević, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2016",
abstract = "We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). NDI-triggered LMP and 2DG-me diated glycolysis block synergized in inducing rapid ATP
depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant a-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer
effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an
anticancer strategy.",
publisher = "Amsterdam: Elsevier",
journal = "Journal of Biological Chemistry",
title = "Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition",
number = "44",
volume = "291",
doi = "10.1074/jbc.M116.752113",
pages = "22936-22948"
}
Kosić, M., Arsikin-Csordas, K., Paunović, V., Firestone, R. A., Ristić, B., Mirčić, A., Petričević, S., Bošnjak, M., Zogović, N., Mandić, M., Bumbaširević, V., Trajković, V.,& Harhaji-Trajković, L.. (2016). Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition. in Journal of Biological Chemistry
Amsterdam: Elsevier., 291(44), 22936-22948.
https://doi.org/10.1074/jbc.M116.752113
Kosić M, Arsikin-Csordas K, Paunović V, Firestone RA, Ristić B, Mirčić A, Petričević S, Bošnjak M, Zogović N, Mandić M, Bumbaširević V, Trajković V, Harhaji-Trajković L. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition. in Journal of Biological Chemistry. 2016;291(44):22936-22948.
doi:10.1074/jbc.M116.752113 .
Kosić, Milica, Arsikin-Csordas, Katarina, Paunović, Verica, Firestone, Raymond A, Ristić, Biljana, Mirčić, Aleksandar, Petričević, Saša, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Bumbaširević, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition" in Journal of Biological Chemistry, 291, no. 44 (2016):22936-22948,
https://doi.org/10.1074/jbc.M116.752113 . .
14
4
13

Aloe emodin inhibits the cytotoxic action of tumor necrosis factor

Harhaji-Trajković, Ljubica; Mijatović, Sanja; Maksimović-Ivanić, Danijela; Popadić, Dusan; Isaković,  Aleksandra; Todorović-Marković, Biljana; Trajković, Vladimir

(Amsterdam: Elsevier, 2007)

TY  - JOUR
AU  - Harhaji-Trajković, Ljubica
AU  - Mijatović, Sanja
AU  - Maksimović-Ivanić, Danijela
AU  - Popadić, Dusan
AU  - Isaković,  Aleksandra
AU  - Todorović-Marković, Biljana
AU  - Trajković, Vladimir
PY  - 2007
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3825
AB  - We demonstrate the capacity of an herbal anthraquinone aloe emodin to reduce the cytotoxicity of the proinflammatory cytokine tumor necrosis factor (TNF) towards L929 mouse fibrosarcoma and U251 human glioma cell lines. Aloe emodin inhibited both TNF-induced cell necrosis and apoptosis, but it did not reduce cell death induced by UV radiation or hydrogen peroxide. Aloe emodin inhibited both basal and TNF-triggered activation of extracellular signal-regulated kinase (ERK), and a selective blockade of ERK activation mimicked the cytoprotective action of the drug. On the other hand, aloe emodin did not affect TNF-induced activation of p38 mitogen-activated protein kinase or generation of reactive oxygen species. The combination of aloe emodin and TNF caused an intracellular appearance of acidified autophagic vesicles, and the inhibition of autophagy with bafilomycin or 3-methyladenine efficiently blocked the cytoprotective action of aloe emodin. These data indicate that aloe emodin could prevent TNF-triggered cell death through mechanisms involving induction of autophagy and blockade of ERK activation.
PB  - Amsterdam: Elsevier
T2  - European Journal of Pharmacology
T1  - Aloe emodin inhibits the cytotoxic action of tumor necrosis factor
IS  - 1-3
VL  - 568
VL  - 568
DO  - 10.1016/j.ejphar.2007.04.029
SP  - 248
EP  - 259
ER  - 
@article{
author = "Harhaji-Trajković, Ljubica and Mijatović, Sanja and Maksimović-Ivanić, Danijela and Popadić, Dusan and Isaković,  Aleksandra and Todorović-Marković, Biljana and Trajković, Vladimir",
year = "2007",
abstract = "We demonstrate the capacity of an herbal anthraquinone aloe emodin to reduce the cytotoxicity of the proinflammatory cytokine tumor necrosis factor (TNF) towards L929 mouse fibrosarcoma and U251 human glioma cell lines. Aloe emodin inhibited both TNF-induced cell necrosis and apoptosis, but it did not reduce cell death induced by UV radiation or hydrogen peroxide. Aloe emodin inhibited both basal and TNF-triggered activation of extracellular signal-regulated kinase (ERK), and a selective blockade of ERK activation mimicked the cytoprotective action of the drug. On the other hand, aloe emodin did not affect TNF-induced activation of p38 mitogen-activated protein kinase or generation of reactive oxygen species. The combination of aloe emodin and TNF caused an intracellular appearance of acidified autophagic vesicles, and the inhibition of autophagy with bafilomycin or 3-methyladenine efficiently blocked the cytoprotective action of aloe emodin. These data indicate that aloe emodin could prevent TNF-triggered cell death through mechanisms involving induction of autophagy and blockade of ERK activation.",
publisher = "Amsterdam: Elsevier",
journal = "European Journal of Pharmacology",
title = "Aloe emodin inhibits the cytotoxic action of tumor necrosis factor",
number = "1-3",
volume = "568, 568",
doi = "10.1016/j.ejphar.2007.04.029",
pages = "248-259"
}
Harhaji-Trajković, L., Mijatović, S., Maksimović-Ivanić, D., Popadić, D., Isaković,  ., Todorović-Marković, B.,& Trajković, V.. (2007). Aloe emodin inhibits the cytotoxic action of tumor necrosis factor. in European Journal of Pharmacology
Amsterdam: Elsevier., 568(1-3), 248-259.
https://doi.org/10.1016/j.ejphar.2007.04.029
Harhaji-Trajković L, Mijatović S, Maksimović-Ivanić D, Popadić D, Isaković  , Todorović-Marković B, Trajković V. Aloe emodin inhibits the cytotoxic action of tumor necrosis factor. in European Journal of Pharmacology. 2007;568(1-3):248-259.
doi:10.1016/j.ejphar.2007.04.029 .
Harhaji-Trajković, Ljubica, Mijatović, Sanja, Maksimović-Ivanić, Danijela, Popadić, Dusan, Isaković,  Aleksandra, Todorović-Marković, Biljana, Trajković, Vladimir, "Aloe emodin inhibits the cytotoxic action of tumor necrosis factor" in European Journal of Pharmacology, 568, no. 1-3 (2007):248-259,
https://doi.org/10.1016/j.ejphar.2007.04.029 . .
37
32

Novel platinum(IV) complexes induce rapid tumor cell death in vitro

Kaluđerović, Goran; Miljković, Đorđe; Momčilović, Miljana; Đinović, Vesna; Mostarica Stojković, Marija; Sabo, Tibor; Trajković, Vladimir

(John Wiley and Sons, 2005)

TY  - JOUR
AU  - Kaluđerović, Goran
AU  - Miljković, Đorđe
AU  - Momčilović, Miljana
AU  - Đinović, Vesna
AU  - Mostarica Stojković, Marija
AU  - Sabo, Tibor
AU  - Trajković, Vladimir
PY  - 2005
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6014
AB  - The anticancer activity of platinum complexes has been known since the discovery of classical Pt(II)-based drug cisplatin. However, Pt(IV) complexes have greater inertness than corresponding Pt(II) complexes, thus allowing the oral administration and reducing the toxicity associated with platinum-based chemotherapy. Here, we describe the in vitro antitumor activity of some novel Pt(IV)-based agents against mouse fibrosarcoma L929 cells and human astrocytoma U251 cells. The cytotoxicity of 2 Pt(IV) complexes with bidentate ethylenediamine-N,N'-di-3-propanoato esters was found to be markedly higher than that of their Pt(II) counterparts and comparable to the antitumor action of cisplatin. In contrast to cisplatin, which caused oxidative stress-independent apoptotic cell death of tumor cells, these Pt(IV) complexes induced oxygen radical-mediated tumor cell necrosis. Importantly, the cytotoxic action of novel Pt(IV) complexes was markedly more rapid than that of cisplatin, indicating their potential usefulness in anticancer therapy.
PB  - John Wiley and Sons
T2  - International Journal of Cancer
T1  - Novel platinum(IV) complexes induce rapid tumor cell death in vitro
IS  - 3
VL  - 116
DO  - 10.1002/ijc.21080
SP  - 479
EP  - 486
ER  - 
@article{
author = "Kaluđerović, Goran and Miljković, Đorđe and Momčilović, Miljana and Đinović, Vesna and Mostarica Stojković, Marija and Sabo, Tibor and Trajković, Vladimir",
year = "2005",
abstract = "The anticancer activity of platinum complexes has been known since the discovery of classical Pt(II)-based drug cisplatin. However, Pt(IV) complexes have greater inertness than corresponding Pt(II) complexes, thus allowing the oral administration and reducing the toxicity associated with platinum-based chemotherapy. Here, we describe the in vitro antitumor activity of some novel Pt(IV)-based agents against mouse fibrosarcoma L929 cells and human astrocytoma U251 cells. The cytotoxicity of 2 Pt(IV) complexes with bidentate ethylenediamine-N,N'-di-3-propanoato esters was found to be markedly higher than that of their Pt(II) counterparts and comparable to the antitumor action of cisplatin. In contrast to cisplatin, which caused oxidative stress-independent apoptotic cell death of tumor cells, these Pt(IV) complexes induced oxygen radical-mediated tumor cell necrosis. Importantly, the cytotoxic action of novel Pt(IV) complexes was markedly more rapid than that of cisplatin, indicating their potential usefulness in anticancer therapy.",
publisher = "John Wiley and Sons",
journal = "International Journal of Cancer",
title = "Novel platinum(IV) complexes induce rapid tumor cell death in vitro",
number = "3",
volume = "116",
doi = "10.1002/ijc.21080",
pages = "479-486"
}
Kaluđerović, G., Miljković, Đ., Momčilović, M., Đinović, V., Mostarica Stojković, M., Sabo, T.,& Trajković, V.. (2005). Novel platinum(IV) complexes induce rapid tumor cell death in vitro. in International Journal of Cancer
John Wiley and Sons., 116(3), 479-486.
https://doi.org/10.1002/ijc.21080
Kaluđerović G, Miljković Đ, Momčilović M, Đinović V, Mostarica Stojković M, Sabo T, Trajković V. Novel platinum(IV) complexes induce rapid tumor cell death in vitro. in International Journal of Cancer. 2005;116(3):479-486.
doi:10.1002/ijc.21080 .
Kaluđerović, Goran, Miljković, Đorđe, Momčilović, Miljana, Đinović, Vesna, Mostarica Stojković, Marija, Sabo, Tibor, Trajković, Vladimir, "Novel platinum(IV) complexes induce rapid tumor cell death in vitro" in International Journal of Cancer, 116, no. 3 (2005):479-486,
https://doi.org/10.1002/ijc.21080 . .
87
88
92

Aloe emodin decreases the ERK-dependent anticancer activity of cisplatin

Mijatović, Sanja; Maksimović-Ivanić, Danijela; Radović, Julijana; Miljković, Đorđe; Kaluđerović, Goran N.; Sabo, Tibor J; Trajković, Vladimir

(New York: Springer, 2005)

TY  - JOUR
AU  - Mijatović, Sanja
AU  - Maksimović-Ivanić, Danijela
AU  - Radović, Julijana
AU  - Miljković, Đorđe
AU  - Kaluđerović, Goran N.
AU  - Sabo, Tibor J
AU  - Trajković, Vladimir
PY  - 2005
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3839
AB  - The present study describes the ability of an anthraquinone derivative aloe emodin (AE) to reduce the cytotoxic activity of the platinum(II)-based anticancer agent cisplatin toward murine L929 fibrosarcoma and C6 glioma cell lines. The protective effect of AE was demonstrated by MTT and crystal violet assays for cell viability, and involved supression of cisplatin-induced apoptosis and necrosis, as assessed by lactate dehydrogenase release and flow cytometric analysis of DNA fragmentation or phosphatidylserine exposure. Cell-based ELISA and Western blot analysis revealed that AE abolished cisplatin-triggered activation of extracellular signal-regulated kinase (ERK) in tumor cells, while activation of c-Jun N-terminal kinase was not significantly altered. A selective blockade of ERK activation with PD98059 mimicked the protective effect of AE treatment in both tumor cell lines. Moreover, AE failed to protect tumor cells against the ERK-independent toxicity of the Pt(IV)-based complex tetrachloro(O,O-dibutyl-ethylenediamine-N,N'-di-3-propanoate)platinum(IV). Taken together, these data indicate that herbal anthraquinone AE can downregulate the anticancer activity of cisplatin by blocking the activation of ERK in tumor cells.
PB  - New York: Springer
T2  - Cellular and Molecular Life Sciences
T1  - Aloe emodin decreases the ERK-dependent anticancer activity of cisplatin
VL  - 62
DO  - 10.1007/s00018-005-5041-3
SP  - 1275
EP  - 1282
ER  - 
@article{
author = "Mijatović, Sanja and Maksimović-Ivanić, Danijela and Radović, Julijana and Miljković, Đorđe and Kaluđerović, Goran N. and Sabo, Tibor J and Trajković, Vladimir",
year = "2005",
abstract = "The present study describes the ability of an anthraquinone derivative aloe emodin (AE) to reduce the cytotoxic activity of the platinum(II)-based anticancer agent cisplatin toward murine L929 fibrosarcoma and C6 glioma cell lines. The protective effect of AE was demonstrated by MTT and crystal violet assays for cell viability, and involved supression of cisplatin-induced apoptosis and necrosis, as assessed by lactate dehydrogenase release and flow cytometric analysis of DNA fragmentation or phosphatidylserine exposure. Cell-based ELISA and Western blot analysis revealed that AE abolished cisplatin-triggered activation of extracellular signal-regulated kinase (ERK) in tumor cells, while activation of c-Jun N-terminal kinase was not significantly altered. A selective blockade of ERK activation with PD98059 mimicked the protective effect of AE treatment in both tumor cell lines. Moreover, AE failed to protect tumor cells against the ERK-independent toxicity of the Pt(IV)-based complex tetrachloro(O,O-dibutyl-ethylenediamine-N,N'-di-3-propanoate)platinum(IV). Taken together, these data indicate that herbal anthraquinone AE can downregulate the anticancer activity of cisplatin by blocking the activation of ERK in tumor cells.",
publisher = "New York: Springer",
journal = "Cellular and Molecular Life Sciences",
title = "Aloe emodin decreases the ERK-dependent anticancer activity of cisplatin",
volume = "62",
doi = "10.1007/s00018-005-5041-3",
pages = "1275-1282"
}
Mijatović, S., Maksimović-Ivanić, D., Radović, J., Miljković, Đ., Kaluđerović, G. N., Sabo, T. J.,& Trajković, V.. (2005). Aloe emodin decreases the ERK-dependent anticancer activity of cisplatin. in Cellular and Molecular Life Sciences
New York: Springer., 62, 1275-1282.
https://doi.org/10.1007/s00018-005-5041-3
Mijatović S, Maksimović-Ivanić D, Radović J, Miljković Đ, Kaluđerović GN, Sabo TJ, Trajković V. Aloe emodin decreases the ERK-dependent anticancer activity of cisplatin. in Cellular and Molecular Life Sciences. 2005;62:1275-1282.
doi:10.1007/s00018-005-5041-3 .
Mijatović, Sanja, Maksimović-Ivanić, Danijela, Radović, Julijana, Miljković, Đorđe, Kaluđerović, Goran N., Sabo, Tibor J, Trajković, Vladimir, "Aloe emodin decreases the ERK-dependent anticancer activity of cisplatin" in Cellular and Molecular Life Sciences, 62 (2005):1275-1282,
https://doi.org/10.1007/s00018-005-5041-3 . .
56
61
65

5-Aza-2'-deoxycytidine stimulates inducible nitric oxide synthase induction in C6 astrocytoma cells

Stojanović, Ivana D.; Popadić, Dušan; Vučković, Olivera; Harhaji-Trajković, Ljubica; Miljković, Đorđe; Trajković, Vladimir

(Elsevier B.V., 2004)

TY  - JOUR
AU  - Stojanović, Ivana D.
AU  - Popadić, Dušan
AU  - Vučković, Olivera
AU  - Harhaji-Trajković, Ljubica
AU  - Miljković, Đorđe
AU  - Trajković, Vladimir
PY  - 2004
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6009
AB  - The influence of a nucleoside analog 5-aza-2'-deoxycytidine (5-AzadC) on inducible nitric oxide synthase (iNOS)-dependent nitric oxide (NO) production in various rat cell types was investigated. In C6 astrocytoma cell line and primary astrocytes, 5-AzadC enhanced proinflammatory cytokine (IFN-gamma, TNF-alpha, IL-1)-triggered NO synthesis in a time- and dose-dependent manner. In contrast, 5-AzadC did not potentiate NO production in IFN-gamma-stimulated macrophages, fibroblasts, or endothelial cells. Blockade of transcription or translation in C6 cells abolished the observed effect, suggesting the iNOS gene expression, rather than its catalytic activity, as a target for the drug action. Accordingly, 5-AzadC upregulated IFN-gamma-induced expression of iNOS mRNA in C6 astrocytes. The effect of 5-AzadC on astrocyte NO release was blocked by the inhibitor of p44/42 mitogen activated protein kinase-dependent signaling. Finally, the observed stimulatory effect of 5-AzadC on iNOS expression was apparently independent of DNA demethylation, as DNA digestion with methylation-sensitive restriction enzyme HpaII showed that 5-AzadC failed to demethylate cellular DNA in conditions used for iNOS induction.
PB  - Elsevier B.V.
T2  - Brain Research
T1  - 5-Aza-2'-deoxycytidine stimulates inducible nitric oxide synthase induction in C6 astrocytoma cells
IS  - 1
VL  - 998
DO  - 10.1016/j.brainres.2003.11.014
SP  - 83
EP  - 90
ER  - 
@article{
author = "Stojanović, Ivana D. and Popadić, Dušan and Vučković, Olivera and Harhaji-Trajković, Ljubica and Miljković, Đorđe and Trajković, Vladimir",
year = "2004",
abstract = "The influence of a nucleoside analog 5-aza-2'-deoxycytidine (5-AzadC) on inducible nitric oxide synthase (iNOS)-dependent nitric oxide (NO) production in various rat cell types was investigated. In C6 astrocytoma cell line and primary astrocytes, 5-AzadC enhanced proinflammatory cytokine (IFN-gamma, TNF-alpha, IL-1)-triggered NO synthesis in a time- and dose-dependent manner. In contrast, 5-AzadC did not potentiate NO production in IFN-gamma-stimulated macrophages, fibroblasts, or endothelial cells. Blockade of transcription or translation in C6 cells abolished the observed effect, suggesting the iNOS gene expression, rather than its catalytic activity, as a target for the drug action. Accordingly, 5-AzadC upregulated IFN-gamma-induced expression of iNOS mRNA in C6 astrocytes. The effect of 5-AzadC on astrocyte NO release was blocked by the inhibitor of p44/42 mitogen activated protein kinase-dependent signaling. Finally, the observed stimulatory effect of 5-AzadC on iNOS expression was apparently independent of DNA demethylation, as DNA digestion with methylation-sensitive restriction enzyme HpaII showed that 5-AzadC failed to demethylate cellular DNA in conditions used for iNOS induction.",
publisher = "Elsevier B.V.",
journal = "Brain Research",
title = "5-Aza-2'-deoxycytidine stimulates inducible nitric oxide synthase induction in C6 astrocytoma cells",
number = "1",
volume = "998",
doi = "10.1016/j.brainres.2003.11.014",
pages = "83-90"
}
Stojanović, I. D., Popadić, D., Vučković, O., Harhaji-Trajković, L., Miljković, Đ.,& Trajković, V.. (2004). 5-Aza-2'-deoxycytidine stimulates inducible nitric oxide synthase induction in C6 astrocytoma cells. in Brain Research
Elsevier B.V.., 998(1), 83-90.
https://doi.org/10.1016/j.brainres.2003.11.014
Stojanović ID, Popadić D, Vučković O, Harhaji-Trajković L, Miljković Đ, Trajković V. 5-Aza-2'-deoxycytidine stimulates inducible nitric oxide synthase induction in C6 astrocytoma cells. in Brain Research. 2004;998(1):83-90.
doi:10.1016/j.brainres.2003.11.014 .
Stojanović, Ivana D., Popadić, Dušan, Vučković, Olivera, Harhaji-Trajković, Ljubica, Miljković, Đorđe, Trajković, Vladimir, "5-Aza-2'-deoxycytidine stimulates inducible nitric oxide synthase induction in C6 astrocytoma cells" in Brain Research, 998, no. 1 (2004):83-90,
https://doi.org/10.1016/j.brainres.2003.11.014 . .
4
4