Chegaev, Konstantin

Link to this page

Authority KeyName Variants
4e9893c8-07fc-499e-a927-a4de0260aa1e
  • Chegaev, Konstantin (1)

Author's Bibliography

A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors

Alov, Petko; Al Sharif, Merilin; Aluani, Denitsa; Chegaev, Konstantin; Dinić, Jelena; Divac Rankov, Aleksandra; Fernandes, Miguel X.; Fusi, Fabio; García-Sosa, Alfonso T.; Juvonen, Risto; Kondeva-Burdina, Magdalena; Padrón, José M.; Pajeva, Ilza; Pencheva, Tania; Puerta, Adrián; Raunio, Hannu; Riganti, Chiara; Tsakovska, Ivanka; Tzankova, Virginia; Yordanov, Yordan; Saponara, Simona

(Lausanne : Frontiers Media, 2022)

TY  - JOUR
AU  - Alov, Petko
AU  - Al Sharif, Merilin
AU  - Aluani, Denitsa
AU  - Chegaev, Konstantin
AU  - Dinić, Jelena
AU  - Divac Rankov, Aleksandra
AU  - Fernandes, Miguel X.
AU  - Fusi, Fabio
AU  - García-Sosa, Alfonso T.
AU  - Juvonen, Risto
AU  - Kondeva-Burdina, Magdalena
AU  - Padrón, José M.
AU  - Pajeva, Ilza
AU  - Pencheva, Tania
AU  - Puerta, Adrián
AU  - Raunio, Hannu
AU  - Riganti, Chiara
AU  - Tsakovska, Ivanka
AU  - Tzankova, Virginia
AU  - Yordanov, Yordan
AU  - Saponara, Simona
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4870
AB  - Sdox is a hydrogen sulfide (H2S)-releasing doxorubicin effective in P-glycoprotein-overexpressing/doxorubicin-resistant tumor models and not cytotoxic, as the parental drug, in H9c2 cardiomyocytes. The aim of this study was the assessment of Sdox drug-like features and its absorption, distribution, metabolism, and excretion (ADME)/toxicity properties, by a multi- and transdisciplinary in silico, in vitro, and in vivo approach. Doxorubicin was used as the reference compound. The in silico profiling suggested that Sdox possesses higher lipophilicity and lower solubility compared to doxorubicin, and the off-targets prediction revealed relevant differences between Dox and Sdox towards several cancer targets, suggesting different toxicological profiles. In vitro data showed that Sdox is a substrate with lower affinity for P-glycoprotein, less hepatotoxic, and causes less oxidative damage than doxorubicin. Both anthracyclines inhibited CYP3A4, but not hERG currents. Unlike doxorubicin, the percentage of zebrafish live embryos at 72 hpf was not affected by Sdox treatment. In conclusion, these findings demonstrate that Sdox displays a more favorable drug-like ADME/toxicity profile than doxorubicin, different selectivity towards cancer targets, along with a greater preclinical efficacy in resistant tumors. Therefore, Sdox represents a prototype of innovative anthracyclines, worthy of further investigations in clinical settings.
PB  - Lausanne : Frontiers Media
T2  - Frontiers in Pharmacology
T1  - A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors
VL  - 13
DO  - 10.3389/fphar.2022.831791
SP  - 831791
ER  - 
@article{
author = "Alov, Petko and Al Sharif, Merilin and Aluani, Denitsa and Chegaev, Konstantin and Dinić, Jelena and Divac Rankov, Aleksandra and Fernandes, Miguel X. and Fusi, Fabio and García-Sosa, Alfonso T. and Juvonen, Risto and Kondeva-Burdina, Magdalena and Padrón, José M. and Pajeva, Ilza and Pencheva, Tania and Puerta, Adrián and Raunio, Hannu and Riganti, Chiara and Tsakovska, Ivanka and Tzankova, Virginia and Yordanov, Yordan and Saponara, Simona",
year = "2022",
abstract = "Sdox is a hydrogen sulfide (H2S)-releasing doxorubicin effective in P-glycoprotein-overexpressing/doxorubicin-resistant tumor models and not cytotoxic, as the parental drug, in H9c2 cardiomyocytes. The aim of this study was the assessment of Sdox drug-like features and its absorption, distribution, metabolism, and excretion (ADME)/toxicity properties, by a multi- and transdisciplinary in silico, in vitro, and in vivo approach. Doxorubicin was used as the reference compound. The in silico profiling suggested that Sdox possesses higher lipophilicity and lower solubility compared to doxorubicin, and the off-targets prediction revealed relevant differences between Dox and Sdox towards several cancer targets, suggesting different toxicological profiles. In vitro data showed that Sdox is a substrate with lower affinity for P-glycoprotein, less hepatotoxic, and causes less oxidative damage than doxorubicin. Both anthracyclines inhibited CYP3A4, but not hERG currents. Unlike doxorubicin, the percentage of zebrafish live embryos at 72 hpf was not affected by Sdox treatment. In conclusion, these findings demonstrate that Sdox displays a more favorable drug-like ADME/toxicity profile than doxorubicin, different selectivity towards cancer targets, along with a greater preclinical efficacy in resistant tumors. Therefore, Sdox represents a prototype of innovative anthracyclines, worthy of further investigations in clinical settings.",
publisher = "Lausanne : Frontiers Media",
journal = "Frontiers in Pharmacology",
title = "A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors",
volume = "13",
doi = "10.3389/fphar.2022.831791",
pages = "831791"
}
Alov, P., Al Sharif, M., Aluani, D., Chegaev, K., Dinić, J., Divac Rankov, A., Fernandes, M. X., Fusi, F., García-Sosa, A. T., Juvonen, R., Kondeva-Burdina, M., Padrón, J. M., Pajeva, I., Pencheva, T., Puerta, A., Raunio, H., Riganti, C., Tsakovska, I., Tzankova, V., Yordanov, Y.,& Saponara, S.. (2022). A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors. in Frontiers in Pharmacology
Lausanne : Frontiers Media., 13, 831791.
https://doi.org/10.3389/fphar.2022.831791
Alov P, Al Sharif M, Aluani D, Chegaev K, Dinić J, Divac Rankov A, Fernandes MX, Fusi F, García-Sosa AT, Juvonen R, Kondeva-Burdina M, Padrón JM, Pajeva I, Pencheva T, Puerta A, Raunio H, Riganti C, Tsakovska I, Tzankova V, Yordanov Y, Saponara S. A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors. in Frontiers in Pharmacology. 2022;13:831791.
doi:10.3389/fphar.2022.831791 .
Alov, Petko, Al Sharif, Merilin, Aluani, Denitsa, Chegaev, Konstantin, Dinić, Jelena, Divac Rankov, Aleksandra, Fernandes, Miguel X., Fusi, Fabio, García-Sosa, Alfonso T., Juvonen, Risto, Kondeva-Burdina, Magdalena, Padrón, José M., Pajeva, Ilza, Pencheva, Tania, Puerta, Adrián, Raunio, Hannu, Riganti, Chiara, Tsakovska, Ivanka, Tzankova, Virginia, Yordanov, Yordan, Saponara, Simona, "A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors" in Frontiers in Pharmacology, 13 (2022):831791,
https://doi.org/10.3389/fphar.2022.831791 . .
9
3