Pešić, Ivan

Link to this page

Authority KeyName Variants
8d201419-9c5b-40b1-8003-86f0a7a8dc81
  • Pešić, Ivan (2)
Projects

Author's Bibliography

Characterization of polyurethane/ferrite nanocomposites

Pergal, Marija V.; Brkljačić, Jelena; Vasiljević Radović, Dana; Pergal, Miodrag M.; Pešić, Ivan; Dević, Gordana; Tovilović-Kovačević, Gordana

(Belgrade: Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Pergal, Marija V.
AU  - Brkljačić, Jelena
AU  - Vasiljević Radović, Dana
AU  - Pergal, Miodrag M.
AU  - Pešić, Ivan
AU  - Dević, Gordana
AU  - Tovilović-Kovačević, Gordana
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6192
AB  - Polyurethane (PU) nanocomposite materials, offer very desirable advantages over pure PU materials,as the nanocomposites have enhanced thermal, surface, mechanical and biological properties. The main goal of this study was to develop a new kind of novel nanocomposites consisting of crosslinked PUs (based on poly(dimetylsiloxane) and hyperbranched polyester) and ferrite nanoparticles (based on copper and zinc) for possible application as coatings on biomedical devices and implants. A series of PU/ferrite nanocomposites was prepared by in situ polymerization in solution. Characterization of prepared nanocomposites nanocomposites was conducted by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Copper and zinc releases were investigated by microwave plasma atomic emission spectrometry (MP-AES). Characteristics of the prepared nanocomposites when in contact with a biological environment were examined through testing their biocompatibility, and adhesion of fibroblast cells. The presence of the nanoferrite nanoparticles influenced on surface and biological properties of PU nanocomposites. The prepared PU nanocomposites with noncytotoxic chemistry could be used as promising materials for vascular implants development.
PB  - Belgrade: Serbian Ceramic Society
C3  - Program and the Book of Abstracts: Serbian Ceramic Society Conference Advanced Ceramics and Application 11: New Frontiers in Multifunctional Material Science and Processing; 2023 Sep 18-20; Belgrade, Serbia
T1  - Characterization of polyurethane/ferrite nanocomposites
SP  - 65
EP  - 65
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6192
ER  - 
@conference{
author = "Pergal, Marija V. and Brkljačić, Jelena and Vasiljević Radović, Dana and Pergal, Miodrag M. and Pešić, Ivan and Dević, Gordana and Tovilović-Kovačević, Gordana",
year = "2023",
abstract = "Polyurethane (PU) nanocomposite materials, offer very desirable advantages over pure PU materials,as the nanocomposites have enhanced thermal, surface, mechanical and biological properties. The main goal of this study was to develop a new kind of novel nanocomposites consisting of crosslinked PUs (based on poly(dimetylsiloxane) and hyperbranched polyester) and ferrite nanoparticles (based on copper and zinc) for possible application as coatings on biomedical devices and implants. A series of PU/ferrite nanocomposites was prepared by in situ polymerization in solution. Characterization of prepared nanocomposites nanocomposites was conducted by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Copper and zinc releases were investigated by microwave plasma atomic emission spectrometry (MP-AES). Characteristics of the prepared nanocomposites when in contact with a biological environment were examined through testing their biocompatibility, and adhesion of fibroblast cells. The presence of the nanoferrite nanoparticles influenced on surface and biological properties of PU nanocomposites. The prepared PU nanocomposites with noncytotoxic chemistry could be used as promising materials for vascular implants development.",
publisher = "Belgrade: Serbian Ceramic Society",
journal = "Program and the Book of Abstracts: Serbian Ceramic Society Conference Advanced Ceramics and Application 11: New Frontiers in Multifunctional Material Science and Processing; 2023 Sep 18-20; Belgrade, Serbia",
title = "Characterization of polyurethane/ferrite nanocomposites",
pages = "65-65",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6192"
}
Pergal, M. V., Brkljačić, J., Vasiljević Radović, D., Pergal, M. M., Pešić, I., Dević, G.,& Tovilović-Kovačević, G.. (2023). Characterization of polyurethane/ferrite nanocomposites. in Program and the Book of Abstracts: Serbian Ceramic Society Conference Advanced Ceramics and Application 11: New Frontiers in Multifunctional Material Science and Processing; 2023 Sep 18-20; Belgrade, Serbia
Belgrade: Serbian Ceramic Society., 65-65.
https://hdl.handle.net/21.15107/rcub_ibiss_6192
Pergal MV, Brkljačić J, Vasiljević Radović D, Pergal MM, Pešić I, Dević G, Tovilović-Kovačević G. Characterization of polyurethane/ferrite nanocomposites. in Program and the Book of Abstracts: Serbian Ceramic Society Conference Advanced Ceramics and Application 11: New Frontiers in Multifunctional Material Science and Processing; 2023 Sep 18-20; Belgrade, Serbia. 2023;:65-65.
https://hdl.handle.net/21.15107/rcub_ibiss_6192 .
Pergal, Marija V., Brkljačić, Jelena, Vasiljević Radović, Dana, Pergal, Miodrag M., Pešić, Ivan, Dević, Gordana, Tovilović-Kovačević, Gordana, "Characterization of polyurethane/ferrite nanocomposites" in Program and the Book of Abstracts: Serbian Ceramic Society Conference Advanced Ceramics and Application 11: New Frontiers in Multifunctional Material Science and Processing; 2023 Sep 18-20; Belgrade, Serbia (2023):65-65,
https://hdl.handle.net/21.15107/rcub_ibiss_6192 .

Organic-inorganic nanocomposites for biomedical applications

Pergal, Marija; Brkljačić, Jelena; Pešić, Ivan; Dević, Gordana; Dojčinović, Biljana P.; Antić, Bratislav; Tovilović-Kovačević, Gordana

(Niš, Serbia: RAD Centre, 2023)

TY  - CONF
AU  - Pergal, Marija
AU  - Brkljačić, Jelena
AU  - Pešić, Ivan
AU  - Dević, Gordana
AU  - Dojčinović, Biljana P.
AU  - Antić, Bratislav
AU  - Tovilović-Kovačević, Gordana
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6191
AB  - Polyurethane (PU) and PU nanocomposites with good biocompatibility and mechanical properties can be used as the biomedical matrix and tissue engineering biomaterials. Magnetic nanoparticles, especially ferrite nanoparticles have attracted much interest due to their specific physicochemical properties in various areas including magnetic recording, biosensing, catalyst, drug delivery systems, magnetic resonance imaging (MRI) and cancer therapy. Despite all these advantages, the nanoparticle agglomeration reduces the efficiency of the nanoparticles, so the nanoparticle incorporation into an appropriate polymeric matrix to prepare organic-inorganic nanocomposites is a right direction in the current scenario of biomedical nanotechnology. In this study, organic-inorganic PU nanocomposites based on zinc and copper ferrites and with the same composition of PU were prepared. The properties of PU nanocomposites were evaluated by nanoindentation, water contact angle and water absorption measurements. The presence of the nanoferrite nanoparticles affects properties of PU nanocomposites such as bulk morphology, mechanical, and biological properties. The biocompatibility of PU nanocomposites was investigated by MTT assay and cell attachment using endothelial cells. According to the results, the prepared PU nanocomposites with noncytotoxic chemistry could be a potential choice for vascular implants development.
PB  - Niš, Serbia: RAD Centre
C3  - Book of Abstracts: Eleventh International Conference on Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology: RAD 2023; 2023 Jun 19-23; Herceg Novi, Montenegro
T1  - Organic-inorganic nanocomposites for biomedical applications
DO  - 10.21175/rad.abstr.book.2023.19.20
SP  - 99
EP  - 99
ER  - 
@conference{
author = "Pergal, Marija and Brkljačić, Jelena and Pešić, Ivan and Dević, Gordana and Dojčinović, Biljana P. and Antić, Bratislav and Tovilović-Kovačević, Gordana",
year = "2023",
abstract = "Polyurethane (PU) and PU nanocomposites with good biocompatibility and mechanical properties can be used as the biomedical matrix and tissue engineering biomaterials. Magnetic nanoparticles, especially ferrite nanoparticles have attracted much interest due to their specific physicochemical properties in various areas including magnetic recording, biosensing, catalyst, drug delivery systems, magnetic resonance imaging (MRI) and cancer therapy. Despite all these advantages, the nanoparticle agglomeration reduces the efficiency of the nanoparticles, so the nanoparticle incorporation into an appropriate polymeric matrix to prepare organic-inorganic nanocomposites is a right direction in the current scenario of biomedical nanotechnology. In this study, organic-inorganic PU nanocomposites based on zinc and copper ferrites and with the same composition of PU were prepared. The properties of PU nanocomposites were evaluated by nanoindentation, water contact angle and water absorption measurements. The presence of the nanoferrite nanoparticles affects properties of PU nanocomposites such as bulk morphology, mechanical, and biological properties. The biocompatibility of PU nanocomposites was investigated by MTT assay and cell attachment using endothelial cells. According to the results, the prepared PU nanocomposites with noncytotoxic chemistry could be a potential choice for vascular implants development.",
publisher = "Niš, Serbia: RAD Centre",
journal = "Book of Abstracts: Eleventh International Conference on Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology: RAD 2023; 2023 Jun 19-23; Herceg Novi, Montenegro",
title = "Organic-inorganic nanocomposites for biomedical applications",
doi = "10.21175/rad.abstr.book.2023.19.20",
pages = "99-99"
}
Pergal, M., Brkljačić, J., Pešić, I., Dević, G., Dojčinović, B. P., Antić, B.,& Tovilović-Kovačević, G.. (2023). Organic-inorganic nanocomposites for biomedical applications. in Book of Abstracts: Eleventh International Conference on Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology: RAD 2023; 2023 Jun 19-23; Herceg Novi, Montenegro
Niš, Serbia: RAD Centre., 99-99.
https://doi.org/10.21175/rad.abstr.book.2023.19.20
Pergal M, Brkljačić J, Pešić I, Dević G, Dojčinović BP, Antić B, Tovilović-Kovačević G. Organic-inorganic nanocomposites for biomedical applications. in Book of Abstracts: Eleventh International Conference on Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology: RAD 2023; 2023 Jun 19-23; Herceg Novi, Montenegro. 2023;:99-99.
doi:10.21175/rad.abstr.book.2023.19.20 .
Pergal, Marija, Brkljačić, Jelena, Pešić, Ivan, Dević, Gordana, Dojčinović, Biljana P., Antić, Bratislav, Tovilović-Kovačević, Gordana, "Organic-inorganic nanocomposites for biomedical applications" in Book of Abstracts: Eleventh International Conference on Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology: RAD 2023; 2023 Jun 19-23; Herceg Novi, Montenegro (2023):99-99,
https://doi.org/10.21175/rad.abstr.book.2023.19.20 . .