Bumbaširević, Vladimir

Link to this page

Authority KeyName Variants
f3c21ac0-0b86-4d9b-b19f-1dca9c39f9d9
  • Bumbaširević, Vladimir (7)
  • Bumbaširević, Vladimir Z (3)
  • Bumbaširević, Vladimir Z. (1)
Projects

Author's Bibliography

Uticaj glikemije i lipidnog statusa na morfološke karakteristike nukleusa kod pacijenata sa tip 2 dijabetes melitusom

Martinović, Tamara; Ćirić, Darko; Pantić, Igor; Lalić, Katarina; Rasulić, Iva; Despotović, Sanja; Lalić, Ivana; Đuričić, Danica; Vučićević, Ljubica; Misirkić Marjanović, Maja; Trajković, Vladimir; Bumbaširević, Vladimir; Kravić-Stevović, Tamara

(Beograd: Srpsko lekarsko društvo, Sekcija kliničke biohemije, 2019)

TY  - CONF
AU  - Martinović, Tamara
AU  - Ćirić, Darko
AU  - Pantić, Igor
AU  - Lalić, Katarina
AU  - Rasulić, Iva
AU  - Despotović, Sanja
AU  - Lalić, Ivana
AU  - Đuričić, Danica
AU  - Vučićević, Ljubica
AU  - Misirkić Marjanović, Maja
AU  - Trajković, Vladimir
AU  - Bumbaširević, Vladimir
AU  - Kravić-Stevović, Tamara
PY  - 2019
UR  - https://klinbiolabmed.rs/wp-content/uploads/2022/05/Knjiga-sazetka-Kongresa.pdf
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6662
AB  - Uvod: Osobine tip 2 dijabetes melitusa (T2DM) su insulinska rezistencija, poremećena sekrecija insulina i hiperglikemija. Kao početna terapija T2DM koristi se metformin. Novija istraživanja su pokazala da u T2DM dolazi do morfoloških promena u izgledu nukleusa u vidu nepravilnosti oblika i binukelacije nukleusa.
Cilj: Cilj istraživanja je da se analiziraju ultrastrukturne karakteristike nukleusa limfocita periferne krvi kod pacijenata sa T2DM pomoću kompjuterizovane analize slike, fraktalne i teksturalne analize, kao i utvrđivanje efekta metformina na karakteristike nukleusa.
Metodologija: Mononuklearne ćelije izolovane iz periferne krvi novootkrivenih T2DM bolesnika, bolesnika lečenih metforminom i zdravih ispitanika analizirane su na transmisionom elektronskom mikroskopu (TEM). Primenom ImageJ programa analizirani su oblik i procenat heterohromatina, kao i fraktalna i teksturalna analiza nukleusa limfocita.
Rezultati: Limfociti zdravih osoba su imali okrugle, predominantno heterohromatične nukleuse i malu količinu citoplazme sa retko prisutnim organelama, dok su limfociti T2DM bolesnika imali euhromatične nukleu uz povećanje strukturnih praznina kod T2DM bolesnika. Nivo glukoze našte i HbA1c koreliraju sa fraktalnom dimenzijom i sa parametrima oblika nukleusa. Postoji korelacija između nivoa triglicerida u krvi i fraktalne dimenzije nukleusa.
Zaključak: Nukleusi limfocita bolesnika sa T2DM su nepravilnog oblika i sa većom količinom euhromatina, a promena njihovog izgleda je u vezi sa nivoom glikemije.
PB  - Beograd: Srpsko lekarsko društvo, Sekcija kliničke biohemije
C3  - Knjiga sažetaka: 1. kongres kliničkih biohemičara i specijalista laboratorijske medicine Srbije sa međunarodnim učešćem;  2019 Nov 27-29; Belgrade, Serbia
T1  - Uticaj glikemije i lipidnog statusa na morfološke karakteristike nukleusa kod pacijenata sa tip 2 dijabetes melitusom
SP  - 58
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6662
ER  - 
@conference{
author = "Martinović, Tamara and Ćirić, Darko and Pantić, Igor and Lalić, Katarina and Rasulić, Iva and Despotović, Sanja and Lalić, Ivana and Đuričić, Danica and Vučićević, Ljubica and Misirkić Marjanović, Maja and Trajković, Vladimir and Bumbaširević, Vladimir and Kravić-Stevović, Tamara",
year = "2019",
abstract = "Uvod: Osobine tip 2 dijabetes melitusa (T2DM) su insulinska rezistencija, poremećena sekrecija insulina i hiperglikemija. Kao početna terapija T2DM koristi se metformin. Novija istraživanja su pokazala da u T2DM dolazi do morfoloških promena u izgledu nukleusa u vidu nepravilnosti oblika i binukelacije nukleusa.
Cilj: Cilj istraživanja je da se analiziraju ultrastrukturne karakteristike nukleusa limfocita periferne krvi kod pacijenata sa T2DM pomoću kompjuterizovane analize slike, fraktalne i teksturalne analize, kao i utvrđivanje efekta metformina na karakteristike nukleusa.
Metodologija: Mononuklearne ćelije izolovane iz periferne krvi novootkrivenih T2DM bolesnika, bolesnika lečenih metforminom i zdravih ispitanika analizirane su na transmisionom elektronskom mikroskopu (TEM). Primenom ImageJ programa analizirani su oblik i procenat heterohromatina, kao i fraktalna i teksturalna analiza nukleusa limfocita.
Rezultati: Limfociti zdravih osoba su imali okrugle, predominantno heterohromatične nukleuse i malu količinu citoplazme sa retko prisutnim organelama, dok su limfociti T2DM bolesnika imali euhromatične nukleu uz povećanje strukturnih praznina kod T2DM bolesnika. Nivo glukoze našte i HbA1c koreliraju sa fraktalnom dimenzijom i sa parametrima oblika nukleusa. Postoji korelacija između nivoa triglicerida u krvi i fraktalne dimenzije nukleusa.
Zaključak: Nukleusi limfocita bolesnika sa T2DM su nepravilnog oblika i sa većom količinom euhromatina, a promena njihovog izgleda je u vezi sa nivoom glikemije.",
publisher = "Beograd: Srpsko lekarsko društvo, Sekcija kliničke biohemije",
journal = "Knjiga sažetaka: 1. kongres kliničkih biohemičara i specijalista laboratorijske medicine Srbije sa međunarodnim učešćem;  2019 Nov 27-29; Belgrade, Serbia",
title = "Uticaj glikemije i lipidnog statusa na morfološke karakteristike nukleusa kod pacijenata sa tip 2 dijabetes melitusom",
pages = "58",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6662"
}
Martinović, T., Ćirić, D., Pantić, I., Lalić, K., Rasulić, I., Despotović, S., Lalić, I., Đuričić, D., Vučićević, L., Misirkić Marjanović, M., Trajković, V., Bumbaširević, V.,& Kravić-Stevović, T.. (2019). Uticaj glikemije i lipidnog statusa na morfološke karakteristike nukleusa kod pacijenata sa tip 2 dijabetes melitusom. in Knjiga sažetaka: 1. kongres kliničkih biohemičara i specijalista laboratorijske medicine Srbije sa međunarodnim učešćem;  2019 Nov 27-29; Belgrade, Serbia
Beograd: Srpsko lekarsko društvo, Sekcija kliničke biohemije., 58.
https://hdl.handle.net/21.15107/rcub_ibiss_6662
Martinović T, Ćirić D, Pantić I, Lalić K, Rasulić I, Despotović S, Lalić I, Đuričić D, Vučićević L, Misirkić Marjanović M, Trajković V, Bumbaširević V, Kravić-Stevović T. Uticaj glikemije i lipidnog statusa na morfološke karakteristike nukleusa kod pacijenata sa tip 2 dijabetes melitusom. in Knjiga sažetaka: 1. kongres kliničkih biohemičara i specijalista laboratorijske medicine Srbije sa međunarodnim učešćem;  2019 Nov 27-29; Belgrade, Serbia. 2019;:58.
https://hdl.handle.net/21.15107/rcub_ibiss_6662 .
Martinović, Tamara, Ćirić, Darko, Pantić, Igor, Lalić, Katarina, Rasulić, Iva, Despotović, Sanja, Lalić, Ivana, Đuričić, Danica, Vučićević, Ljubica, Misirkić Marjanović, Maja, Trajković, Vladimir, Bumbaširević, Vladimir, Kravić-Stevović, Tamara, "Uticaj glikemije i lipidnog statusa na morfološke karakteristike nukleusa kod pacijenata sa tip 2 dijabetes melitusom" in Knjiga sažetaka: 1. kongres kliničkih biohemičara i specijalista laboratorijske medicine Srbije sa međunarodnim učešćem;  2019 Nov 27-29; Belgrade, Serbia (2019):58,
https://hdl.handle.net/21.15107/rcub_ibiss_6662 .

Dual role of mitochondrial damage in anticancer and antipsychotic treatment

Misirkić Marjanović, Maja; Vučićević, Ljubica; Kosić, Milica; Paunović, Verica; Arsikin-Csordas, Katarina; Ristić, Biljana; Marić, Nađa; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Kravić-Stevović, Tamara; Martinović, Tamara; Ćirić, Darko; Mirčić, Aleksandar; Petričević, Saša; Bumbaširević, Vladimir; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(The Mitochondrial Physiology Society, 2019)

TY  - CONF
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Kosić, Milica
AU  - Paunović, Verica
AU  - Arsikin-Csordas, Katarina
AU  - Ristić, Biljana
AU  - Marić, Nađa
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Kravić-Stevović, Tamara
AU  - Martinović, Tamara
AU  - Ćirić, Darko
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bumbaširević, Vladimir
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2019
UR  - https://www.mitoeagle.org/index.php/MiP2019/MitoEAGLE_Belgrade_RS
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6353
AB  - We analyzed the impact of mitochondrial damage in anticancer action of combining lysosomal
membrane permeabilization (LMP)-inducing agent N- dodecylimidazole (NDI)[1] with
glycolytic inhibitor 2-deoxy-D-glucose (2DG) and in antipsychotic action of atypical antipsychotic
olanzapine.
NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing ATP depletion,
mitochondrial damage and reactive oxygen species production, eventually leading to necrotic
death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma
cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant tocopherol, suggesting
the involvement of LMP and oxidative stress in the observed cytotoxicity. Moreover, the
combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6
mice by inducing necrotic death of tumor cells.
Based on these results, we propose that NDI-triggered LMPcauses initial mitochondrial damage
that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial
health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss,
and reactive oxygen species production, culminating in necrotic cell death.
We also investigated the role of autophagy, a controlled cellular self-digestion process, in regulating
survival of neurons exposed to olanzapine. Olanzapine induced autophagy in human
SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of
autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression
of autophagy-related (ATG) genes ATG4B, ATG5, andATG7. The production of reactive oxygen
species, but not modulation of the main autophagy repressor mTOR or its upstream regulators
AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy.
Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage,
and the autophagic clearance of dysfunctional mitochondria [2] was confirmed by electron microscopy,
colocalization of autophagosome associated MAP1LC3B (LC3B) and mitochondria,
and mitochondrial association with the autophagic cargo receptor p62. While olanzapine-triggered
mitochondrial damage was not visibly toxic to SH-SY5Ycells, their death was readily initiated
upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown
of BECN1 and LC3B. The treatment of mice with olanzapine increased the brain levels of
LC3B-II and mRNA encoding Atg4b,Atg5, Atg7, Atg12, Gabarap, and Becn1.
These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal
mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action
of the drug.
References;
1. Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death.
Mitochondrion10: 662-669.
2. Wang K, Klionsky DJ(2011) Mitochondrial removal by autophagy. Autophagy 7:297-300.
PB  - The Mitochondrial Physiology Society
C3  - Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia
T1  - Dual role of mitochondrial damage in anticancer and antipsychotic treatment
SP  - 29
EP  - 29
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6353
ER  - 
@conference{
author = "Misirkić Marjanović, Maja and Vučićević, Ljubica and Kosić, Milica and Paunović, Verica and Arsikin-Csordas, Katarina and Ristić, Biljana and Marić, Nađa and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Kravić-Stevović, Tamara and Martinović, Tamara and Ćirić, Darko and Mirčić, Aleksandar and Petričević, Saša and Bumbaširević, Vladimir and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2019",
abstract = "We analyzed the impact of mitochondrial damage in anticancer action of combining lysosomal
membrane permeabilization (LMP)-inducing agent N- dodecylimidazole (NDI)[1] with
glycolytic inhibitor 2-deoxy-D-glucose (2DG) and in antipsychotic action of atypical antipsychotic
olanzapine.
NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing ATP depletion,
mitochondrial damage and reactive oxygen species production, eventually leading to necrotic
death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma
cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant tocopherol, suggesting
the involvement of LMP and oxidative stress in the observed cytotoxicity. Moreover, the
combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6
mice by inducing necrotic death of tumor cells.
Based on these results, we propose that NDI-triggered LMPcauses initial mitochondrial damage
that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial
health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss,
and reactive oxygen species production, culminating in necrotic cell death.
We also investigated the role of autophagy, a controlled cellular self-digestion process, in regulating
survival of neurons exposed to olanzapine. Olanzapine induced autophagy in human
SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of
autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression
of autophagy-related (ATG) genes ATG4B, ATG5, andATG7. The production of reactive oxygen
species, but not modulation of the main autophagy repressor mTOR or its upstream regulators
AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy.
Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage,
and the autophagic clearance of dysfunctional mitochondria [2] was confirmed by electron microscopy,
colocalization of autophagosome associated MAP1LC3B (LC3B) and mitochondria,
and mitochondrial association with the autophagic cargo receptor p62. While olanzapine-triggered
mitochondrial damage was not visibly toxic to SH-SY5Ycells, their death was readily initiated
upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown
of BECN1 and LC3B. The treatment of mice with olanzapine increased the brain levels of
LC3B-II and mRNA encoding Atg4b,Atg5, Atg7, Atg12, Gabarap, and Becn1.
These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal
mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action
of the drug.
References;
1. Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death.
Mitochondrion10: 662-669.
2. Wang K, Klionsky DJ(2011) Mitochondrial removal by autophagy. Autophagy 7:297-300.",
publisher = "The Mitochondrial Physiology Society",
journal = "Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia",
title = "Dual role of mitochondrial damage in anticancer and antipsychotic treatment",
pages = "29-29",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6353"
}
Misirkić Marjanović, M., Vučićević, L., Kosić, M., Paunović, V., Arsikin-Csordas, K., Ristić, B., Marić, N., Bošnjak, M., Zogović, N., Mandić, M., Kravić-Stevović, T., Martinović, T., Ćirić, D., Mirčić, A., Petričević, S., Bumbaširević, V., Harhaji-Trajković, L.,& Trajković, V.. (2019). Dual role of mitochondrial damage in anticancer and antipsychotic treatment. in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia
The Mitochondrial Physiology Society., 29-29.
https://hdl.handle.net/21.15107/rcub_ibiss_6353
Misirkić Marjanović M, Vučićević L, Kosić M, Paunović V, Arsikin-Csordas K, Ristić B, Marić N, Bošnjak M, Zogović N, Mandić M, Kravić-Stevović T, Martinović T, Ćirić D, Mirčić A, Petričević S, Bumbaširević V, Harhaji-Trajković L, Trajković V. Dual role of mitochondrial damage in anticancer and antipsychotic treatment. in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia. 2019;:29-29.
https://hdl.handle.net/21.15107/rcub_ibiss_6353 .
Misirkić Marjanović, Maja, Vučićević, Ljubica, Kosić, Milica, Paunović, Verica, Arsikin-Csordas, Katarina, Ristić, Biljana, Marić, Nađa, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Kravić-Stevović, Tamara, Martinović, Tamara, Ćirić, Darko, Mirčić, Aleksandar, Petričević, Saša, Bumbaširević, Vladimir, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Dual role of mitochondrial damage in anticancer and antipsychotic treatment" in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia (2019):29-29,
https://hdl.handle.net/21.15107/rcub_ibiss_6353 .

Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition

Paunović, Verica; Kosić, Milica; Arsikin-Csordas, Katarina; Firestone, Raymond A; Ristić, Biljana; Mirčić, Aleksandar; Petričević, Saša; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Bumbaširević, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Belgrade: Serbian Neuroscience Society, 2019)

TY  - CONF
AU  - Paunović, Verica
AU  - Kosić, Milica
AU  - Arsikin-Csordas, Katarina
AU  - Firestone, Raymond A
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Bumbaširević, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2019
UR  - https://www.fens.org/news-activities/fens-and-societies-calendar/meeting-event/fens-regional-meeting-2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6355
AB  - During malignant transformation cells acquire changes in metabolism, signaling pathways as well as organelle content. The preferential use of aerobic glycolysis (Warburg effect), along with the increased number and volume of lysosomes can be viewed as glioma cells’ Achilles heels. In the present study, we aimed to examine the in vitro antiglioma effects of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG).
NDI-triggered LMP and 2DG-mediated glycolysis block synergistically induced rapid ATP depletion, mitochondrial damage, and reactive oxygen species (ROS) production causing necrotic cell death of U251 glioma cells, but not primary astrocytes. Lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol partially prevented NDI/2DG-induced glioma cell death, thus implying the involvement of LMP and oxidative stress in the observed cytotoxicity. Likewise, LMP-inducing agent chloroquine
showed synergistic cytotoxic effect with 2DG. Similarly, glucose deprivation as well as other glycolytic inhibitors, iodoacetate and sodium fluoride, synergistically cooperated with NDI, further corroborating that the observed antiglioma effect of the NDI/2DG combined treatment was indeed based on LMP and glycolysis block. Based on these results, we concluded that NDI-triggered LMP caused initial mitochondrial damage, which was further increased by 2DG causing the lack of glycolytic ATP
required to maintain mitochondrial health. This created a positive feedback loop of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrosis. Therefore, the combination of glycolysis inhibitors and LMP-inducing agents seems promising antiglioma strategy.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
T1  - Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition
SP  - 213
EP  - 213
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6355
ER  - 
@conference{
author = "Paunović, Verica and Kosić, Milica and Arsikin-Csordas, Katarina and Firestone, Raymond A and Ristić, Biljana and Mirčić, Aleksandar and Petričević, Saša and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Bumbaširević, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2019",
abstract = "During malignant transformation cells acquire changes in metabolism, signaling pathways as well as organelle content. The preferential use of aerobic glycolysis (Warburg effect), along with the increased number and volume of lysosomes can be viewed as glioma cells’ Achilles heels. In the present study, we aimed to examine the in vitro antiglioma effects of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG).
NDI-triggered LMP and 2DG-mediated glycolysis block synergistically induced rapid ATP depletion, mitochondrial damage, and reactive oxygen species (ROS) production causing necrotic cell death of U251 glioma cells, but not primary astrocytes. Lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol partially prevented NDI/2DG-induced glioma cell death, thus implying the involvement of LMP and oxidative stress in the observed cytotoxicity. Likewise, LMP-inducing agent chloroquine
showed synergistic cytotoxic effect with 2DG. Similarly, glucose deprivation as well as other glycolytic inhibitors, iodoacetate and sodium fluoride, synergistically cooperated with NDI, further corroborating that the observed antiglioma effect of the NDI/2DG combined treatment was indeed based on LMP and glycolysis block. Based on these results, we concluded that NDI-triggered LMP caused initial mitochondrial damage, which was further increased by 2DG causing the lack of glycolytic ATP
required to maintain mitochondrial health. This created a positive feedback loop of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrosis. Therefore, the combination of glycolysis inhibitors and LMP-inducing agents seems promising antiglioma strategy.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia",
title = "Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition",
pages = "213-213",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6355"
}
Paunović, V., Kosić, M., Arsikin-Csordas, K., Firestone, R. A., Ristić, B., Mirčić, A., Petričević, S., Bošnjak, M., Zogović, N., Mandić, M., Bumbaširević, V., Trajković, V.,& Harhaji-Trajković, L.. (2019). Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 213-213.
https://hdl.handle.net/21.15107/rcub_ibiss_6355
Paunović V, Kosić M, Arsikin-Csordas K, Firestone RA, Ristić B, Mirčić A, Petričević S, Bošnjak M, Zogović N, Mandić M, Bumbaširević V, Trajković V, Harhaji-Trajković L. Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia. 2019;:213-213.
https://hdl.handle.net/21.15107/rcub_ibiss_6355 .
Paunović, Verica, Kosić, Milica, Arsikin-Csordas, Katarina, Firestone, Raymond A, Ristić, Biljana, Mirčić, Aleksandar, Petričević, Saša, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Bumbaširević, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition" in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia (2019):213-213,
https://hdl.handle.net/21.15107/rcub_ibiss_6355 .

Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition

Kosić, Milica; Arsikin-Csordas, Katarina; Paunović, Verica; Firestone, Raymond A; Ristić, Biljana; Mirčić, Aleksandar; Petričević, Saša; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Bumbaširević, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Amsterdam: Elsevier, 2016)

TY  - JOUR
AU  - Kosić, Milica
AU  - Arsikin-Csordas, Katarina
AU  - Paunović, Verica
AU  - Firestone, Raymond A
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Bumbaširević, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2016
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6364
AB  - We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). NDI-triggered LMP and 2DG-me diated glycolysis block synergized in inducing rapid ATP
depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant a-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer
effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an
anticancer strategy.
PB  - Amsterdam: Elsevier
T2  - Journal of Biological Chemistry
T1  - Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition
IS  - 44
VL  - 291
DO  - 10.1074/jbc.M116.752113
SP  - 22936
EP  - 22948
ER  - 
@article{
author = "Kosić, Milica and Arsikin-Csordas, Katarina and Paunović, Verica and Firestone, Raymond A and Ristić, Biljana and Mirčić, Aleksandar and Petričević, Saša and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Bumbaširević, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2016",
abstract = "We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). NDI-triggered LMP and 2DG-me diated glycolysis block synergized in inducing rapid ATP
depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant a-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer
effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an
anticancer strategy.",
publisher = "Amsterdam: Elsevier",
journal = "Journal of Biological Chemistry",
title = "Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition",
number = "44",
volume = "291",
doi = "10.1074/jbc.M116.752113",
pages = "22936-22948"
}
Kosić, M., Arsikin-Csordas, K., Paunović, V., Firestone, R. A., Ristić, B., Mirčić, A., Petričević, S., Bošnjak, M., Zogović, N., Mandić, M., Bumbaširević, V., Trajković, V.,& Harhaji-Trajković, L.. (2016). Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition. in Journal of Biological Chemistry
Amsterdam: Elsevier., 291(44), 22936-22948.
https://doi.org/10.1074/jbc.M116.752113
Kosić M, Arsikin-Csordas K, Paunović V, Firestone RA, Ristić B, Mirčić A, Petričević S, Bošnjak M, Zogović N, Mandić M, Bumbaširević V, Trajković V, Harhaji-Trajković L. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition. in Journal of Biological Chemistry. 2016;291(44):22936-22948.
doi:10.1074/jbc.M116.752113 .
Kosić, Milica, Arsikin-Csordas, Katarina, Paunović, Verica, Firestone, Raymond A, Ristić, Biljana, Mirčić, Aleksandar, Petričević, Saša, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Bumbaširević, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition" in Journal of Biological Chemistry, 291, no. 44 (2016):22936-22948,
https://doi.org/10.1074/jbc.M116.752113 . .
14
4
13

Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition

Kosić, Milica; Arsikin-Csordas, Katarina; Paunović, Verica; Firestone, Raymond A; Ristić, Biljana; Mirčić, Aleksandar; Petričević, Saša; Bošnjak, Mihajlo; Zogović, Nevena; Bumbaširević, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology, 2015)

TY  - CONF
AU  - Kosić, Milica
AU  - Arsikin-Csordas, Katarina
AU  - Paunović, Verica
AU  - Firestone, Raymond A
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Bumbaširević, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2015
UR  - http://ssmfrp.edu.rs/article-12
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6356
AB  - We investigated the in vitro anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). Cell viability was measured by MTT and LDH tests. Oxidative stress, lysosomal permeabilization, mitochondrial depolarization and apoptosis/necrosis were analyzed by flow cytometry. Cell morphology was examined by electron microscopy. Intracellular ATP content was measured by bioluminescence assay. NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial
damage, and reactive oxygen species (ROS) production, eventually leading to necrotic death
of U251 glioma cells, but not primary astrocytes. NDI/2DG-induced death of glioma cells was
partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, indicating the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agents chloroquine and NH4Cl also displayed synergistic anticancer effect with 2DG, while glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus confirming that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block, respectively. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive
feedback cycle of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy.
PB  - Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology
C3  - Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia
T1  - Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition
SP  - 71
EP  - 71
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6356
ER  - 
@conference{
author = "Kosić, Milica and Arsikin-Csordas, Katarina and Paunović, Verica and Firestone, Raymond A and Ristić, Biljana and Mirčić, Aleksandar and Petričević, Saša and Bošnjak, Mihajlo and Zogović, Nevena and Bumbaširević, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2015",
abstract = "We investigated the in vitro anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). Cell viability was measured by MTT and LDH tests. Oxidative stress, lysosomal permeabilization, mitochondrial depolarization and apoptosis/necrosis were analyzed by flow cytometry. Cell morphology was examined by electron microscopy. Intracellular ATP content was measured by bioluminescence assay. NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial
damage, and reactive oxygen species (ROS) production, eventually leading to necrotic death
of U251 glioma cells, but not primary astrocytes. NDI/2DG-induced death of glioma cells was
partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, indicating the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agents chloroquine and NH4Cl also displayed synergistic anticancer effect with 2DG, while glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus confirming that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block, respectively. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive
feedback cycle of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy.",
publisher = "Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology",
journal = "Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia",
title = "Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition",
pages = "71-71",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6356"
}
Kosić, M., Arsikin-Csordas, K., Paunović, V., Firestone, R. A., Ristić, B., Mirčić, A., Petričević, S., Bošnjak, M., Zogović, N., Bumbaširević, V., Trajković, V.,& Harhaji-Trajković, L.. (2015). Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia
Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology., 71-71.
https://hdl.handle.net/21.15107/rcub_ibiss_6356
Kosić M, Arsikin-Csordas K, Paunović V, Firestone RA, Ristić B, Mirčić A, Petričević S, Bošnjak M, Zogović N, Bumbaširević V, Trajković V, Harhaji-Trajković L. Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia. 2015;:71-71.
https://hdl.handle.net/21.15107/rcub_ibiss_6356 .
Kosić, Milica, Arsikin-Csordas, Katarina, Paunović, Verica, Firestone, Raymond A, Ristić, Biljana, Mirčić, Aleksandar, Petričević, Saša, Bošnjak, Mihajlo, Zogović, Nevena, Bumbaširević, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition" in Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia (2015):71-71,
https://hdl.handle.net/21.15107/rcub_ibiss_6356 .

mTOR-independent autophagy counteracts apoptosis in herpes simplex virus type 1-infected U251 glioma cells

Tovilović-Kovačević, Gordana; Ristić, Biljana; Šiljić, Marina; Nikolić, Valentina; Kravić-Stevović, Tamara; Dulović, Marija; Milenković, Marina; Knežević, Aleksandra; Bošnjak, Mihajlo; Bumbaširević, Vladimir; Stanojević, Maja; Trajković, Vladimir

(Elsevier Masson SAS, 2013)

TY  - JOUR
AU  - Tovilović-Kovačević, Gordana
AU  - Ristić, Biljana
AU  - Šiljić, Marina
AU  - Nikolić, Valentina
AU  - Kravić-Stevović, Tamara
AU  - Dulović, Marija
AU  - Milenković, Marina
AU  - Knežević, Aleksandra
AU  - Bošnjak, Mihajlo
AU  - Bumbaširević, Vladimir
AU  - Stanojević, Maja
AU  - Trajković, Vladimir
PY  - 2013
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6345
AB  - We investigated the role of autophagy, a stress-inducible lysosomal self-digestion of cellular components, in modulation of herpes simplex virus type 1 (HSV-1)-triggered death of U251 human glioma cells. HSV-1 caused apoptotic death in U251 cells, characterized by phosphatidylserine externalization, caspase activation and DNA fragmentation. HSV-1-induced apoptosis was associated with the induction of autophagic response, as confirmed by the conversion of cytosolic LC3-I to autophagosome-associated LC3-II, increase in intracellular acidification, presence of autophagic vesicles, and increase in proteolysis of the selective autophagic target p62. HSV-1-triggered autophagy was not associated with the significant increase in the expression of proautophagic protein beclin-1 or downregulation of the major autophagy suppressor mammalian target of rapamycin (mTOR). Moreover, the phosphorylation of mTOR and its direct substrate p70 S6 kinase was augmented by HSV-1 infection, while the mTOR stimulator Akt and inhibitor AMPK-activated protein kinase (AMPK) were accordingly activated and suppressed, respectively. An shRNA-mediated knockdown of the autophagy-essential LC3b, as well as pharmacological inhibition of autophagy with bafilomycin A1 or 3-methyladenine, markedly accelerated apoptotic changes and ensuing cell death in HSV-1-infected glioma cells. These data indicate that AMPK/Akt/mTOR-independent autophagy could prolong survival of HSV-1-infected U251 glioma cells by counteracting the coinciding apoptotic response.
PB  - Elsevier Masson SAS
T2  - Microbes and Infection
T1  - mTOR-independent autophagy counteracts apoptosis in herpes simplex virus type 1-infected U251 glioma cells
IS  - 8-9
VL  - 15
DO  - 10.1016/j.micinf.2013.04.012
SP  - 615
EP  - 624
ER  - 
@article{
author = "Tovilović-Kovačević, Gordana and Ristić, Biljana and Šiljić, Marina and Nikolić, Valentina and Kravić-Stevović, Tamara and Dulović, Marija and Milenković, Marina and Knežević, Aleksandra and Bošnjak, Mihajlo and Bumbaširević, Vladimir and Stanojević, Maja and Trajković, Vladimir",
year = "2013",
abstract = "We investigated the role of autophagy, a stress-inducible lysosomal self-digestion of cellular components, in modulation of herpes simplex virus type 1 (HSV-1)-triggered death of U251 human glioma cells. HSV-1 caused apoptotic death in U251 cells, characterized by phosphatidylserine externalization, caspase activation and DNA fragmentation. HSV-1-induced apoptosis was associated with the induction of autophagic response, as confirmed by the conversion of cytosolic LC3-I to autophagosome-associated LC3-II, increase in intracellular acidification, presence of autophagic vesicles, and increase in proteolysis of the selective autophagic target p62. HSV-1-triggered autophagy was not associated with the significant increase in the expression of proautophagic protein beclin-1 or downregulation of the major autophagy suppressor mammalian target of rapamycin (mTOR). Moreover, the phosphorylation of mTOR and its direct substrate p70 S6 kinase was augmented by HSV-1 infection, while the mTOR stimulator Akt and inhibitor AMPK-activated protein kinase (AMPK) were accordingly activated and suppressed, respectively. An shRNA-mediated knockdown of the autophagy-essential LC3b, as well as pharmacological inhibition of autophagy with bafilomycin A1 or 3-methyladenine, markedly accelerated apoptotic changes and ensuing cell death in HSV-1-infected glioma cells. These data indicate that AMPK/Akt/mTOR-independent autophagy could prolong survival of HSV-1-infected U251 glioma cells by counteracting the coinciding apoptotic response.",
publisher = "Elsevier Masson SAS",
journal = "Microbes and Infection",
title = "mTOR-independent autophagy counteracts apoptosis in herpes simplex virus type 1-infected U251 glioma cells",
number = "8-9",
volume = "15",
doi = "10.1016/j.micinf.2013.04.012",
pages = "615-624"
}
Tovilović-Kovačević, G., Ristić, B., Šiljić, M., Nikolić, V., Kravić-Stevović, T., Dulović, M., Milenković, M., Knežević, A., Bošnjak, M., Bumbaširević, V., Stanojević, M.,& Trajković, V.. (2013). mTOR-independent autophagy counteracts apoptosis in herpes simplex virus type 1-infected U251 glioma cells. in Microbes and Infection
Elsevier Masson SAS., 15(8-9), 615-624.
https://doi.org/10.1016/j.micinf.2013.04.012
Tovilović-Kovačević G, Ristić B, Šiljić M, Nikolić V, Kravić-Stevović T, Dulović M, Milenković M, Knežević A, Bošnjak M, Bumbaširević V, Stanojević M, Trajković V. mTOR-independent autophagy counteracts apoptosis in herpes simplex virus type 1-infected U251 glioma cells. in Microbes and Infection. 2013;15(8-9):615-624.
doi:10.1016/j.micinf.2013.04.012 .
Tovilović-Kovačević, Gordana, Ristić, Biljana, Šiljić, Marina, Nikolić, Valentina, Kravić-Stevović, Tamara, Dulović, Marija, Milenković, Marina, Knežević, Aleksandra, Bošnjak, Mihajlo, Bumbaširević, Vladimir, Stanojević, Maja, Trajković, Vladimir, "mTOR-independent autophagy counteracts apoptosis in herpes simplex virus type 1-infected U251 glioma cells" in Microbes and Infection, 15, no. 8-9 (2013):615-624,
https://doi.org/10.1016/j.micinf.2013.04.012 . .
1
29
17
30

Graphene quantum dots as autophagy-inducing photodynamic agents

Marković, Zoran M.; Ristić, Biljana Z.; Arsikin, Katarina M.; Klisić, Đorđe G.; Harhaji-Trajković, Ljubica; Todorović-Marković, Biljana M.; Kepić, Dejan P.; Kravić-Stevović, Tamara K.; Jovanović, Svetlana P.; Milenković, Marina M.; Milivojević, Dusan D.; Bumbaširević, Vladimir Z.; Dramićanin, Miroslav D.; Trajković, Vladimir S.

(Elsevier BV, 2012)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Ristić, Biljana Z.
AU  - Arsikin, Katarina M.
AU  - Klisić, Đorđe G.
AU  - Harhaji-Trajković, Ljubica
AU  - Todorović-Marković, Biljana M.
AU  - Kepić, Dejan P.
AU  - Kravić-Stevović, Tamara K.
AU  - Jovanović, Svetlana P.
AU  - Milenković, Marina M.
AU  - Milivojević, Dusan D.
AU  - Bumbaširević, Vladimir Z.
AU  - Dramićanin, Miroslav D.
AU  - Trajković, Vladimir S.
PY  - 2012
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3587
AB  - The excellent photoluminescent properties of graphene quantum dots (GQD) makes them suitable candidates for biomedical applications, but their cytotoxicity has not been extensively studied. Here we show that electrochemically produced GQD irradiated with blue light (470. nm, 1. W) generate reactive oxygen species, including singlet oxygen, and kill U251 human glioma cells by causing oxidative stress. The cell death induced by photoexcited GQD displayed morphological and/or biochemical characteristics of both apoptosis (phosphatidylserine externalization, caspase activation, DNA fragmentation) and autophagy (formation of autophagic vesicles, LC3-I/LC3-II conversion, degradation of autophagic target p62). Moreover, a genetic inactivation of autophagy-essential LC3B protein partly abrogated the photodynamic cytotoxicity of GQD. These data indicate potential usefulness of GQD in photodynamic therapy, but also raise concerns about their possible toxicity.
PB  - Elsevier BV
T2  - Biomaterials
T1  - Graphene quantum dots as autophagy-inducing photodynamic agents
IS  - 29
VL  - 33
DO  - 10.1016/j.biomaterials.2012.06.060
SP  - 7084
EP  - 7092
ER  - 
@article{
author = "Marković, Zoran M. and Ristić, Biljana Z. and Arsikin, Katarina M. and Klisić, Đorđe G. and Harhaji-Trajković, Ljubica and Todorović-Marković, Biljana M. and Kepić, Dejan P. and Kravić-Stevović, Tamara K. and Jovanović, Svetlana P. and Milenković, Marina M. and Milivojević, Dusan D. and Bumbaširević, Vladimir Z. and Dramićanin, Miroslav D. and Trajković, Vladimir S.",
year = "2012",
abstract = "The excellent photoluminescent properties of graphene quantum dots (GQD) makes them suitable candidates for biomedical applications, but their cytotoxicity has not been extensively studied. Here we show that electrochemically produced GQD irradiated with blue light (470. nm, 1. W) generate reactive oxygen species, including singlet oxygen, and kill U251 human glioma cells by causing oxidative stress. The cell death induced by photoexcited GQD displayed morphological and/or biochemical characteristics of both apoptosis (phosphatidylserine externalization, caspase activation, DNA fragmentation) and autophagy (formation of autophagic vesicles, LC3-I/LC3-II conversion, degradation of autophagic target p62). Moreover, a genetic inactivation of autophagy-essential LC3B protein partly abrogated the photodynamic cytotoxicity of GQD. These data indicate potential usefulness of GQD in photodynamic therapy, but also raise concerns about their possible toxicity.",
publisher = "Elsevier BV",
journal = "Biomaterials",
title = "Graphene quantum dots as autophagy-inducing photodynamic agents",
number = "29",
volume = "33",
doi = "10.1016/j.biomaterials.2012.06.060",
pages = "7084-7092"
}
Marković, Z. M., Ristić, B. Z., Arsikin, K. M., Klisić, Đ. G., Harhaji-Trajković, L., Todorović-Marković, B. M., Kepić, D. P., Kravić-Stevović, T. K., Jovanović, S. P., Milenković, M. M., Milivojević, D. D., Bumbaširević, V. Z., Dramićanin, M. D.,& Trajković, V. S.. (2012). Graphene quantum dots as autophagy-inducing photodynamic agents. in Biomaterials
Elsevier BV., 33(29), 7084-7092.
https://doi.org/10.1016/j.biomaterials.2012.06.060
Marković ZM, Ristić BZ, Arsikin KM, Klisić ĐG, Harhaji-Trajković L, Todorović-Marković BM, Kepić DP, Kravić-Stevović TK, Jovanović SP, Milenković MM, Milivojević DD, Bumbaširević VZ, Dramićanin MD, Trajković VS. Graphene quantum dots as autophagy-inducing photodynamic agents. in Biomaterials. 2012;33(29):7084-7092.
doi:10.1016/j.biomaterials.2012.06.060 .
Marković, Zoran M., Ristić, Biljana Z., Arsikin, Katarina M., Klisić, Đorđe G., Harhaji-Trajković, Ljubica, Todorović-Marković, Biljana M., Kepić, Dejan P., Kravić-Stevović, Tamara K., Jovanović, Svetlana P., Milenković, Marina M., Milivojević, Dusan D., Bumbaširević, Vladimir Z., Dramićanin, Miroslav D., Trajković, Vladimir S., "Graphene quantum dots as autophagy-inducing photodynamic agents" in Biomaterials, 33, no. 29 (2012):7084-7092,
https://doi.org/10.1016/j.biomaterials.2012.06.060 . .
4
375
284
380

Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin

Misirkić Marjanović, Maja; Janjetović, Kristina; Vučićević, Ljubica; Tovilović-Kovačević, Gordana; Ristić, Biljana Z; Vilimanović, Uros; Harhaji-Trajković, Ljubica; Sumarac-Dumanović, Mirjana S; Micić, Dragan D; Bumbaširević, Vladimir Z; Trajković, Vladimir S

(2012)

TY  - JOUR
AU  - Misirkić Marjanović, Maja
AU  - Janjetović, Kristina
AU  - Vučićević, Ljubica
AU  - Tovilović-Kovačević, Gordana
AU  - Ristić, Biljana Z
AU  - Vilimanović, Uros
AU  - Harhaji-Trajković, Ljubica
AU  - Sumarac-Dumanović, Mirjana S
AU  - Micić, Dragan D
AU  - Bumbaširević, Vladimir Z
AU  - Trajković, Vladimir S
PY  - 2012
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/1232
AB  - The role of autophagy, a process in which the cell self-digests its own components, was investigated in glioma cell death induced by the hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase-inhibiting drug simvastatin. Induction of autophagy and activation of autophagy-regulating signalling pathways were analyzed by immunoblotting. Flow cytometry/fluorescent microscopy was used to assess autophagy-associated intracellular acidification and apoptotic markers (phosphatidylserine exposure, DNA fragmentation and caspase activation). Cell viability was determined by crystal violet, MTT or LDH release assay. Simvastatin treatment of U251 and C6 glioma cell lines caused the appearance of autophagolysosome-like intracytoplasmic acidic vesicles. The induction of autophagy in U251 cells was confirmed by the upregulation of autophagosome-associated LC3-II and pro-autophagic beclin-1, as well as by the downregulation of the selective autophagic target p62. Simvastatin induced the activation of AMP-activated protein kinase (AMPK) and its target Raptor, while simultaneously downregulating activation of Akt. Mammalian target of rapamycin (mTOR). a major AMPK/Akt downstream target and a major negative autophagy regulator, and its substrate p70 S6 kinase 1 were also inhibited by simvastatin. Mevalonate, the product of HMG-CoA reductase enzymatic activity, AMPK siRNA or pharmacological inactivation of AMPK with compound C suppressed, while the inhibitors of Akt (10-DEBC hydrochloride) and mTOR (rapamycin) mimicked autophagy induction by simvastatin. Inhibition of autophagy with bafilomycin A1, 3-methyladenine and LC3 beta shRNA, as well as AMPK inhibition with compound C or AMPK siRNA, markedly increased apoptotic death of simvastatin-treated U251 cells. These data suggest that inhibition of AMPK-depenclent autophagic response might sensitize glioma cells to statin-induced apoptotic death. (C) 2011 Elsevier Ltd. All rights reserved.
T2  - Pharmacological Research
T1  - Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin
IS  - 1
VL  - 65
EP  - 119
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_1232
ER  - 
@article{
author = "Misirkić Marjanović, Maja and Janjetović, Kristina and Vučićević, Ljubica and Tovilović-Kovačević, Gordana and Ristić, Biljana Z and Vilimanović, Uros and Harhaji-Trajković, Ljubica and Sumarac-Dumanović, Mirjana S and Micić, Dragan D and Bumbaširević, Vladimir Z and Trajković, Vladimir S",
year = "2012",
abstract = "The role of autophagy, a process in which the cell self-digests its own components, was investigated in glioma cell death induced by the hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase-inhibiting drug simvastatin. Induction of autophagy and activation of autophagy-regulating signalling pathways were analyzed by immunoblotting. Flow cytometry/fluorescent microscopy was used to assess autophagy-associated intracellular acidification and apoptotic markers (phosphatidylserine exposure, DNA fragmentation and caspase activation). Cell viability was determined by crystal violet, MTT or LDH release assay. Simvastatin treatment of U251 and C6 glioma cell lines caused the appearance of autophagolysosome-like intracytoplasmic acidic vesicles. The induction of autophagy in U251 cells was confirmed by the upregulation of autophagosome-associated LC3-II and pro-autophagic beclin-1, as well as by the downregulation of the selective autophagic target p62. Simvastatin induced the activation of AMP-activated protein kinase (AMPK) and its target Raptor, while simultaneously downregulating activation of Akt. Mammalian target of rapamycin (mTOR). a major AMPK/Akt downstream target and a major negative autophagy regulator, and its substrate p70 S6 kinase 1 were also inhibited by simvastatin. Mevalonate, the product of HMG-CoA reductase enzymatic activity, AMPK siRNA or pharmacological inactivation of AMPK with compound C suppressed, while the inhibitors of Akt (10-DEBC hydrochloride) and mTOR (rapamycin) mimicked autophagy induction by simvastatin. Inhibition of autophagy with bafilomycin A1, 3-methyladenine and LC3 beta shRNA, as well as AMPK inhibition with compound C or AMPK siRNA, markedly increased apoptotic death of simvastatin-treated U251 cells. These data suggest that inhibition of AMPK-depenclent autophagic response might sensitize glioma cells to statin-induced apoptotic death. (C) 2011 Elsevier Ltd. All rights reserved.",
journal = "Pharmacological Research",
title = "Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin",
number = "1",
volume = "65",
pages = "119",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_1232"
}
Misirkić Marjanović, M., Janjetović, K., Vučićević, L., Tovilović-Kovačević, G., Ristić, B. Z., Vilimanović, U., Harhaji-Trajković, L., Sumarac-Dumanović, M. S., Micić, D. D., Bumbaširević, V. Z.,& Trajković, V. S.. (2012). Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin. in Pharmacological Research, 65(1).
https://hdl.handle.net/21.15107/rcub_ibiss_1232
Misirkić Marjanović M, Janjetović K, Vučićević L, Tovilović-Kovačević G, Ristić BZ, Vilimanović U, Harhaji-Trajković L, Sumarac-Dumanović MS, Micić DD, Bumbaširević VZ, Trajković VS. Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin. in Pharmacological Research. 2012;65(1):null-119.
https://hdl.handle.net/21.15107/rcub_ibiss_1232 .
Misirkić Marjanović, Maja, Janjetović, Kristina, Vučićević, Ljubica, Tovilović-Kovačević, Gordana, Ristić, Biljana Z, Vilimanović, Uros, Harhaji-Trajković, Ljubica, Sumarac-Dumanović, Mirjana S, Micić, Dragan D, Bumbaširević, Vladimir Z, Trajković, Vladimir S, "Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin" in Pharmacological Research, 65, no. 1 (2012),
https://hdl.handle.net/21.15107/rcub_ibiss_1232 .

Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells

Arsikin-Csordas, Katarina; Kravić-Stevović, Tamara; Jovanović, Maja; Ristić, Biljana; Tovilović-Kovačević, Gordana; Zogović, Nevena; Bumbaširević, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Amsterdam: Elsevier, 2012)

TY  - JOUR
AU  - Arsikin-Csordas, Katarina
AU  - Kravić-Stevović, Tamara
AU  - Jovanović, Maja
AU  - Ristić, Biljana
AU  - Tovilović-Kovačević, Gordana
AU  - Zogović, Nevena
AU  - Bumbaširević, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2012
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6366
AB  - The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.
PB  - Amsterdam: Elsevier
T2  - Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
T1  - Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells
IS  - 11
VL  - 1822
DO  - 10.1016/j.bbadis.2012.08.006.
SP  - 1826
EP  - 1836
ER  - 
@article{
author = "Arsikin-Csordas, Katarina and Kravić-Stevović, Tamara and Jovanović, Maja and Ristić, Biljana and Tovilović-Kovačević, Gordana and Zogović, Nevena and Bumbaširević, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2012",
abstract = "The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.",
publisher = "Amsterdam: Elsevier",
journal = "Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease",
title = "Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells",
number = "11",
volume = "1822",
doi = "10.1016/j.bbadis.2012.08.006.",
pages = "1826-1836"
}
Arsikin-Csordas, K., Kravić-Stevović, T., Jovanović, M., Ristić, B., Tovilović-Kovačević, G., Zogović, N., Bumbaširević, V., Trajković, V.,& Harhaji-Trajković, L.. (2012). Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. in Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Amsterdam: Elsevier., 1822(11), 1826-1836.
https://doi.org/10.1016/j.bbadis.2012.08.006.
Arsikin-Csordas K, Kravić-Stevović T, Jovanović M, Ristić B, Tovilović-Kovačević G, Zogović N, Bumbaširević V, Trajković V, Harhaji-Trajković L. Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. in Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2012;1822(11):1826-1836.
doi:10.1016/j.bbadis.2012.08.006. .
Arsikin-Csordas, Katarina, Kravić-Stevović, Tamara, Jovanović, Maja, Ristić, Biljana, Tovilović-Kovačević, Gordana, Zogović, Nevena, Bumbaširević, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells" in Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822, no. 11 (2012):1826-1836,
https://doi.org/10.1016/j.bbadis.2012.08.006. . .
34
45

Cyclohexyl Analogues of Ethylenediamine Dipropanoic Acid Induce Caspase-Independent Mitochondrial Apoptosis in Human Leukemic Cells

Misirlić-Dencić, Sonja T; Poljarević, Jelena M; Vilimanović, Uros; Bogdanović, Andrija D; Isaković, Aleksandra J; Kravić-Stevović, Tamara K; Dulović, Marija; Zogović, Nevena; Isaković, Anđelka M; Grgurić-Sipka, Sanja R; Bumbaširević, Vladimir Z; Sabo, Tibor J; Trajković, Vladimir S; Marković, Ivanka D

(2012)

TY  - JOUR
AU  - Misirlić-Dencić, Sonja T
AU  - Poljarević, Jelena M
AU  - Vilimanović, Uros
AU  - Bogdanović, Andrija D
AU  - Isaković, Aleksandra J
AU  - Kravić-Stevović, Tamara K
AU  - Dulović, Marija
AU  - Zogović, Nevena
AU  - Isaković, Anđelka M
AU  - Grgurić-Sipka, Sanja R
AU  - Bumbaširević, Vladimir Z
AU  - Sabo, Tibor J
AU  - Trajković, Vladimir S
AU  - Marković, Ivanka D
PY  - 2012
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/1196
AB  - We investigated the cytotoxicity of recently synthesized (S,S)-ethyleridiamine-N,N'-di-2-(3-cyclohexyl)propanoic acid esters toward human leukemic cell lines and healthy blood mononuclear cells. Cell viability was assessed by acid phosphatase assay, apoptosis, and differentiation were analyzed by flow cytometry and electron microscopy, while intracellular localization of apoptosis-inducing factor (AIF) was determined by immunoblotting. It was demonstrated that methyl, ethyl, and n-propyl esters were toxic to HL-60, REH, MOLT-4, KG-1, JVM-2, and K-562 leukemic cell lines, while the nonesterified parental compound and n-butyl ester were devoid of cytotoxic action. The ethyl ester exhibited the highest cytotoxic activity (IC50 10.7 mu M-45.4 mu M), which was comparable to that of the prototypical anticancer drug cisplatin. The observed cytotoxic effect in HL-60 cells was associated with an increase in superoxide production and mitochondrial membrane depolarization, leading to apoptotic cell death characterized by phosphatidylserine externalization and DNA fragmentation in the absence of autophagic response. DNA fragmentation preceded caspase activation and followed AIF translocation from mitochondria to nucleus, which was indicative of caspase-independent apoptotic cell death. HL-60 cells treated with subtoxic concentration of the compound displayed morphological signs of granulocytic differentiation (nuclear indentations and presence of cytoplasmic primary granules), as well as an increased expression of differentiation markers CD11b and CD15. The cyclohexyl analogues of ethylenediamine dipropanoic acid were also toxic to peripheral blood mononuclear cells of both healthy controls and leukemic patients, the latter being more sensitive. Our data demonstrate that the toxicity of the investigated cyclohexyl compounds against leukemic cell lines is mediated by caspase-independent apoptosis associated with oxidative stress, mitochondrial dysfunction, and AIF translocation.
T2  - Chemical Research in Toxicology
T1  - Cyclohexyl Analogues of Ethylenediamine Dipropanoic Acid Induce Caspase-Independent Mitochondrial Apoptosis in Human Leukemic Cells
IS  - 4
VL  - 25
EP  - 939
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_1196
ER  - 
@article{
author = "Misirlić-Dencić, Sonja T and Poljarević, Jelena M and Vilimanović, Uros and Bogdanović, Andrija D and Isaković, Aleksandra J and Kravić-Stevović, Tamara K and Dulović, Marija and Zogović, Nevena and Isaković, Anđelka M and Grgurić-Sipka, Sanja R and Bumbaširević, Vladimir Z and Sabo, Tibor J and Trajković, Vladimir S and Marković, Ivanka D",
year = "2012",
abstract = "We investigated the cytotoxicity of recently synthesized (S,S)-ethyleridiamine-N,N'-di-2-(3-cyclohexyl)propanoic acid esters toward human leukemic cell lines and healthy blood mononuclear cells. Cell viability was assessed by acid phosphatase assay, apoptosis, and differentiation were analyzed by flow cytometry and electron microscopy, while intracellular localization of apoptosis-inducing factor (AIF) was determined by immunoblotting. It was demonstrated that methyl, ethyl, and n-propyl esters were toxic to HL-60, REH, MOLT-4, KG-1, JVM-2, and K-562 leukemic cell lines, while the nonesterified parental compound and n-butyl ester were devoid of cytotoxic action. The ethyl ester exhibited the highest cytotoxic activity (IC50 10.7 mu M-45.4 mu M), which was comparable to that of the prototypical anticancer drug cisplatin. The observed cytotoxic effect in HL-60 cells was associated with an increase in superoxide production and mitochondrial membrane depolarization, leading to apoptotic cell death characterized by phosphatidylserine externalization and DNA fragmentation in the absence of autophagic response. DNA fragmentation preceded caspase activation and followed AIF translocation from mitochondria to nucleus, which was indicative of caspase-independent apoptotic cell death. HL-60 cells treated with subtoxic concentration of the compound displayed morphological signs of granulocytic differentiation (nuclear indentations and presence of cytoplasmic primary granules), as well as an increased expression of differentiation markers CD11b and CD15. The cyclohexyl analogues of ethylenediamine dipropanoic acid were also toxic to peripheral blood mononuclear cells of both healthy controls and leukemic patients, the latter being more sensitive. Our data demonstrate that the toxicity of the investigated cyclohexyl compounds against leukemic cell lines is mediated by caspase-independent apoptosis associated with oxidative stress, mitochondrial dysfunction, and AIF translocation.",
journal = "Chemical Research in Toxicology",
title = "Cyclohexyl Analogues of Ethylenediamine Dipropanoic Acid Induce Caspase-Independent Mitochondrial Apoptosis in Human Leukemic Cells",
number = "4",
volume = "25",
pages = "939",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_1196"
}
Misirlić-Dencić, S. T., Poljarević, J. M., Vilimanović, U., Bogdanović, A. D., Isaković, A. J., Kravić-Stevović, T. K., Dulović, M., Zogović, N., Isaković, A. M., Grgurić-Sipka, S. R., Bumbaširević, V. Z., Sabo, T. J., Trajković, V. S.,& Marković, I. D.. (2012). Cyclohexyl Analogues of Ethylenediamine Dipropanoic Acid Induce Caspase-Independent Mitochondrial Apoptosis in Human Leukemic Cells. in Chemical Research in Toxicology, 25(4).
https://hdl.handle.net/21.15107/rcub_ibiss_1196
Misirlić-Dencić ST, Poljarević JM, Vilimanović U, Bogdanović AD, Isaković AJ, Kravić-Stevović TK, Dulović M, Zogović N, Isaković AM, Grgurić-Sipka SR, Bumbaširević VZ, Sabo TJ, Trajković VS, Marković ID. Cyclohexyl Analogues of Ethylenediamine Dipropanoic Acid Induce Caspase-Independent Mitochondrial Apoptosis in Human Leukemic Cells. in Chemical Research in Toxicology. 2012;25(4):null-939.
https://hdl.handle.net/21.15107/rcub_ibiss_1196 .
Misirlić-Dencić, Sonja T, Poljarević, Jelena M, Vilimanović, Uros, Bogdanović, Andrija D, Isaković, Aleksandra J, Kravić-Stevović, Tamara K, Dulović, Marija, Zogović, Nevena, Isaković, Anđelka M, Grgurić-Sipka, Sanja R, Bumbaširević, Vladimir Z, Sabo, Tibor J, Trajković, Vladimir S, Marković, Ivanka D, "Cyclohexyl Analogues of Ethylenediamine Dipropanoic Acid Induce Caspase-Independent Mitochondrial Apoptosis in Human Leukemic Cells" in Chemical Research in Toxicology, 25, no. 4 (2012),
https://hdl.handle.net/21.15107/rcub_ibiss_1196 .

Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway

Vučićević, Ljubica; Misirkić Marjanović, Maja; Janjetović, Kristina; Vilimanović, Uros; Sudar, Emina M; Isenović, Esma R; Prica, Marko; Harhaji-Trajković, Ljubica; Kravić-Stevović, Tamara K; Bumbaširević, Vladimir Z; Trajković, Vladimir S

(2011)

TY  - JOUR
AU  - Vučićević, Ljubica
AU  - Misirkić Marjanović, Maja
AU  - Janjetović, Kristina
AU  - Vilimanović, Uros
AU  - Sudar, Emina M
AU  - Isenović, Esma R
AU  - Prica, Marko
AU  - Harhaji-Trajković, Ljubica
AU  - Kravić-Stevović, Tamara K
AU  - Bumbaširević, Vladimir Z
AU  - Trajković, Vladimir S
PY  - 2011
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/1321
AB  - In the present study, we report that compound C, an inhibitor of a key intracellular energy sensor AMP-activated protein kinase (AMPK), can induce autophagy in cancer cells. The induction of autophagy in U251 human glioma cell line was demonstrated by acridine orange staining of intracellular acidic vesicles, Beclin 1 induction, p62 decrease and conversion of LC3-I to autophagosome-associated LC3-II in the presence of proteolysis inhibitors. The presence of autophagosome-like vesicles was confirmed by transmission electron microscopy. Compound C-mediated inhibition of AMPK and raptor in U251 cells was associated with paradoxical decrease in phosphorylation of AMPK/raptor-repressed mTOR, a major negative regulator of autophagy, and its downstream target p70S6K. The phosphorylation of an mTOR activator Akt and the PI3K-activating kinase Src was also impaired in compound C-treated cells. The siRNA-mediated AMPK silencing did not reduce the activity of the Akt/mTOR/p70S6K pathway and AMPK activators metformin and AICAR failed to block compound C-induced autophagy. Autophagy inhibitors bafilomycin and chloroquine significantly increased the cytotoxicity of compound C towards U251 cells, as confirmed by increase in lactate dehydrogenase release, DNA fragmentation and caspase-3 activation. Similar effects of compound C were also observed in C6 rat glioma, L929 mouse fibrosarcoma and B16 mouse melanoma cell lines. Since compound C has previously been reported to suppress AMPK-dependent autophagy in different cell types, our findings suggest that the effects of compound C on autophagy might be dose-, cell type- and/or context-dependent. By demonstrating the ability of compound C to induce autophagic response in cancer cells via AMPK inhibition-independent downregulation of Akt/mTOR pathway, our results warrant caution when using compound C to inhibit AMPK-dependent cellular responses, but also support further exploration of compound C and related molecules as potential anticancer agents.
T2  - Autophagy
T1  - Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway
IS  - 1
VL  - 7
DO  - 10.4161/auto.7.1.13883
EP  - 50
ER  - 
@article{
author = "Vučićević, Ljubica and Misirkić Marjanović, Maja and Janjetović, Kristina and Vilimanović, Uros and Sudar, Emina M and Isenović, Esma R and Prica, Marko and Harhaji-Trajković, Ljubica and Kravić-Stevović, Tamara K and Bumbaširević, Vladimir Z and Trajković, Vladimir S",
year = "2011",
abstract = "In the present study, we report that compound C, an inhibitor of a key intracellular energy sensor AMP-activated protein kinase (AMPK), can induce autophagy in cancer cells. The induction of autophagy in U251 human glioma cell line was demonstrated by acridine orange staining of intracellular acidic vesicles, Beclin 1 induction, p62 decrease and conversion of LC3-I to autophagosome-associated LC3-II in the presence of proteolysis inhibitors. The presence of autophagosome-like vesicles was confirmed by transmission electron microscopy. Compound C-mediated inhibition of AMPK and raptor in U251 cells was associated with paradoxical decrease in phosphorylation of AMPK/raptor-repressed mTOR, a major negative regulator of autophagy, and its downstream target p70S6K. The phosphorylation of an mTOR activator Akt and the PI3K-activating kinase Src was also impaired in compound C-treated cells. The siRNA-mediated AMPK silencing did not reduce the activity of the Akt/mTOR/p70S6K pathway and AMPK activators metformin and AICAR failed to block compound C-induced autophagy. Autophagy inhibitors bafilomycin and chloroquine significantly increased the cytotoxicity of compound C towards U251 cells, as confirmed by increase in lactate dehydrogenase release, DNA fragmentation and caspase-3 activation. Similar effects of compound C were also observed in C6 rat glioma, L929 mouse fibrosarcoma and B16 mouse melanoma cell lines. Since compound C has previously been reported to suppress AMPK-dependent autophagy in different cell types, our findings suggest that the effects of compound C on autophagy might be dose-, cell type- and/or context-dependent. By demonstrating the ability of compound C to induce autophagic response in cancer cells via AMPK inhibition-independent downregulation of Akt/mTOR pathway, our results warrant caution when using compound C to inhibit AMPK-dependent cellular responses, but also support further exploration of compound C and related molecules as potential anticancer agents.",
journal = "Autophagy",
title = "Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway",
number = "1",
volume = "7",
doi = "10.4161/auto.7.1.13883",
pages = "50"
}
Vučićević, L., Misirkić Marjanović, M., Janjetović, K., Vilimanović, U., Sudar, E. M., Isenović, E. R., Prica, M., Harhaji-Trajković, L., Kravić-Stevović, T. K., Bumbaširević, V. Z.,& Trajković, V. S.. (2011). Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. in Autophagy, 7(1).
https://doi.org/10.4161/auto.7.1.13883
Vučićević L, Misirkić Marjanović M, Janjetović K, Vilimanović U, Sudar EM, Isenović ER, Prica M, Harhaji-Trajković L, Kravić-Stevović TK, Bumbaširević VZ, Trajković VS. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. in Autophagy. 2011;7(1):null-50.
doi:10.4161/auto.7.1.13883 .
Vučićević, Ljubica, Misirkić Marjanović, Maja, Janjetović, Kristina, Vilimanović, Uros, Sudar, Emina M, Isenović, Esma R, Prica, Marko, Harhaji-Trajković, Ljubica, Kravić-Stevović, Tamara K, Bumbaširević, Vladimir Z, Trajković, Vladimir S, "Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway" in Autophagy, 7, no. 1 (2011),
https://doi.org/10.4161/auto.7.1.13883 . .
3
204
179
204