Jakovljević, Marija

Link to this page

Authority KeyName Variants
orcid::0000-0001-9199-4722
  • Jakovljević, Marija (19)

Author's Bibliography

Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro.

Dragić, Milorad; Mihajlovic, Katarina; Adžić, Marija; Jakovljević, Marija; Zarić Kontić, Marina; Mitrović, Nataša; Laketa, Danijela; Lavrnja, Irena; Kipp, Markus; Grković, Ivana; Nedeljkovic, Nadezda

(2022)

TY  - JOUR
AU  - Dragić, Milorad
AU  - Mihajlovic, Katarina
AU  - Adžić, Marija
AU  - Jakovljević, Marija
AU  - Zarić Kontić, Marina
AU  - Mitrović, Nataša
AU  - Laketa, Danijela
AU  - Lavrnja, Irena
AU  - Kipp, Markus
AU  - Grković, Ivana
AU  - Nedeljkovic, Nadezda
PY  - 2022
UR  - http://journals.sagepub.com/doi/10.1177/17590914221102068
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4984
AB  - Ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) hydrolyzes extracellular ATP to ADP, which is the ligand for P2Y1,12,13 receptors. The present study describes the distribution of NTPDase2 in adult rat brains in physiological conditions, and in hippocampal neurodegeneration induced by trimethyltin (TMT). The study also describes the regulation of NTPDase2 by inflammatory mediators in primary astrocytes and oligodendroglial cell line OLN93. In physiological conditions, NTPDase2 protein was most abundant in the hippocampus, where it was found in fibrous astrocytes and synaptic endings in the synaptic-rich hippocampal layers. In TMT-induced neurodegeneration, NTPDase2-mRNA acutely decreased at 2-dpi and then gradually recovered to the control level at 7-dpi and 21-dpi. As determined by immunohistochemistry and double immunofluorescence, the decrease was most pronounced in the dentate gyrus (DG), where NTPDase2 withdrew from the synaptic boutons in the polymorphic layer of DG, whereas the recovery of the expression was most profound in the subgranular layer. Concerning the regulation of NTPDase2 gene expression, proinflammatory cytokines IL-6, IL-1β, TNFα, and IFNγ negatively regulated the expression of NTPDase2 in OLN93 cells, while did not altering the expression in primary astrocytes. Different cell-intrinsic stressors, such as depletion of intracellular energy store, oxidative stress, endoplasmic reticulum stress, and activation of protein kinase C, also massively disturbed the expression of the NTPDase2 gene. Together, our results suggest that the expression and the activity of NTPDase2 transiently cease in neurodegeneration and brain injury, most likely as a part of the acute adaptive response designed to promote cell defense, survival, and recovery.
T2  - ASN Neuro
T1  - Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro.
VL  - 14
DO  - 10.1177/17590914221102068
SP  - 17590914221102068
ER  - 
@article{
author = "Dragić, Milorad and Mihajlovic, Katarina and Adžić, Marija and Jakovljević, Marija and Zarić Kontić, Marina and Mitrović, Nataša and Laketa, Danijela and Lavrnja, Irena and Kipp, Markus and Grković, Ivana and Nedeljkovic, Nadezda",
year = "2022",
abstract = "Ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) hydrolyzes extracellular ATP to ADP, which is the ligand for P2Y1,12,13 receptors. The present study describes the distribution of NTPDase2 in adult rat brains in physiological conditions, and in hippocampal neurodegeneration induced by trimethyltin (TMT). The study also describes the regulation of NTPDase2 by inflammatory mediators in primary astrocytes and oligodendroglial cell line OLN93. In physiological conditions, NTPDase2 protein was most abundant in the hippocampus, where it was found in fibrous astrocytes and synaptic endings in the synaptic-rich hippocampal layers. In TMT-induced neurodegeneration, NTPDase2-mRNA acutely decreased at 2-dpi and then gradually recovered to the control level at 7-dpi and 21-dpi. As determined by immunohistochemistry and double immunofluorescence, the decrease was most pronounced in the dentate gyrus (DG), where NTPDase2 withdrew from the synaptic boutons in the polymorphic layer of DG, whereas the recovery of the expression was most profound in the subgranular layer. Concerning the regulation of NTPDase2 gene expression, proinflammatory cytokines IL-6, IL-1β, TNFα, and IFNγ negatively regulated the expression of NTPDase2 in OLN93 cells, while did not altering the expression in primary astrocytes. Different cell-intrinsic stressors, such as depletion of intracellular energy store, oxidative stress, endoplasmic reticulum stress, and activation of protein kinase C, also massively disturbed the expression of the NTPDase2 gene. Together, our results suggest that the expression and the activity of NTPDase2 transiently cease in neurodegeneration and brain injury, most likely as a part of the acute adaptive response designed to promote cell defense, survival, and recovery.",
journal = "ASN Neuro",
title = "Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro.",
volume = "14",
doi = "10.1177/17590914221102068",
pages = "17590914221102068"
}
Dragić, M., Mihajlovic, K., Adžić, M., Jakovljević, M., Zarić Kontić, M., Mitrović, N., Laketa, D., Lavrnja, I., Kipp, M., Grković, I.,& Nedeljkovic, N.. (2022). Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro.. in ASN Neuro, 14, 17590914221102068.
https://doi.org/10.1177/17590914221102068
Dragić M, Mihajlovic K, Adžić M, Jakovljević M, Zarić Kontić M, Mitrović N, Laketa D, Lavrnja I, Kipp M, Grković I, Nedeljkovic N. Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro.. in ASN Neuro. 2022;14:17590914221102068.
doi:10.1177/17590914221102068 .
Dragić, Milorad, Mihajlovic, Katarina, Adžić, Marija, Jakovljević, Marija, Zarić Kontić, Marina, Mitrović, Nataša, Laketa, Danijela, Lavrnja, Irena, Kipp, Markus, Grković, Ivana, Nedeljkovic, Nadezda, "Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro." in ASN Neuro, 14 (2022):17590914221102068,
https://doi.org/10.1177/17590914221102068 . .
3
2
2

Agmatine protects mitochondria in LPS-stimulated microglia

Milošević, Katarina; Stevanović, Ivana; Božić, Iva; Milošević, Ana; Jakovljević, Marija; Janjić, Marija; Bjelobaba, Ivana; Laketa, Danijela; Lavrnja, Irena; Savić, Danijela

(Federation of European Neuroscience Societies, 2021)

TY  - CONF
AU  - Milošević, Katarina
AU  - Stevanović, Ivana
AU  - Božić, Iva
AU  - Milošević, Ana
AU  - Jakovljević, Marija
AU  - Janjić, Marija
AU  - Bjelobaba, Ivana
AU  - Laketa, Danijela
AU  - Lavrnja, Irena
AU  - Savić, Danijela
PY  - 2021
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6003
AB  - Mitochondria play a key role in energy metabolism and regulate some of the principal cellular processes such as the production of ATP and reactive oxygen species, as well as a regulation of apoptotic cell death. Mitochondrial dysfunction and oxidative stress are common threads in most neurodegenerative disorders, which are also accompanied by chronic microglial activation. Agmatine, neuromodulatory polyamine, was shown to exhibit neuroprotective effects in oxidative stress conditions. Therefore, the goal of this study was to determine the ability of agmatine to preserve mitochondrial function and prevent apoptosis during neuroinflammation.
The effects of 100 µM agmatine on cellular energy status and cell death were examined in LPS-stimulated BV2 microglial cell line. To detect changes in mitochondrial membrane potential, TMRE fluorescent assay was performed, while the changes in intracellular ATP concentration were determined by bioluminescent assay, 6h, and 24h after LPS stimulation. The expression of apoptosis regulators Bax and Bcl2 was assessed by Western blot analysis and the Bax/Bcl2 ratio was determined.
Agmatine increases mitochondrial membrane potential, indicating its protective role during mitochondrial insult caused by LPS stimulation. LPS and agmatine administrated separately, increase intracellular ATP levels, however, agmatine treatment followed by LPS stimulation enhances ATP production even further, at both time points. Moreover, agmatine shows an antiapoptotic effect by reduction of Bax/Bcl2 ratio in comparison to LPS stimulation.
We conclude that the results of this study indicate the capacity of agmatine to protect mitochondrial function and suppress apoptosis, which may be beneficial in neurodegenerative disorders and
neuroinflammation.
PB  - Federation of European Neuroscience Societies
C3  - Book of Abstracts: Virtual FENS Regional Meeting 2021; 2021 Aug 25-27; Krakow, Poland
T1  - Agmatine protects mitochondria in LPS-stimulated microglia
SP  - 285
EP  - 286
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6003
ER  - 
@conference{
author = "Milošević, Katarina and Stevanović, Ivana and Božić, Iva and Milošević, Ana and Jakovljević, Marija and Janjić, Marija and Bjelobaba, Ivana and Laketa, Danijela and Lavrnja, Irena and Savić, Danijela",
year = "2021",
abstract = "Mitochondria play a key role in energy metabolism and regulate some of the principal cellular processes such as the production of ATP and reactive oxygen species, as well as a regulation of apoptotic cell death. Mitochondrial dysfunction and oxidative stress are common threads in most neurodegenerative disorders, which are also accompanied by chronic microglial activation. Agmatine, neuromodulatory polyamine, was shown to exhibit neuroprotective effects in oxidative stress conditions. Therefore, the goal of this study was to determine the ability of agmatine to preserve mitochondrial function and prevent apoptosis during neuroinflammation.
The effects of 100 µM agmatine on cellular energy status and cell death were examined in LPS-stimulated BV2 microglial cell line. To detect changes in mitochondrial membrane potential, TMRE fluorescent assay was performed, while the changes in intracellular ATP concentration were determined by bioluminescent assay, 6h, and 24h after LPS stimulation. The expression of apoptosis regulators Bax and Bcl2 was assessed by Western blot analysis and the Bax/Bcl2 ratio was determined.
Agmatine increases mitochondrial membrane potential, indicating its protective role during mitochondrial insult caused by LPS stimulation. LPS and agmatine administrated separately, increase intracellular ATP levels, however, agmatine treatment followed by LPS stimulation enhances ATP production even further, at both time points. Moreover, agmatine shows an antiapoptotic effect by reduction of Bax/Bcl2 ratio in comparison to LPS stimulation.
We conclude that the results of this study indicate the capacity of agmatine to protect mitochondrial function and suppress apoptosis, which may be beneficial in neurodegenerative disorders and
neuroinflammation.",
publisher = "Federation of European Neuroscience Societies",
journal = "Book of Abstracts: Virtual FENS Regional Meeting 2021; 2021 Aug 25-27; Krakow, Poland",
title = "Agmatine protects mitochondria in LPS-stimulated microglia",
pages = "285-286",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6003"
}
Milošević, K., Stevanović, I., Božić, I., Milošević, A., Jakovljević, M., Janjić, M., Bjelobaba, I., Laketa, D., Lavrnja, I.,& Savić, D.. (2021). Agmatine protects mitochondria in LPS-stimulated microglia. in Book of Abstracts: Virtual FENS Regional Meeting 2021; 2021 Aug 25-27; Krakow, Poland
Federation of European Neuroscience Societies., 285-286.
https://hdl.handle.net/21.15107/rcub_ibiss_6003
Milošević K, Stevanović I, Božić I, Milošević A, Jakovljević M, Janjić M, Bjelobaba I, Laketa D, Lavrnja I, Savić D. Agmatine protects mitochondria in LPS-stimulated microglia. in Book of Abstracts: Virtual FENS Regional Meeting 2021; 2021 Aug 25-27; Krakow, Poland. 2021;:285-286.
https://hdl.handle.net/21.15107/rcub_ibiss_6003 .
Milošević, Katarina, Stevanović, Ivana, Božić, Iva, Milošević, Ana, Jakovljević, Marija, Janjić, Marija, Bjelobaba, Ivana, Laketa, Danijela, Lavrnja, Irena, Savić, Danijela, "Agmatine protects mitochondria in LPS-stimulated microglia" in Book of Abstracts: Virtual FENS Regional Meeting 2021; 2021 Aug 25-27; Krakow, Poland (2021):285-286,
https://hdl.handle.net/21.15107/rcub_ibiss_6003 .

The Function of the Hypothalamic-Pituitary-Adrenal Axis During Experimental Autoimmune Encephalomyelitis: Involvement of Oxidative Stress Mediators.

Trifunović, Svetlana; Stevanović, Ivana; Milošević, Ana; Ristić, Nataša; Janjić, Marija; Bjelobaba, Ivana; Savić, Danijela; Božić, Iva; Jakovljević, Marija; Milošević, Katarina; Laketa, Danijela; Lavrnja, Irena

(Lausanne: Frontiers Media SA, 2021)

TY  - JOUR
AU  - Trifunović, Svetlana
AU  - Stevanović, Ivana
AU  - Milošević, Ana
AU  - Ristić, Nataša
AU  - Janjić, Marija
AU  - Bjelobaba, Ivana
AU  - Savić, Danijela
AU  - Božić, Iva
AU  - Jakovljević, Marija
AU  - Milošević, Katarina
AU  - Laketa, Danijela
AU  - Lavrnja, Irena
PY  - 2021
UR  - https://www.frontiersin.org/articles/10.3389/fnins.2021.649485/full
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4436
AB  - Multiple sclerosis (MS) is an inflammatory, demyelinating disease with an unknown origin. Previous studies showed the involvement of the hypothalamic-pituitary-adrenal (HPA) axis to susceptibility to autoimmune diseases, including MS, and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). During MS/EAE, innate immune cells are activated and release cytokines and other inflammatory mediators, leading to a vicious cycle of inflammation. In response to inflammation, the activated HPA axis modulates immune responses via glucocorticoid activity. Because the mechanisms involving oxidative stress to the HPA axis are relatively unrevealed, in this study, we investigate the inflammatory and oxidative stress status of HPA axis during EAE. Our results reveal an upregulation of Pomc gene expression, followed by POMC and ACTH protein increase at the peak of the EAE in the pituitary. Also, prostaglandins are well-known contributors of HPA axis activation, which increases during EAE at the periphery. The upregulated Tnf expression in the pituitary during the peak of EAE occurred. This leads to the activation of oxidative pathways, followed by upregulation of inducible NO synthase expression. The reactive oxidant/nitrosative species (ROS/RNS), such as superoxide anion and NO, increase their levels at the onset and peak of the disease in the pituitary and adrenal glands, returning to control levels at the end of EAE. The corticotrophs in the pituitary increased in number and volume at the peak of EAE that coincides with high lipid peroxidation levels. The expression of MC2R in the adrenal glands increases at the peak of EAE, where strong induction of superoxide anion and malondialdehyde (MDA), reduced total glutathione (GSH) content, and catalase activity occurred at the peak and end of EAE compared with controls. The results obtained from this study may help in understanding the mechanisms and possible pharmacological modulation in MS and demonstrate an effect of oxidative stress exposure in the HPA activation during the course of EAE.
PB  - Lausanne: Frontiers Media SA
T2  - Frontiers in Neuroscience
T1  - The Function of the Hypothalamic-Pituitary-Adrenal Axis During Experimental Autoimmune Encephalomyelitis: Involvement of Oxidative Stress Mediators.
VL  - 15
DO  - 10.3389/fnins.2021.649485
SP  - 649485
ER  - 
@article{
author = "Trifunović, Svetlana and Stevanović, Ivana and Milošević, Ana and Ristić, Nataša and Janjić, Marija and Bjelobaba, Ivana and Savić, Danijela and Božić, Iva and Jakovljević, Marija and Milošević, Katarina and Laketa, Danijela and Lavrnja, Irena",
year = "2021",
abstract = "Multiple sclerosis (MS) is an inflammatory, demyelinating disease with an unknown origin. Previous studies showed the involvement of the hypothalamic-pituitary-adrenal (HPA) axis to susceptibility to autoimmune diseases, including MS, and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). During MS/EAE, innate immune cells are activated and release cytokines and other inflammatory mediators, leading to a vicious cycle of inflammation. In response to inflammation, the activated HPA axis modulates immune responses via glucocorticoid activity. Because the mechanisms involving oxidative stress to the HPA axis are relatively unrevealed, in this study, we investigate the inflammatory and oxidative stress status of HPA axis during EAE. Our results reveal an upregulation of Pomc gene expression, followed by POMC and ACTH protein increase at the peak of the EAE in the pituitary. Also, prostaglandins are well-known contributors of HPA axis activation, which increases during EAE at the periphery. The upregulated Tnf expression in the pituitary during the peak of EAE occurred. This leads to the activation of oxidative pathways, followed by upregulation of inducible NO synthase expression. The reactive oxidant/nitrosative species (ROS/RNS), such as superoxide anion and NO, increase their levels at the onset and peak of the disease in the pituitary and adrenal glands, returning to control levels at the end of EAE. The corticotrophs in the pituitary increased in number and volume at the peak of EAE that coincides with high lipid peroxidation levels. The expression of MC2R in the adrenal glands increases at the peak of EAE, where strong induction of superoxide anion and malondialdehyde (MDA), reduced total glutathione (GSH) content, and catalase activity occurred at the peak and end of EAE compared with controls. The results obtained from this study may help in understanding the mechanisms and possible pharmacological modulation in MS and demonstrate an effect of oxidative stress exposure in the HPA activation during the course of EAE.",
publisher = "Lausanne: Frontiers Media SA",
journal = "Frontiers in Neuroscience",
title = "The Function of the Hypothalamic-Pituitary-Adrenal Axis During Experimental Autoimmune Encephalomyelitis: Involvement of Oxidative Stress Mediators.",
volume = "15",
doi = "10.3389/fnins.2021.649485",
pages = "649485"
}
Trifunović, S., Stevanović, I., Milošević, A., Ristić, N., Janjić, M., Bjelobaba, I., Savić, D., Božić, I., Jakovljević, M., Milošević, K., Laketa, D.,& Lavrnja, I.. (2021). The Function of the Hypothalamic-Pituitary-Adrenal Axis During Experimental Autoimmune Encephalomyelitis: Involvement of Oxidative Stress Mediators.. in Frontiers in Neuroscience
Lausanne: Frontiers Media SA., 15, 649485.
https://doi.org/10.3389/fnins.2021.649485
Trifunović S, Stevanović I, Milošević A, Ristić N, Janjić M, Bjelobaba I, Savić D, Božić I, Jakovljević M, Milošević K, Laketa D, Lavrnja I. The Function of the Hypothalamic-Pituitary-Adrenal Axis During Experimental Autoimmune Encephalomyelitis: Involvement of Oxidative Stress Mediators.. in Frontiers in Neuroscience. 2021;15:649485.
doi:10.3389/fnins.2021.649485 .
Trifunović, Svetlana, Stevanović, Ivana, Milošević, Ana, Ristić, Nataša, Janjić, Marija, Bjelobaba, Ivana, Savić, Danijela, Božić, Iva, Jakovljević, Marija, Milošević, Katarina, Laketa, Danijela, Lavrnja, Irena, "The Function of the Hypothalamic-Pituitary-Adrenal Axis During Experimental Autoimmune Encephalomyelitis: Involvement of Oxidative Stress Mediators." in Frontiers in Neuroscience, 15 (2021):649485,
https://doi.org/10.3389/fnins.2021.649485 . .
2
13
12

Testicular steroidogenesis is suppressed during experimental autoimmune encephalomyelitis in rats

Milošević, Ana; Bjelobaba, Ivana; Božić, Iva; Lavrnja, Irena; Savić, Danijela; Milošević, Katarina; Jakovljević, Marija; Stojilković, Stanko S.; Janjić, Marija

(Springer Science and Business Media LLC, 2021)

TY  - JOUR
AU  - Milošević, Ana
AU  - Bjelobaba, Ivana
AU  - Božić, Iva
AU  - Lavrnja, Irena
AU  - Savić, Danijela
AU  - Milošević, Katarina
AU  - Jakovljević, Marija
AU  - Stojilković, Stanko S.
AU  - Janjić, Marija
PY  - 2021
UR  - https://doi.org/10.1038/s41598-021-88305-5
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4248
AB  - Multiple sclerosis (MS) is an autoimmune disease that usually occurs during the reproductive years in both sexes. Many male patients with MS show lower blood testosterone levels, which was also observed in male rats during experimental autoimmune encephalomyelitis (EAE), an animal model of MS. To better understand the causes of decreased testosterone production during EAE, we investigated the expression status of genes and proteins associated with steroidogenesis in the testes. No changes in the number of interstitial cells were observed in EAE animals, but the expression of the insulin-like 3 gene was reduced at the peak of the disease, implying that the Leydig cell functional capacity was affected. Consistent with this finding, the expression of most steroidogenic enzyme genes and proteins was reduced during EAE, including StAR, CYP11A1, CYP17A1 and HSD3B. No signs of testicular inflammation were observed. Recovery of steroidogenesis was observed after injection of hCG, the placental gonadotropin, or buserelin acetate, a gonadotropin-releasing hormone analogue, at the peak of EAE. Together, our results are consistent with the hypothesis that impaired testicular steroidogenesis originates upstream of the testes and that low serum LH is the main cause of decreased testosterone levels during EAE.
PB  - Springer Science and Business Media LLC
T2  - Scientific Reports
T1  - Testicular steroidogenesis is suppressed during experimental autoimmune encephalomyelitis in rats
IS  - 1
VL  - 11
DO  - 10.1038/s41598-021-88305-5
SP  - 8996
ER  - 
@article{
author = "Milošević, Ana and Bjelobaba, Ivana and Božić, Iva and Lavrnja, Irena and Savić, Danijela and Milošević, Katarina and Jakovljević, Marija and Stojilković, Stanko S. and Janjić, Marija",
year = "2021",
abstract = "Multiple sclerosis (MS) is an autoimmune disease that usually occurs during the reproductive years in both sexes. Many male patients with MS show lower blood testosterone levels, which was also observed in male rats during experimental autoimmune encephalomyelitis (EAE), an animal model of MS. To better understand the causes of decreased testosterone production during EAE, we investigated the expression status of genes and proteins associated with steroidogenesis in the testes. No changes in the number of interstitial cells were observed in EAE animals, but the expression of the insulin-like 3 gene was reduced at the peak of the disease, implying that the Leydig cell functional capacity was affected. Consistent with this finding, the expression of most steroidogenic enzyme genes and proteins was reduced during EAE, including StAR, CYP11A1, CYP17A1 and HSD3B. No signs of testicular inflammation were observed. Recovery of steroidogenesis was observed after injection of hCG, the placental gonadotropin, or buserelin acetate, a gonadotropin-releasing hormone analogue, at the peak of EAE. Together, our results are consistent with the hypothesis that impaired testicular steroidogenesis originates upstream of the testes and that low serum LH is the main cause of decreased testosterone levels during EAE.",
publisher = "Springer Science and Business Media LLC",
journal = "Scientific Reports",
title = "Testicular steroidogenesis is suppressed during experimental autoimmune encephalomyelitis in rats",
number = "1",
volume = "11",
doi = "10.1038/s41598-021-88305-5",
pages = "8996"
}
Milošević, A., Bjelobaba, I., Božić, I., Lavrnja, I., Savić, D., Milošević, K., Jakovljević, M., Stojilković, S. S.,& Janjić, M.. (2021). Testicular steroidogenesis is suppressed during experimental autoimmune encephalomyelitis in rats. in Scientific Reports
Springer Science and Business Media LLC., 11(1), 8996.
https://doi.org/10.1038/s41598-021-88305-5
Milošević A, Bjelobaba I, Božić I, Lavrnja I, Savić D, Milošević K, Jakovljević M, Stojilković SS, Janjić M. Testicular steroidogenesis is suppressed during experimental autoimmune encephalomyelitis in rats. in Scientific Reports. 2021;11(1):8996.
doi:10.1038/s41598-021-88305-5 .
Milošević, Ana, Bjelobaba, Ivana, Božić, Iva, Lavrnja, Irena, Savić, Danijela, Milošević, Katarina, Jakovljević, Marija, Stojilković, Stanko S., Janjić, Marija, "Testicular steroidogenesis is suppressed during experimental autoimmune encephalomyelitis in rats" in Scientific Reports, 11, no. 1 (2021):8996,
https://doi.org/10.1038/s41598-021-88305-5 . .
8
5
6

The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis.

Milošević, Ana; Janjić, Marija; Lavrnja, Irena; Savić, Danijela; Božić, Iva; Milošević, Katarina; Jakovljević, Marija; Peković, Sanja; Stojilkovic, Stanko S.; Bjelobaba, Ivana

(Elsevier BV, 2020)

TY  - JOUR
AU  - Milošević, Ana
AU  - Janjić, Marija
AU  - Lavrnja, Irena
AU  - Savić, Danijela
AU  - Božić, Iva
AU  - Milošević, Katarina
AU  - Jakovljević, Marija
AU  - Peković, Sanja
AU  - Stojilkovic, Stanko S.
AU  - Bjelobaba, Ivana
PY  - 2020
UR  - http://www.ncbi.nlm.nih.gov/pubmed/32592862
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6149
AB  - Multiple sclerosis develops during reproductive years in a sex-specific manner. Various neuroendocrine changes have been described in this inflammatory, demyelinating, and debilitating disease. We here aimed to determine the extent and sex specificity of alterations in the hypothalamic-pituitary-gonadal axis in the rat model of multiple sclerosis named experimental autoimmune encephalomyelitis. During the disease course, the hypothalamic tissue showed transient upregulation of inflammatory marker genes Gfap, Cd68, Ccl2, and Il1b in both sexes, but accompanied by sex-specific downregulation of Kiss1 (in females only) and Gnrh1 (in males only) expression. In females, the expression of gonadotrope-specific genes Lhb, Cga, and Gnrhr was also inhibited, accompanied by decreased basal but not stimulated serum luteinizing hormone levels and a transient arrest of the estrous cycle. In contrast, Fshb expression and serum progesterone levels were transiently elevated, findings consistent with the maintenance of the corpora lutea, and elevated immunohistochemical labeling of ovarian StAR, a rate limiting protein in steroidogenic pathway. In males, downregulation of Gnrhr expression and basal and stimulated serum luteinizing hormone and testosterone levels were accompanied by inhibited testicular StAR protein expression. We propose that inflammation of hypothalamic tissue downregulates Kiss1 and Gnrh1 expression in females and males, respectively, leading to sex-specific changes downstream the axis.
PB  - Elsevier BV
PB  - Elsevier
T2  - Brain, Behavior, and Immunity
T1  - The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis.
VL  - 89
DO  - 10.1016/j.bbi.2020.06.025
SP  - 233
EP  - 244
ER  - 
@article{
author = "Milošević, Ana and Janjić, Marija and Lavrnja, Irena and Savić, Danijela and Božić, Iva and Milošević, Katarina and Jakovljević, Marija and Peković, Sanja and Stojilkovic, Stanko S. and Bjelobaba, Ivana",
year = "2020",
abstract = "Multiple sclerosis develops during reproductive years in a sex-specific manner. Various neuroendocrine changes have been described in this inflammatory, demyelinating, and debilitating disease. We here aimed to determine the extent and sex specificity of alterations in the hypothalamic-pituitary-gonadal axis in the rat model of multiple sclerosis named experimental autoimmune encephalomyelitis. During the disease course, the hypothalamic tissue showed transient upregulation of inflammatory marker genes Gfap, Cd68, Ccl2, and Il1b in both sexes, but accompanied by sex-specific downregulation of Kiss1 (in females only) and Gnrh1 (in males only) expression. In females, the expression of gonadotrope-specific genes Lhb, Cga, and Gnrhr was also inhibited, accompanied by decreased basal but not stimulated serum luteinizing hormone levels and a transient arrest of the estrous cycle. In contrast, Fshb expression and serum progesterone levels were transiently elevated, findings consistent with the maintenance of the corpora lutea, and elevated immunohistochemical labeling of ovarian StAR, a rate limiting protein in steroidogenic pathway. In males, downregulation of Gnrhr expression and basal and stimulated serum luteinizing hormone and testosterone levels were accompanied by inhibited testicular StAR protein expression. We propose that inflammation of hypothalamic tissue downregulates Kiss1 and Gnrh1 expression in females and males, respectively, leading to sex-specific changes downstream the axis.",
publisher = "Elsevier BV, Elsevier",
journal = "Brain, Behavior, and Immunity",
title = "The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis.",
volume = "89",
doi = "10.1016/j.bbi.2020.06.025",
pages = "233-244"
}
Milošević, A., Janjić, M., Lavrnja, I., Savić, D., Božić, I., Milošević, K., Jakovljević, M., Peković, S., Stojilkovic, S. S.,& Bjelobaba, I.. (2020). The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis.. in Brain, Behavior, and Immunity
Elsevier BV., 89, 233-244.
https://doi.org/10.1016/j.bbi.2020.06.025
Milošević A, Janjić M, Lavrnja I, Savić D, Božić I, Milošević K, Jakovljević M, Peković S, Stojilkovic SS, Bjelobaba I. The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis.. in Brain, Behavior, and Immunity. 2020;89:233-244.
doi:10.1016/j.bbi.2020.06.025 .
Milošević, Ana, Janjić, Marija, Lavrnja, Irena, Savić, Danijela, Božić, Iva, Milošević, Katarina, Jakovljević, Marija, Peković, Sanja, Stojilkovic, Stanko S., Bjelobaba, Ivana, "The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis." in Brain, Behavior, and Immunity, 89 (2020):233-244,
https://doi.org/10.1016/j.bbi.2020.06.025 . .
3
8
2
6

The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis.

Milošević, Ana; Janjić, Marija; Lavrnja, Irena; Savić, Danijela; Božić, Iva; Milošević, Katarina; Jakovljević, Marija; Peković, Sanja; Stojilkovic, Stanko S.; Bjelobaba, Ivana

(Elsevier BV, 2020)

TY  - JOUR
AU  - Milošević, Ana
AU  - Janjić, Marija
AU  - Lavrnja, Irena
AU  - Savić, Danijela
AU  - Božić, Iva
AU  - Milošević, Katarina
AU  - Jakovljević, Marija
AU  - Peković, Sanja
AU  - Stojilkovic, Stanko S.
AU  - Bjelobaba, Ivana
PY  - 2020
UR  - http://www.ncbi.nlm.nih.gov/pubmed/32592862
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3762
AB  - Multiple sclerosis develops during reproductive years in a sex-specific manner. Various neuroendocrine changes have been described in this inflammatory, demyelinating, and debilitating disease. We here aimed to determine the extent and sex specificity of alterations in the hypothalamic-pituitary-gonadal axis in the rat model of multiple sclerosis named experimental autoimmune encephalomyelitis. During the disease course, the hypothalamic tissue showed transient upregulation of inflammatory marker genes Gfap, Cd68, Ccl2, and Il1b in both sexes, but accompanied by sex-specific downregulation of Kiss1 (in females only) and Gnrh1 (in males only) expression. In females, the expression of gonadotrope-specific genes Lhb, Cga, and Gnrhr was also inhibited, accompanied by decreased basal but not stimulated serum luteinizing hormone levels and a transient arrest of the estrous cycle. In contrast, Fshb expression and serum progesterone levels were transiently elevated, findings consistent with the maintenance of the corpora lutea, and elevated immunohistochemical labeling of ovarian StAR, a rate limiting protein in steroidogenic pathway. In males, downregulation of Gnrhr expression and basal and stimulated serum luteinizing hormone and testosterone levels were accompanied by inhibited testicular StAR protein expression. We propose that inflammation of hypothalamic tissue downregulates Kiss1 and Gnrh1 expression in females and males, respectively, leading to sex-specific changes downstream the axis.
PB  - Elsevier BV
T2  - Brain, Behavior, and Immunity
T1  - The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis.
VL  - 89
DO  - 10.1016/j.bbi.2020.06.025
SP  - DOI:10.1016/j.bbi.2020.06.025
EP  - 244
ER  - 
@article{
author = "Milošević, Ana and Janjić, Marija and Lavrnja, Irena and Savić, Danijela and Božić, Iva and Milošević, Katarina and Jakovljević, Marija and Peković, Sanja and Stojilkovic, Stanko S. and Bjelobaba, Ivana",
year = "2020",
abstract = "Multiple sclerosis develops during reproductive years in a sex-specific manner. Various neuroendocrine changes have been described in this inflammatory, demyelinating, and debilitating disease. We here aimed to determine the extent and sex specificity of alterations in the hypothalamic-pituitary-gonadal axis in the rat model of multiple sclerosis named experimental autoimmune encephalomyelitis. During the disease course, the hypothalamic tissue showed transient upregulation of inflammatory marker genes Gfap, Cd68, Ccl2, and Il1b in both sexes, but accompanied by sex-specific downregulation of Kiss1 (in females only) and Gnrh1 (in males only) expression. In females, the expression of gonadotrope-specific genes Lhb, Cga, and Gnrhr was also inhibited, accompanied by decreased basal but not stimulated serum luteinizing hormone levels and a transient arrest of the estrous cycle. In contrast, Fshb expression and serum progesterone levels were transiently elevated, findings consistent with the maintenance of the corpora lutea, and elevated immunohistochemical labeling of ovarian StAR, a rate limiting protein in steroidogenic pathway. In males, downregulation of Gnrhr expression and basal and stimulated serum luteinizing hormone and testosterone levels were accompanied by inhibited testicular StAR protein expression. We propose that inflammation of hypothalamic tissue downregulates Kiss1 and Gnrh1 expression in females and males, respectively, leading to sex-specific changes downstream the axis.",
publisher = "Elsevier BV",
journal = "Brain, Behavior, and Immunity",
title = "The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis.",
volume = "89",
doi = "10.1016/j.bbi.2020.06.025",
pages = "DOI:10.1016/j.bbi.2020.06.025-244"
}
Milošević, A., Janjić, M., Lavrnja, I., Savić, D., Božić, I., Milošević, K., Jakovljević, M., Peković, S., Stojilkovic, S. S.,& Bjelobaba, I.. (2020). The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis.. in Brain, Behavior, and Immunity
Elsevier BV., 89, DOI:10.1016/j.bbi.2020.06.025-244.
https://doi.org/10.1016/j.bbi.2020.06.025
Milošević A, Janjić M, Lavrnja I, Savić D, Božić I, Milošević K, Jakovljević M, Peković S, Stojilkovic SS, Bjelobaba I. The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis.. in Brain, Behavior, and Immunity. 2020;89:DOI:10.1016/j.bbi.2020.06.025-244.
doi:10.1016/j.bbi.2020.06.025 .
Milošević, Ana, Janjić, Marija, Lavrnja, Irena, Savić, Danijela, Božić, Iva, Milošević, Katarina, Jakovljević, Marija, Peković, Sanja, Stojilkovic, Stanko S., Bjelobaba, Ivana, "The sex-specific patterns of changes in hypothalamic-pituitary-gonadal axis during experimental autoimmune encephalomyelitis." in Brain, Behavior, and Immunity, 89 (2020):DOI:10.1016/j.bbi.2020.06.025-244,
https://doi.org/10.1016/j.bbi.2020.06.025 . .
3
8
2
6

Značaj signalizacije posredovane vanćelijskim purinskim nukleotidima u neuroinflamaciji i demijelinizaciji - implikacije u multiploj sklerozi

Jakovljević, Marija

(Belgrade: University of Belgrade, Faculty of Biology, 2020)

TY  - THES
AU  - Jakovljević, Marija
PY  - 2020
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3731
AB  - Multipla skleroza (MS) je hronična inflamacijska bolest centralnog nervnog sistema (CNS) koju kao i njen in vivo model eksperimentalni autoimunski encefalomijelitis (EAE) karakterišu infiltracija imunskih ćelija, aktivacija mikroglije i astrocita, demijelinizacija, oštećenje aksona, ali i remijelinizacija posredovana oligodendrocitnim progenitorskim ćelijama (OPĆ). Tokom neuroinflamacije, ATP ostvaruje pro-, a adenozin antiinflamacijsko dejstvo putem P2, odnosno P1 purinskih receptora. Aktivacija specifičnih purinskih receptora zavisi od koncentracije ATP, ADP i adenozina koju u vanćelijskom prostoru regulišu ektonukleotidaze. Najzastupljenije ektonukelotidaze u CNS su NTPDaza1/CD39, NTPDaza2 i eN/CD73. U MS/EAE uloga NTPDaza1/CD39 i eN/CD73 eksprimiranih na ćelijama imunskog sistema uglavnom je poznata, dok je uloga ovih enzima prisutnih na ćelijama CNS nedovoljno istražena. Budući da aktivirana mikroglija i astrociti imaju ključnu ulogu u toku neuroinflamacije glavni cilj ove disertacije bio je ispitivanje ekspresije glavnih ektonukleotidaza CNS na pomenutim ćelijama i procena njihovog inflamacijskog fenotipa, kao i ekspresije purinskih receptora u kičmenoj moždini pacova tokom EAE kao animalnog modela MS. S obzirom na ulogu OPĆ u remijelinizaciji tokom MS/EAE, dodatni cilj bio je ispitivanje uticaja proinflamacijskih faktora na vijabilnost i funkcionalnost OPĆ linije Oli-neu i ekspresiju eN/CD73 na tim ćelijama. Rezultati prikazani u ovoj disertaciji pokazali su da tokom EAE dolazi do fazno-specifičnih promena ekspresije svih ispitivanih komponenti purinskog signalnog sistema u kičmenoj moždini pacova. Uočeno povećanje ekspresije NTPDaza1/CD39 uzrokovano je aktivacijom mikroglije i infiltracijom monocita/makrofaga kao i drugih perifernih imunskih ćelija tokom EAE, a povezano je i sa tranzicijom mikroglije/makrofaga u pravcu antiinflamacijskog fenotipa, kao i indukcijom polarizacije astrocita u pravcu neuroprotektivnog fenotipa. U pogledu NTPDaza2, smanjenje ekspresije ove ektonukleotidaze prisutne prvenstveno na astrocitima u beloj masi kičmene moždine, uslovljeno je smanjenjem ekspresije na ovim ćelijama tokom EAE. Dodatno, tokom EAE došlo je do fazno-specifičnih promena u ekspresiji svih analiziranih purinskih receptora. Delovanje proinflamacijskih faktora na ćelije Oli-neu OPĆ linije izazvalo je porast ekspresije eN/CD73 koji ukazuje na inhibiciju diferencijacije i govori u prilog inhibitornoj ulozi proinflamacijskih faktora prisutnih u CNS tokom neuroinflamacije na diferencijaciju OPĆ a time i na proces remijelinizacije tokom EAE/MS, kao i na ulogu eN/CD73 ovih ćelija u tom procesu. U tom smislu, rezultati ovog istraživanja ukazuju na značajnu ulogu glavnih ektonukleotidaza CNS u toku bolesti u EAE/MS patologiji i predstavljaju osnov za razvoj novih potencijalnih terapeutika.
AB  - Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that is characterized like its in vivo model experimental autoimmune encephalomyelitis (EAE) by immune cell infiltration, microglia and astrocyte activation, demyelination, axonal damage, as well as remyelination guided by oligodendrocyte progenitor cells (OPC). During neuroinflammation, ATP acts pro-, while adenosine acts anti-inflammatory via P2 and P1 purine receptors, respectively. Activation of specific purine receptor depends on ATP, ADP and adenosine extracellular concentrations that are regulated by by ectonucleotidases. In the CNS most abundant ectonucleotidases are NTPDase1/CD39, NTPDase2 and eN/CD73. Role of NTPDase1/CD39 and eN/CD73 in the cells of immune system, unlike in the CNS, in MS/EAE is mostly well known,. Since activated microglia and astrocytes have a key role in the course of neuroinflammation, the main goal of this dissertation was to study expression of major ectonucleotidases in the CNS at these cells and to assess their inflammatory phenotype, likewise to analyze expression of purine receptors in the rat spinal cord during EAE as animal model of MS. Considering role of OPC in remyelination during MS/EAE, additional goal was to assess the effects of proinflammatory factors at viability and functionality of OPC Oli-neu cell line and their expression of eN/CD73. Results presented herein have demonstrated disease phase-specific changes of all analyzed components of purine signaling system in rat spinal cord during EAE. Upregulation of NTPDase1/CD39 during EAE arised as a consequence of microglial activation and infiltration of monocytes/macrophages and other perypheral immune cells and also was related to transition of microglia/macrophages towards anti-inflammatory phenotype, likewise to induction of astrocyte polarization towards neuroprotective phenotype. Regarding NTPDase2, mainly expressed at white matter astrocytes, observed downregulation resulted from decreased expression by these cells during EAE. Additionally, during EAE all analyzed purine receptors showed phase-specific expression changes. Proinflammatory factors induced in OPC Oli-neu cell line upregulation of eN/CD73, indicating inhibition of differentiation, and arguing in favor of inhibitory effect of proinflammatory factors, present in the CNS during neuroinflammation, at OPC differentiation and remyelination during EAE/MS, likewise the role of eN/CD73 in that process. Thus, results presented herein indicate important role of major CNS ectonucleotidases in the disease course during EAE/MS, representing a base for development of new potential therapeutics.
PB  - Belgrade: University of Belgrade, Faculty of Biology
T2  - University of Belgrade, Faculty of Biology
T1  - Značaj signalizacije posredovane vanćelijskim purinskim nukleotidima u neuroinflamaciji i demijelinizaciji - implikacije u multiploj sklerozi
T1  - The role of purinergic signaling in neuroinflammation and demyelination – implications for multiple sclerosis
SP  - 1
EP  - 137
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_3731
ER  - 
@phdthesis{
author = "Jakovljević, Marija",
year = "2020",
abstract = "Multipla skleroza (MS) je hronična inflamacijska bolest centralnog nervnog sistema (CNS) koju kao i njen in vivo model eksperimentalni autoimunski encefalomijelitis (EAE) karakterišu infiltracija imunskih ćelija, aktivacija mikroglije i astrocita, demijelinizacija, oštećenje aksona, ali i remijelinizacija posredovana oligodendrocitnim progenitorskim ćelijama (OPĆ). Tokom neuroinflamacije, ATP ostvaruje pro-, a adenozin antiinflamacijsko dejstvo putem P2, odnosno P1 purinskih receptora. Aktivacija specifičnih purinskih receptora zavisi od koncentracije ATP, ADP i adenozina koju u vanćelijskom prostoru regulišu ektonukleotidaze. Najzastupljenije ektonukelotidaze u CNS su NTPDaza1/CD39, NTPDaza2 i eN/CD73. U MS/EAE uloga NTPDaza1/CD39 i eN/CD73 eksprimiranih na ćelijama imunskog sistema uglavnom je poznata, dok je uloga ovih enzima prisutnih na ćelijama CNS nedovoljno istražena. Budući da aktivirana mikroglija i astrociti imaju ključnu ulogu u toku neuroinflamacije glavni cilj ove disertacije bio je ispitivanje ekspresije glavnih ektonukleotidaza CNS na pomenutim ćelijama i procena njihovog inflamacijskog fenotipa, kao i ekspresije purinskih receptora u kičmenoj moždini pacova tokom EAE kao animalnog modela MS. S obzirom na ulogu OPĆ u remijelinizaciji tokom MS/EAE, dodatni cilj bio je ispitivanje uticaja proinflamacijskih faktora na vijabilnost i funkcionalnost OPĆ linije Oli-neu i ekspresiju eN/CD73 na tim ćelijama. Rezultati prikazani u ovoj disertaciji pokazali su da tokom EAE dolazi do fazno-specifičnih promena ekspresije svih ispitivanih komponenti purinskog signalnog sistema u kičmenoj moždini pacova. Uočeno povećanje ekspresije NTPDaza1/CD39 uzrokovano je aktivacijom mikroglije i infiltracijom monocita/makrofaga kao i drugih perifernih imunskih ćelija tokom EAE, a povezano je i sa tranzicijom mikroglije/makrofaga u pravcu antiinflamacijskog fenotipa, kao i indukcijom polarizacije astrocita u pravcu neuroprotektivnog fenotipa. U pogledu NTPDaza2, smanjenje ekspresije ove ektonukleotidaze prisutne prvenstveno na astrocitima u beloj masi kičmene moždine, uslovljeno je smanjenjem ekspresije na ovim ćelijama tokom EAE. Dodatno, tokom EAE došlo je do fazno-specifičnih promena u ekspresiji svih analiziranih purinskih receptora. Delovanje proinflamacijskih faktora na ćelije Oli-neu OPĆ linije izazvalo je porast ekspresije eN/CD73 koji ukazuje na inhibiciju diferencijacije i govori u prilog inhibitornoj ulozi proinflamacijskih faktora prisutnih u CNS tokom neuroinflamacije na diferencijaciju OPĆ a time i na proces remijelinizacije tokom EAE/MS, kao i na ulogu eN/CD73 ovih ćelija u tom procesu. U tom smislu, rezultati ovog istraživanja ukazuju na značajnu ulogu glavnih ektonukleotidaza CNS u toku bolesti u EAE/MS patologiji i predstavljaju osnov za razvoj novih potencijalnih terapeutika., Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that is characterized like its in vivo model experimental autoimmune encephalomyelitis (EAE) by immune cell infiltration, microglia and astrocyte activation, demyelination, axonal damage, as well as remyelination guided by oligodendrocyte progenitor cells (OPC). During neuroinflammation, ATP acts pro-, while adenosine acts anti-inflammatory via P2 and P1 purine receptors, respectively. Activation of specific purine receptor depends on ATP, ADP and adenosine extracellular concentrations that are regulated by by ectonucleotidases. In the CNS most abundant ectonucleotidases are NTPDase1/CD39, NTPDase2 and eN/CD73. Role of NTPDase1/CD39 and eN/CD73 in the cells of immune system, unlike in the CNS, in MS/EAE is mostly well known,. Since activated microglia and astrocytes have a key role in the course of neuroinflammation, the main goal of this dissertation was to study expression of major ectonucleotidases in the CNS at these cells and to assess their inflammatory phenotype, likewise to analyze expression of purine receptors in the rat spinal cord during EAE as animal model of MS. Considering role of OPC in remyelination during MS/EAE, additional goal was to assess the effects of proinflammatory factors at viability and functionality of OPC Oli-neu cell line and their expression of eN/CD73. Results presented herein have demonstrated disease phase-specific changes of all analyzed components of purine signaling system in rat spinal cord during EAE. Upregulation of NTPDase1/CD39 during EAE arised as a consequence of microglial activation and infiltration of monocytes/macrophages and other perypheral immune cells and also was related to transition of microglia/macrophages towards anti-inflammatory phenotype, likewise to induction of astrocyte polarization towards neuroprotective phenotype. Regarding NTPDase2, mainly expressed at white matter astrocytes, observed downregulation resulted from decreased expression by these cells during EAE. Additionally, during EAE all analyzed purine receptors showed phase-specific expression changes. Proinflammatory factors induced in OPC Oli-neu cell line upregulation of eN/CD73, indicating inhibition of differentiation, and arguing in favor of inhibitory effect of proinflammatory factors, present in the CNS during neuroinflammation, at OPC differentiation and remyelination during EAE/MS, likewise the role of eN/CD73 in that process. Thus, results presented herein indicate important role of major CNS ectonucleotidases in the disease course during EAE/MS, representing a base for development of new potential therapeutics.",
publisher = "Belgrade: University of Belgrade, Faculty of Biology",
journal = "University of Belgrade, Faculty of Biology",
title = "Značaj signalizacije posredovane vanćelijskim purinskim nukleotidima u neuroinflamaciji i demijelinizaciji - implikacije u multiploj sklerozi, The role of purinergic signaling in neuroinflammation and demyelination – implications for multiple sclerosis",
pages = "1-137",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_3731"
}
Jakovljević, M.. (2020). Značaj signalizacije posredovane vanćelijskim purinskim nukleotidima u neuroinflamaciji i demijelinizaciji - implikacije u multiploj sklerozi. in University of Belgrade, Faculty of Biology
Belgrade: University of Belgrade, Faculty of Biology., 1-137.
https://hdl.handle.net/21.15107/rcub_ibiss_3731
Jakovljević M. Značaj signalizacije posredovane vanćelijskim purinskim nukleotidima u neuroinflamaciji i demijelinizaciji - implikacije u multiploj sklerozi. in University of Belgrade, Faculty of Biology. 2020;:1-137.
https://hdl.handle.net/21.15107/rcub_ibiss_3731 .
Jakovljević, Marija, "Značaj signalizacije posredovane vanćelijskim purinskim nukleotidima u neuroinflamaciji i demijelinizaciji - implikacije u multiploj sklerozi" in University of Belgrade, Faculty of Biology (2020):1-137,
https://hdl.handle.net/21.15107/rcub_ibiss_3731 .

Expression of growth hormone receptor (GHR) in experimental autoimmune encephalomyelitis

Božić, Iva; Milošević, Katarina; Janjić, Marija; Savić, Danijela; Laketa, Danijela; Jakovljević, Marija; Milošević, Ana; Peković, Sanja; Lavrnja, Irena

(Belgrade : Serbian Neuroscience Society, 2019)

TY  - CONF
AU  - Božić, Iva
AU  - Milošević, Katarina
AU  - Janjić, Marija
AU  - Savić, Danijela
AU  - Laketa, Danijela
AU  - Jakovljević, Marija
AU  - Milošević, Ana
AU  - Peković, Sanja
AU  - Lavrnja, Irena
PY  - 2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6006
AB  - Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination, neurodegeneration and gliosis. It is considered as a perplexing multifactorial disease in which the neuroendocrine system plays an important role. Growth hormone (GH) is synthesized and secreted by the somatotroph cells of the anterior pituitary. GH secretion is positively regulated by the hypothalamic factor GHRH and exerts its effects through interaction with the GH receptor (GHR), a member of the class I cytokine receptor family. It was demonstrated that neurons and astrocytes also produce GH and that GHR is widely expressed in the CNS. Nonetheless, it is not known whether expression pattern of GHR changes in the CNS during MS. We investigated GHR expression in the spinal cord during the course of experimental autoimmune encephalomyelitis (EAE), animal model of MS that is broadly used. Our results show that GHR is diminished on mRNA and protein level during EAE. Double immunofluorescence studies demonstrated that GHR is expressed in different cell types in the spinal cord in physiological conditions, including astrocytes and microglia. This expression pattern does not change extensively after the onset of EAE. However, at the peak of disease GHR is absent from astrocytes in the white and grey matter, but still present in microglia, although to a lesser degree. At the end of disease, when the animals have recovered, GHR expression is similar to control conditions. Our results point to complex involvement of GHR in the pathology of EAE.
PB  - Belgrade : Serbian Neuroscience Society
C3  - Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
T1  - Expression of growth hormone receptor (GHR) in experimental autoimmune encephalomyelitis
EP  - 212
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6006
ER  - 
@conference{
author = "Božić, Iva and Milošević, Katarina and Janjić, Marija and Savić, Danijela and Laketa, Danijela and Jakovljević, Marija and Milošević, Ana and Peković, Sanja and Lavrnja, Irena",
year = "2019",
abstract = "Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination, neurodegeneration and gliosis. It is considered as a perplexing multifactorial disease in which the neuroendocrine system plays an important role. Growth hormone (GH) is synthesized and secreted by the somatotroph cells of the anterior pituitary. GH secretion is positively regulated by the hypothalamic factor GHRH and exerts its effects through interaction with the GH receptor (GHR), a member of the class I cytokine receptor family. It was demonstrated that neurons and astrocytes also produce GH and that GHR is widely expressed in the CNS. Nonetheless, it is not known whether expression pattern of GHR changes in the CNS during MS. We investigated GHR expression in the spinal cord during the course of experimental autoimmune encephalomyelitis (EAE), animal model of MS that is broadly used. Our results show that GHR is diminished on mRNA and protein level during EAE. Double immunofluorescence studies demonstrated that GHR is expressed in different cell types in the spinal cord in physiological conditions, including astrocytes and microglia. This expression pattern does not change extensively after the onset of EAE. However, at the peak of disease GHR is absent from astrocytes in the white and grey matter, but still present in microglia, although to a lesser degree. At the end of disease, when the animals have recovered, GHR expression is similar to control conditions. Our results point to complex involvement of GHR in the pathology of EAE.",
publisher = "Belgrade : Serbian Neuroscience Society",
journal = "Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia",
title = "Expression of growth hormone receptor (GHR) in experimental autoimmune encephalomyelitis",
pages = "212",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6006"
}
Božić, I., Milošević, K., Janjić, M., Savić, D., Laketa, D., Jakovljević, M., Milošević, A., Peković, S.,& Lavrnja, I.. (2019). Expression of growth hormone receptor (GHR) in experimental autoimmune encephalomyelitis. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
Belgrade : Serbian Neuroscience Society..
https://hdl.handle.net/21.15107/rcub_ibiss_6006
Božić I, Milošević K, Janjić M, Savić D, Laketa D, Jakovljević M, Milošević A, Peković S, Lavrnja I. Expression of growth hormone receptor (GHR) in experimental autoimmune encephalomyelitis. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia. 2019;:null-212.
https://hdl.handle.net/21.15107/rcub_ibiss_6006 .
Božić, Iva, Milošević, Katarina, Janjić, Marija, Savić, Danijela, Laketa, Danijela, Jakovljević, Marija, Milošević, Ana, Peković, Sanja, Lavrnja, Irena, "Expression of growth hormone receptor (GHR) in experimental autoimmune encephalomyelitis" in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia (2019),
https://hdl.handle.net/21.15107/rcub_ibiss_6006 .

The Potassium Channel Kv1.5 Expression Alters During Experimental Autoimmune Encephalomyelitis

Božić, Iva; Savić, Danijela; Milošević, Ana; Janjić, Marija; Laketa, Danijela; Milošević, Katarina; Bjelobaba, Ivana; Jakovljević, Marija; Nedeljković, Nadežda; Peković, Sanja; Lavrnja, Irena

(New York: Springer, 2019)

TY  - JOUR
AU  - Božić, Iva
AU  - Savić, Danijela
AU  - Milošević, Ana
AU  - Janjić, Marija
AU  - Laketa, Danijela
AU  - Milošević, Katarina
AU  - Bjelobaba, Ivana
AU  - Jakovljević, Marija
AU  - Nedeljković, Nadežda
AU  - Peković, Sanja
AU  - Lavrnja, Irena
PY  - 2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5874
AB  - Multiple sclerosis (MS) is a chronic, inflammatory, neurodegenerative disease with an autoimmune component. It was suggested that potassium channels, which are involved in crucial biological functions may have a role in different diseases, including MS and its animal model, experimental autoimmune encephalomyelitis (EAE). It was shown that voltage-gated potassium channels Kv1.5 are responsible for fine-tuning in the immune physiology and influence proliferation and differentiation in microglia and astrocytes. Here, we explored the cellular distribution of the Kv1.5 channel, together with its transcript and protein expression in the male rat spinal cord during different stages of EAE. Our results reveal a decrease of Kv1.5 transcript and protein level at the peak of disease, where massive infiltration of myeloid cells occurs, together with reactive astrogliosis and demyelination. Also, we revealed that the presence of this channel is not found in infiltrating macrophages/microglia during EAE. It is interesting to note that Kv1.5 channel is expressed only in resting microglia in the naïve animals. Predominant expression of Kv1.5 channel was found in the astrocytes in all experimental groups, while some vimentin+ cells, resembling macrophages, are devoid of Kv1.5 expression. Our results point to the possible link between Kv1.5 channel and the pathophysiological processes in EAE.
PB  - New York: Springer
T2  - Neurochemical Research
T1  - The Potassium Channel Kv1.5 Expression Alters During Experimental  Autoimmune Encephalomyelitis
IS  - 12
VL  - 44
DO  - 10.1007/s11064-019-02892-4
SP  - 2733
EP  - 2745
ER  - 
@article{
author = "Božić, Iva and Savić, Danijela and Milošević, Ana and Janjić, Marija and Laketa, Danijela and Milošević, Katarina and Bjelobaba, Ivana and Jakovljević, Marija and Nedeljković, Nadežda and Peković, Sanja and Lavrnja, Irena",
year = "2019",
abstract = "Multiple sclerosis (MS) is a chronic, inflammatory, neurodegenerative disease with an autoimmune component. It was suggested that potassium channels, which are involved in crucial biological functions may have a role in different diseases, including MS and its animal model, experimental autoimmune encephalomyelitis (EAE). It was shown that voltage-gated potassium channels Kv1.5 are responsible for fine-tuning in the immune physiology and influence proliferation and differentiation in microglia and astrocytes. Here, we explored the cellular distribution of the Kv1.5 channel, together with its transcript and protein expression in the male rat spinal cord during different stages of EAE. Our results reveal a decrease of Kv1.5 transcript and protein level at the peak of disease, where massive infiltration of myeloid cells occurs, together with reactive astrogliosis and demyelination. Also, we revealed that the presence of this channel is not found in infiltrating macrophages/microglia during EAE. It is interesting to note that Kv1.5 channel is expressed only in resting microglia in the naïve animals. Predominant expression of Kv1.5 channel was found in the astrocytes in all experimental groups, while some vimentin+ cells, resembling macrophages, are devoid of Kv1.5 expression. Our results point to the possible link between Kv1.5 channel and the pathophysiological processes in EAE.",
publisher = "New York: Springer",
journal = "Neurochemical Research",
title = "The Potassium Channel Kv1.5 Expression Alters During Experimental  Autoimmune Encephalomyelitis",
number = "12",
volume = "44",
doi = "10.1007/s11064-019-02892-4",
pages = "2733-2745"
}
Božić, I., Savić, D., Milošević, A., Janjić, M., Laketa, D., Milošević, K., Bjelobaba, I., Jakovljević, M., Nedeljković, N., Peković, S.,& Lavrnja, I.. (2019). The Potassium Channel Kv1.5 Expression Alters During Experimental  Autoimmune Encephalomyelitis. in Neurochemical Research
New York: Springer., 44(12), 2733-2745.
https://doi.org/10.1007/s11064-019-02892-4
Božić I, Savić D, Milošević A, Janjić M, Laketa D, Milošević K, Bjelobaba I, Jakovljević M, Nedeljković N, Peković S, Lavrnja I. The Potassium Channel Kv1.5 Expression Alters During Experimental  Autoimmune Encephalomyelitis. in Neurochemical Research. 2019;44(12):2733-2745.
doi:10.1007/s11064-019-02892-4 .
Božić, Iva, Savić, Danijela, Milošević, Ana, Janjić, Marija, Laketa, Danijela, Milošević, Katarina, Bjelobaba, Ivana, Jakovljević, Marija, Nedeljković, Nadežda, Peković, Sanja, Lavrnja, Irena, "The Potassium Channel Kv1.5 Expression Alters During Experimental  Autoimmune Encephalomyelitis" in Neurochemical Research, 44, no. 12 (2019):2733-2745,
https://doi.org/10.1007/s11064-019-02892-4 . .
6
2
7

NTPDase1/CD39 Expression Increased During EAE in Association with Number and Activation State of Microglia/Macrophages

Jakovljević, Marija; Lavrnja, Irena; Božić, Iva; Milošević, Ana; Bjelobaba, Ivana; Savić, Danijela; Peković, Sanja; Nedeljković, Nadežda; Laketa, Danijela

(Belgrade: Serbian Neuroscience Society, 2019)

TY  - CONF
AU  - Jakovljević, Marija
AU  - Lavrnja, Irena
AU  - Božić, Iva
AU  - Milošević, Ana
AU  - Bjelobaba, Ivana
AU  - Savić, Danijela
AU  - Peković, Sanja
AU  - Nedeljković, Nadežda
AU  - Laketa, Danijela
PY  - 2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5982
AB  - Considering neuroinflammatory paradigm, increased extracellular levels of ATP have adverse effects, while adenosine is predominantly anti-inflammatory. In the CNS, NTPDase1/CD39 is the main enzyme that initiates the degradation pathway of extracellular ATP to adenosine. The aim of the study was to explore the activation state of the cells that express NTPDase1/CD39 – microglia and macrophages, during experimental autoimmune encephalomyelitis (EAE). Acute monophasic EAE was induced in female Dark Agouti rats. Animals were sacrificed at the disease onset (Eo), peak (Ep) and end (Ee). The lumbosacral parts of spinal cords were isolated for gene (qRT-PCR and in situ hybridization) and protein expression analysis (Western Blot, immunofluorescence and flow cytometry). Activation state of microglia/macrophages was assessed by colocalization analysis of NTPDase1/Iba1 and NTPDase1/CD68 with iNOS or Arg1 as specific markers of pro- and antiinflammatory state, respectively. During EAE, NTPDase1/CD39 was significantly increased both at mRNA and protein level at Ep. Immunofluorescence combined with flow cytometry showed that reactive microglia and mononuclear infiltrates accounted for the most of the observed increase. Both Iba1 and CD68 microglia/macrophage markers showed higher co-occurrence with iNOS at Eo and Arg1 at Ep, suggesting prevalence of M1-like at Eo and M2-like at Ep. In addition, NTPDase1 showed about three-times higher colocalization with Arg1 compared to iNOS at Ep, suggesting its higher association with M2-like activation state of microglia/ macrophages. Together, our data suggest an association between NTPDase1 up-regulation by reactive microglia and infiltrated macrophages and their transition toward anti-inflammatory phenotype in EAE.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
T1  - NTPDase1/CD39 Expression Increased During EAE in Association with Number and Activation State of Microglia/Macrophages
SP  - 492
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5982
ER  - 
@conference{
author = "Jakovljević, Marija and Lavrnja, Irena and Božić, Iva and Milošević, Ana and Bjelobaba, Ivana and Savić, Danijela and Peković, Sanja and Nedeljković, Nadežda and Laketa, Danijela",
year = "2019",
abstract = "Considering neuroinflammatory paradigm, increased extracellular levels of ATP have adverse effects, while adenosine is predominantly anti-inflammatory. In the CNS, NTPDase1/CD39 is the main enzyme that initiates the degradation pathway of extracellular ATP to adenosine. The aim of the study was to explore the activation state of the cells that express NTPDase1/CD39 – microglia and macrophages, during experimental autoimmune encephalomyelitis (EAE). Acute monophasic EAE was induced in female Dark Agouti rats. Animals were sacrificed at the disease onset (Eo), peak (Ep) and end (Ee). The lumbosacral parts of spinal cords were isolated for gene (qRT-PCR and in situ hybridization) and protein expression analysis (Western Blot, immunofluorescence and flow cytometry). Activation state of microglia/macrophages was assessed by colocalization analysis of NTPDase1/Iba1 and NTPDase1/CD68 with iNOS or Arg1 as specific markers of pro- and antiinflammatory state, respectively. During EAE, NTPDase1/CD39 was significantly increased both at mRNA and protein level at Ep. Immunofluorescence combined with flow cytometry showed that reactive microglia and mononuclear infiltrates accounted for the most of the observed increase. Both Iba1 and CD68 microglia/macrophage markers showed higher co-occurrence with iNOS at Eo and Arg1 at Ep, suggesting prevalence of M1-like at Eo and M2-like at Ep. In addition, NTPDase1 showed about three-times higher colocalization with Arg1 compared to iNOS at Ep, suggesting its higher association with M2-like activation state of microglia/ macrophages. Together, our data suggest an association between NTPDase1 up-regulation by reactive microglia and infiltrated macrophages and their transition toward anti-inflammatory phenotype in EAE.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia",
title = "NTPDase1/CD39 Expression Increased During EAE in Association with Number and Activation State of Microglia/Macrophages",
pages = "492",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5982"
}
Jakovljević, M., Lavrnja, I., Božić, I., Milošević, A., Bjelobaba, I., Savić, D., Peković, S., Nedeljković, N.,& Laketa, D.. (2019). NTPDase1/CD39 Expression Increased During EAE in Association with Number and Activation State of Microglia/Macrophages. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 492.
https://hdl.handle.net/21.15107/rcub_ibiss_5982
Jakovljević M, Lavrnja I, Božić I, Milošević A, Bjelobaba I, Savić D, Peković S, Nedeljković N, Laketa D. NTPDase1/CD39 Expression Increased During EAE in Association with Number and Activation State of Microglia/Macrophages. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia. 2019;:492.
https://hdl.handle.net/21.15107/rcub_ibiss_5982 .
Jakovljević, Marija, Lavrnja, Irena, Božić, Iva, Milošević, Ana, Bjelobaba, Ivana, Savić, Danijela, Peković, Sanja, Nedeljković, Nadežda, Laketa, Danijela, "NTPDase1/CD39 Expression Increased During EAE in Association with Number and Activation State of Microglia/Macrophages" in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia (2019):492,
https://hdl.handle.net/21.15107/rcub_ibiss_5982 .

Experimental Autoimmune Encephalomyelitis Disturbs the Regulation of HPG Axis in Rats of Both Sexes

Milošević, Ana; Janjić, Marija; Lavrnja, Irena; Savić, Danijela; Jakovljević, Marija; Peković, Sanja; Bjelobaba, Ivana

(Belgrade : Serbian Neuroscience Society, 2019)

TY  - CONF
AU  - Milošević, Ana
AU  - Janjić, Marija
AU  - Lavrnja, Irena
AU  - Savić, Danijela
AU  - Jakovljević, Marija
AU  - Peković, Sanja
AU  - Bjelobaba, Ivana
PY  - 2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5972
AB  - Aims: Multiple sclerosis (MS) is a chronic neuroinflammatory disease, more common in women than in men. Because the effects of MS on hypothalamo-pituitary-gonadal axis haven’t been completely elucidated, our aim was to investigate the impact of experimental autoimmune encephalomyelitis (EAE) on reproductive functions in rats. Methods: EAE was actively induced in Dark-Agouti rats of both sexes. Disease symptoms, weight changes, and estrous cycle phase were assessed daily. The animals were sacrificed at the onset, peak, and end of EAE. Hypothalamic, pituitary and gonadal tissues were dissected for qRT-PCR and/or protein extraction. Blood was collected for hormone measurements. In separate experiments, animals at the peak of EAE and naïve controls received an injection of a GnRH analogue - buserelin. Results: Our results suggest hypothalamic neuroinflammation in both sexes; upregulation of mRNA for several genes was registered during EAE. Hypothalamic expression of Kiss1 and Gnrh, as well as pituitary expression of Lhb, Fshb and Gnrhr mRNA, were affected differently in males and females. LH levels drop transiently following the course of EAE, coinciding with the arrest in diestrus in females and a drop in testosterone levels in males. Buserelin increased LH levels in both sexes. Additionally, StAR – a protein with a critical role in steroid hormone biosynthesis, had an opposite pattern of expression in ovaries and testicular interstitial cells during the disease, both on mRNA and protein level. Conclusion: Our data indicate that EAE noticeably affects the regulation of HPG axis. Further analyses are needed to explore the details of this phenomenon.
PB  - Belgrade : Serbian Neuroscience Society
C3  - Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
T1  - Experimental Autoimmune Encephalomyelitis Disturbs the Regulation of HPG Axis in Rats of Both Sexes
SP  - 293
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5972
ER  - 
@conference{
author = "Milošević, Ana and Janjić, Marija and Lavrnja, Irena and Savić, Danijela and Jakovljević, Marija and Peković, Sanja and Bjelobaba, Ivana",
year = "2019",
abstract = "Aims: Multiple sclerosis (MS) is a chronic neuroinflammatory disease, more common in women than in men. Because the effects of MS on hypothalamo-pituitary-gonadal axis haven’t been completely elucidated, our aim was to investigate the impact of experimental autoimmune encephalomyelitis (EAE) on reproductive functions in rats. Methods: EAE was actively induced in Dark-Agouti rats of both sexes. Disease symptoms, weight changes, and estrous cycle phase were assessed daily. The animals were sacrificed at the onset, peak, and end of EAE. Hypothalamic, pituitary and gonadal tissues were dissected for qRT-PCR and/or protein extraction. Blood was collected for hormone measurements. In separate experiments, animals at the peak of EAE and naïve controls received an injection of a GnRH analogue - buserelin. Results: Our results suggest hypothalamic neuroinflammation in both sexes; upregulation of mRNA for several genes was registered during EAE. Hypothalamic expression of Kiss1 and Gnrh, as well as pituitary expression of Lhb, Fshb and Gnrhr mRNA, were affected differently in males and females. LH levels drop transiently following the course of EAE, coinciding with the arrest in diestrus in females and a drop in testosterone levels in males. Buserelin increased LH levels in both sexes. Additionally, StAR – a protein with a critical role in steroid hormone biosynthesis, had an opposite pattern of expression in ovaries and testicular interstitial cells during the disease, both on mRNA and protein level. Conclusion: Our data indicate that EAE noticeably affects the regulation of HPG axis. Further analyses are needed to explore the details of this phenomenon.",
publisher = "Belgrade : Serbian Neuroscience Society",
journal = "Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia",
title = "Experimental Autoimmune Encephalomyelitis Disturbs the Regulation of HPG Axis in Rats of Both Sexes",
pages = "293",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5972"
}
Milošević, A., Janjić, M., Lavrnja, I., Savić, D., Jakovljević, M., Peković, S.,& Bjelobaba, I.. (2019). Experimental Autoimmune Encephalomyelitis Disturbs the Regulation of HPG Axis in Rats of Both Sexes. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
Belgrade : Serbian Neuroscience Society., 293.
https://hdl.handle.net/21.15107/rcub_ibiss_5972
Milošević A, Janjić M, Lavrnja I, Savić D, Jakovljević M, Peković S, Bjelobaba I. Experimental Autoimmune Encephalomyelitis Disturbs the Regulation of HPG Axis in Rats of Both Sexes. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia. 2019;:293.
https://hdl.handle.net/21.15107/rcub_ibiss_5972 .
Milošević, Ana, Janjić, Marija, Lavrnja, Irena, Savić, Danijela, Jakovljević, Marija, Peković, Sanja, Bjelobaba, Ivana, "Experimental Autoimmune Encephalomyelitis Disturbs the Regulation of HPG Axis in Rats of Both Sexes" in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia (2019):293,
https://hdl.handle.net/21.15107/rcub_ibiss_5972 .

Microglia-related increase in NTPDase1 expression during EAE

Laketa, Danijela; Jakovljević, Marija; Božić, Iva; Bjelobaba, Ivana; Savić, Danijela; Peković, Sanja; Nedeljković, Nadežda; Lavrnja, Irena

(German Neuroscience Society, 2019)

TY  - CONF
AU  - Laketa, Danijela
AU  - Jakovljević, Marija
AU  - Božić, Iva
AU  - Bjelobaba, Ivana
AU  - Savić, Danijela
AU  - Peković, Sanja
AU  - Nedeljković, Nadežda
AU  - Lavrnja, Irena
PY  - 2019
UR  - https://biore.bio.bg.ac.rs/handle/123456789/2265
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5893
AB  - Ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1/CD39) is the main ATP- and ADPdegrading
enzyme in extracellular fluid of the central nervous system. In the hydrolysis cascade
NTPDase1 removes ATP and ADP and produces AMP, which is hydrolysed by ecto-5'-nucleotidase to
adenosine. During neuroinflammation, increased extracellular ATP levels exert proinflammatory effects
at microglia as resident immune cells, while adenosine effects are antiinflammatory. Literature data
indicate involvement of purinergic signaling in experimental autoimmune encephalomyelitis (EAE), while
decreased number of NTPDase1/CD39+ regulatory T-cells was evidenced in multiple sclerosis.
Downregulation of NTPDase1 expression was observed in proinflammatory activation phenotype of
macrophages. However, data on the role of NTPDase1 on glial cells in neuroinflammation are still
scarce. We have shown increase in ATP-, ADP- and AMP-hydrolysis, together with upregulated mRNA
and protein expression of NTPDase1 in lumbar spinal cord, correlated to the disease course during EAE.
In this study we aimed to explore contribution of particular cell subsets to the observed changes in
NTPDase1 expression.
Acute monophasic EAE was induced in female rats of Dark Agouti strain by active immunization with a
mixture of spinal cord homogenate in complete Freund’s adjuvant. Immunized animals were sacrificed at
the onset, peak and end of symptoms, while naïve animals were used as control. Significant increase of
NTPDase1 immunofluorescence in lumbar spinal cord cross-sections was related to prominent infiltrates
at the peak of EAE and increased expression of NTPDase1 among isolated mononuclear cells. Analysis
of triple-labeled Arginase1/NTPDase1/Iba1 and iNOS/NTPDase1/Iba1 immunofluorescent micrographs
showed prevalent contribution of Arginase1+ microglia in comparison to iNOS+ microglia in NTPDase1
immunofluorescence, at the peak of EAE. Further studies are needed to reveal possible association of
NTPDase1 with antiinflammatory phenotype in microglia.
PB  - German Neuroscience Society
C3  - Proceedings: 13th Göttingen Meeting of the German Neuroscience Society 2019 and 37th Göttingen Neurobiology Conference; 2019 Mar 20-23; Göttingen, Germany
T1  - Microglia-related increase in NTPDase1 expression during EAE
SP  - T12-5B
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5893
ER  - 
@conference{
author = "Laketa, Danijela and Jakovljević, Marija and Božić, Iva and Bjelobaba, Ivana and Savić, Danijela and Peković, Sanja and Nedeljković, Nadežda and Lavrnja, Irena",
year = "2019",
abstract = "Ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1/CD39) is the main ATP- and ADPdegrading
enzyme in extracellular fluid of the central nervous system. In the hydrolysis cascade
NTPDase1 removes ATP and ADP and produces AMP, which is hydrolysed by ecto-5'-nucleotidase to
adenosine. During neuroinflammation, increased extracellular ATP levels exert proinflammatory effects
at microglia as resident immune cells, while adenosine effects are antiinflammatory. Literature data
indicate involvement of purinergic signaling in experimental autoimmune encephalomyelitis (EAE), while
decreased number of NTPDase1/CD39+ regulatory T-cells was evidenced in multiple sclerosis.
Downregulation of NTPDase1 expression was observed in proinflammatory activation phenotype of
macrophages. However, data on the role of NTPDase1 on glial cells in neuroinflammation are still
scarce. We have shown increase in ATP-, ADP- and AMP-hydrolysis, together with upregulated mRNA
and protein expression of NTPDase1 in lumbar spinal cord, correlated to the disease course during EAE.
In this study we aimed to explore contribution of particular cell subsets to the observed changes in
NTPDase1 expression.
Acute monophasic EAE was induced in female rats of Dark Agouti strain by active immunization with a
mixture of spinal cord homogenate in complete Freund’s adjuvant. Immunized animals were sacrificed at
the onset, peak and end of symptoms, while naïve animals were used as control. Significant increase of
NTPDase1 immunofluorescence in lumbar spinal cord cross-sections was related to prominent infiltrates
at the peak of EAE and increased expression of NTPDase1 among isolated mononuclear cells. Analysis
of triple-labeled Arginase1/NTPDase1/Iba1 and iNOS/NTPDase1/Iba1 immunofluorescent micrographs
showed prevalent contribution of Arginase1+ microglia in comparison to iNOS+ microglia in NTPDase1
immunofluorescence, at the peak of EAE. Further studies are needed to reveal possible association of
NTPDase1 with antiinflammatory phenotype in microglia.",
publisher = "German Neuroscience Society",
journal = "Proceedings: 13th Göttingen Meeting of the German Neuroscience Society 2019 and 37th Göttingen Neurobiology Conference; 2019 Mar 20-23; Göttingen, Germany",
title = "Microglia-related increase in NTPDase1 expression during EAE",
pages = "T12-5B",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5893"
}
Laketa, D., Jakovljević, M., Božić, I., Bjelobaba, I., Savić, D., Peković, S., Nedeljković, N.,& Lavrnja, I.. (2019). Microglia-related increase in NTPDase1 expression during EAE. in Proceedings: 13th Göttingen Meeting of the German Neuroscience Society 2019 and 37th Göttingen Neurobiology Conference; 2019 Mar 20-23; Göttingen, Germany
German Neuroscience Society., T12-5B.
https://hdl.handle.net/21.15107/rcub_ibiss_5893
Laketa D, Jakovljević M, Božić I, Bjelobaba I, Savić D, Peković S, Nedeljković N, Lavrnja I. Microglia-related increase in NTPDase1 expression during EAE. in Proceedings: 13th Göttingen Meeting of the German Neuroscience Society 2019 and 37th Göttingen Neurobiology Conference; 2019 Mar 20-23; Göttingen, Germany. 2019;:T12-5B.
https://hdl.handle.net/21.15107/rcub_ibiss_5893 .
Laketa, Danijela, Jakovljević, Marija, Božić, Iva, Bjelobaba, Ivana, Savić, Danijela, Peković, Sanja, Nedeljković, Nadežda, Lavrnja, Irena, "Microglia-related increase in NTPDase1 expression during EAE" in Proceedings: 13th Göttingen Meeting of the German Neuroscience Society 2019 and 37th Göttingen Neurobiology Conference; 2019 Mar 20-23; Göttingen, Germany (2019):T12-5B,
https://hdl.handle.net/21.15107/rcub_ibiss_5893 .

Induction of NTPDase1/CD39 by Reactive Microglia and Macrophages Is Associated With the Functional State During EAE.

Jakovljević, Marija; Lavrnja, Irena; Božić, Iva; Milošević, Ana; Bjelobaba, Ivana; Savić, Danijela; Sévigny, Jean; Peković, Sanja; Nedeljković, Nadežda; Laketa, Danijela

(2019)

TY  - JOUR
AU  - Jakovljević, Marija
AU  - Lavrnja, Irena
AU  - Božić, Iva
AU  - Milošević, Ana
AU  - Bjelobaba, Ivana
AU  - Savić, Danijela
AU  - Sévigny, Jean
AU  - Peković, Sanja
AU  - Nedeljković, Nadežda
AU  - Laketa, Danijela
PY  - 2019
UR  - https://www.frontiersin.org/article/10.3389/fnins.2019.00410/full
UR  - http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6498900
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3434
AB  - Purinergic signaling is critically involved in neuroinflammation associated with multiple sclerosis (MS) and its major inflammatory animal model, experimental autoimmune encephalomyelitis (EAE). Herein, we explored the expression of ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1/CD39) in the spinal cord, at the onset (Eo), peak (Ep), and end (Ee) of EAE. Several-fold increase in mRNA and in NTPDase1 protein levels were observed at Eo and Ep. In situ hybridization combined with fluorescent immunohistochemistry showed that reactive microglia and infiltrated mononuclear cells mostly accounted for the observed increase. Colocalization analysis revealed that up to 80% of Iba1 immunoreactivity and ∼50% of CD68 immunoreactivity was colocalized with NTPDase1, while flow cytometric analysis revealed that ∼70% of mononuclear infiltrates were NTPDase1+ at Ep. Given the main role of NTPDase1 to degrade proinflammatory ATP, we hypothesized that the observed up-regulation of NTPDase1 may be associated with the transition between proinflammatory M1-like to neuroprotective M2-like phenotype of microglia/macrophages during EAE. Functional phenotype of reactive microglia/macrophages that overexpress NTPDase1 was assessed by multi-image colocalization analysis using iNOS and Arg1 as selective markers for M1 and M2 reactive states, respectively. At the peak of EAE NTPDase1 immunoreactivity showed much higher co-occurrence with Arg1 immunoreactivity in microglia and macrophages, compared to iNOS, implying its stronger association with M2-like reactive phenotype. Additionally, in ∼80% of CD68 positive cells NTPDase1 was coexpressed with Arg1 compared to negligible fraction coexpresing iNOS and ∼15% coexpresing both markers, additionally indicating prevalent association of NTPDase1 with M2-like microglial/macrophages phenotype at Ep. Together, our data suggest an association between NTPDase1 up-regulation by reactive microglia and infiltrated macrophages and their transition toward antiinflammatory phenotype in EAE.
T2  - Frontiers in Neuroscience
T1  - Induction of NTPDase1/CD39 by Reactive Microglia and Macrophages Is Associated With the Functional State During EAE.
VL  - 13
DO  - 10.3389/fnins.2019.00410
SP  - 410
ER  - 
@article{
author = "Jakovljević, Marija and Lavrnja, Irena and Božić, Iva and Milošević, Ana and Bjelobaba, Ivana and Savić, Danijela and Sévigny, Jean and Peković, Sanja and Nedeljković, Nadežda and Laketa, Danijela",
year = "2019",
abstract = "Purinergic signaling is critically involved in neuroinflammation associated with multiple sclerosis (MS) and its major inflammatory animal model, experimental autoimmune encephalomyelitis (EAE). Herein, we explored the expression of ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1/CD39) in the spinal cord, at the onset (Eo), peak (Ep), and end (Ee) of EAE. Several-fold increase in mRNA and in NTPDase1 protein levels were observed at Eo and Ep. In situ hybridization combined with fluorescent immunohistochemistry showed that reactive microglia and infiltrated mononuclear cells mostly accounted for the observed increase. Colocalization analysis revealed that up to 80% of Iba1 immunoreactivity and ∼50% of CD68 immunoreactivity was colocalized with NTPDase1, while flow cytometric analysis revealed that ∼70% of mononuclear infiltrates were NTPDase1+ at Ep. Given the main role of NTPDase1 to degrade proinflammatory ATP, we hypothesized that the observed up-regulation of NTPDase1 may be associated with the transition between proinflammatory M1-like to neuroprotective M2-like phenotype of microglia/macrophages during EAE. Functional phenotype of reactive microglia/macrophages that overexpress NTPDase1 was assessed by multi-image colocalization analysis using iNOS and Arg1 as selective markers for M1 and M2 reactive states, respectively. At the peak of EAE NTPDase1 immunoreactivity showed much higher co-occurrence with Arg1 immunoreactivity in microglia and macrophages, compared to iNOS, implying its stronger association with M2-like reactive phenotype. Additionally, in ∼80% of CD68 positive cells NTPDase1 was coexpressed with Arg1 compared to negligible fraction coexpresing iNOS and ∼15% coexpresing both markers, additionally indicating prevalent association of NTPDase1 with M2-like microglial/macrophages phenotype at Ep. Together, our data suggest an association between NTPDase1 up-regulation by reactive microglia and infiltrated macrophages and their transition toward antiinflammatory phenotype in EAE.",
journal = "Frontiers in Neuroscience",
title = "Induction of NTPDase1/CD39 by Reactive Microglia and Macrophages Is Associated With the Functional State During EAE.",
volume = "13",
doi = "10.3389/fnins.2019.00410",
pages = "410"
}
Jakovljević, M., Lavrnja, I., Božić, I., Milošević, A., Bjelobaba, I., Savić, D., Sévigny, J., Peković, S., Nedeljković, N.,& Laketa, D.. (2019). Induction of NTPDase1/CD39 by Reactive Microglia and Macrophages Is Associated With the Functional State During EAE.. in Frontiers in Neuroscience, 13, 410.
https://doi.org/10.3389/fnins.2019.00410
Jakovljević M, Lavrnja I, Božić I, Milošević A, Bjelobaba I, Savić D, Sévigny J, Peković S, Nedeljković N, Laketa D. Induction of NTPDase1/CD39 by Reactive Microglia and Macrophages Is Associated With the Functional State During EAE.. in Frontiers in Neuroscience. 2019;13:410.
doi:10.3389/fnins.2019.00410 .
Jakovljević, Marija, Lavrnja, Irena, Božić, Iva, Milošević, Ana, Bjelobaba, Ivana, Savić, Danijela, Sévigny, Jean, Peković, Sanja, Nedeljković, Nadežda, Laketa, Danijela, "Induction of NTPDase1/CD39 by Reactive Microglia and Macrophages Is Associated With the Functional State During EAE." in Frontiers in Neuroscience, 13 (2019):410,
https://doi.org/10.3389/fnins.2019.00410 . .
3
21
11
18

Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis.

Božić, Iva; Milošević, Katarina; Laketa, Danijela; Adžić, Marija; Jakovljević, Marija; Bjelobaba, Ivana; Savić, Danijela; Nedeljković, Nadežda; Peković, Sanja; Lavrnja, Irena

(2018)

TY  - JOUR
AU  - Božić, Iva
AU  - Milošević, Katarina
AU  - Laketa, Danijela
AU  - Adžić, Marija
AU  - Jakovljević, Marija
AU  - Bjelobaba, Ivana
AU  - Savić, Danijela
AU  - Nedeljković, Nadežda
AU  - Peković, Sanja
AU  - Lavrnja, Irena
PY  - 2018
UR  - http://link.springer.com/10.1007/s11064-018-2509-8
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3027
AB  - Kv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS. EAE was actively induced in female Dark Agouti rats. Expression of Kv1.3 was analyzed at different time points of disease progression, at the onset, peak and end of EAE. We here show that Kv1.3 increased by several folds at the peak of EAE at both gene and protein level. Double immunofluorescence analyses demonstrated localization of Kv1.3 on activated microglia, macrophages, and reactive astrocytes around inflammatory lesions. In vitro experiments showed that pharmacological block of Kv1.3 in activated astrocytes suppresses the expression of proinflammatory mediators, suggesting a role of this channel in inflammation. Our results support the hypothesis that Kv1.3 may be a therapeutic target of interest for MS and add astrocytes to the list of cells whose activation would be suppressed by inhibiting Kv1.3 in inflammatory conditions.
T2  - Neurochemical Research
T1  - Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis.
IS  - 5
VL  - 43
DO  - 10.1007/s11064-018-2509-8
SP  - 1020
EP  - 1034
ER  - 
@article{
author = "Božić, Iva and Milošević, Katarina and Laketa, Danijela and Adžić, Marija and Jakovljević, Marija and Bjelobaba, Ivana and Savić, Danijela and Nedeljković, Nadežda and Peković, Sanja and Lavrnja, Irena",
year = "2018",
abstract = "Kv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS. EAE was actively induced in female Dark Agouti rats. Expression of Kv1.3 was analyzed at different time points of disease progression, at the onset, peak and end of EAE. We here show that Kv1.3 increased by several folds at the peak of EAE at both gene and protein level. Double immunofluorescence analyses demonstrated localization of Kv1.3 on activated microglia, macrophages, and reactive astrocytes around inflammatory lesions. In vitro experiments showed that pharmacological block of Kv1.3 in activated astrocytes suppresses the expression of proinflammatory mediators, suggesting a role of this channel in inflammation. Our results support the hypothesis that Kv1.3 may be a therapeutic target of interest for MS and add astrocytes to the list of cells whose activation would be suppressed by inhibiting Kv1.3 in inflammatory conditions.",
journal = "Neurochemical Research",
title = "Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis.",
number = "5",
volume = "43",
doi = "10.1007/s11064-018-2509-8",
pages = "1020-1034"
}
Božić, I., Milošević, K., Laketa, D., Adžić, M., Jakovljević, M., Bjelobaba, I., Savić, D., Nedeljković, N., Peković, S.,& Lavrnja, I.. (2018). Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis.. in Neurochemical Research, 43(5), 1020-1034.
https://doi.org/10.1007/s11064-018-2509-8
Božić I, Milošević K, Laketa D, Adžić M, Jakovljević M, Bjelobaba I, Savić D, Nedeljković N, Peković S, Lavrnja I. Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis.. in Neurochemical Research. 2018;43(5):1020-1034.
doi:10.1007/s11064-018-2509-8 .
Božić, Iva, Milošević, Katarina, Laketa, Danijela, Adžić, Marija, Jakovljević, Marija, Bjelobaba, Ivana, Savić, Danijela, Nedeljković, Nadežda, Peković, Sanja, Lavrnja, Irena, "Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis." in Neurochemical Research, 43, no. 5 (2018):1020-1034,
https://doi.org/10.1007/s11064-018-2509-8 . .
19
11
16

Preusmeravanje antivirusnog leka ribavirina ka novim terapijskim indikacijama: primer multiple skleroze i neoplastičnih transformacija

Savić, Danijela; Lavrnja, Irena; Bjelobaba, Ivana; Dacić, Sanja; Laketa, Danijela; Božić, Iva; Jakovljević, Marija; Nedeljković, Nadežda; Rakić, Ljubisav; Peković, Sanja

(Belgrade: Serbian Biological Society, 2018)

TY  - CONF
AU  - Savić, Danijela
AU  - Lavrnja, Irena
AU  - Bjelobaba, Ivana
AU  - Dacić, Sanja
AU  - Laketa, Danijela
AU  - Božić, Iva
AU  - Jakovljević, Marija
AU  - Nedeljković, Nadežda
AU  - Rakić, Ljubisav
AU  - Peković, Sanja
PY  - 2018
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5888
AB  - Ribavirin je purinski nukleozidni analog, otkriven pre više decenija i odobren kao lek protiv virusa hepatitisa C. Sa otkrićem direktnih antivirusnih agenasa, nastupila je revolucija u lečenju hepatitisa C, a terapijska uloga ribavirina je marginalizovana. Međutim, ribavirin ima širok spektar dejstva što je otvorilo mogućnost da se ovaj lek preusmeri ka tretmanu drugih oboljenja. Naime, osim što deluje antivirusno (inhibicija virusne RNK polimeraze i izazivanje letalne mutageneze) ribavirin je i inhibitor eukariotskog faktora za inicijaciju translacije e4E, što je zaslužno za njegov anti-tumorski efekat, pokazan u leukemiji i na ćelijama glioma. Njegova druga opšte poznata unutarćelijska meta jeste enzim inozin-5’-monofosfat dehidrogenaza (IMPDH), koji predstavlja ključni faktor u de novo sintezi guaninskih nukleotida. Ćelije koje se isključivo na ovaj način snabdevaju purinskim nukleotidima, kao što su aktivirani limfociti i neke proliferišuće ćelije, izuzetno su senzitivne na delovanje ribavirina. Inhibicija IMPDH odgovorna je za imunosupresivno i imunomodulatorno dejstvo ribavirina, pokazano u in vitro i in vivo modelima neuroinflamacije. Dakle, iako ribavirin gubi centralnu ulogu koju je imao u terapiji infekcije virusom hepatitisa C, njegova multipotentna priroda koja se ogleda u različitim mehanizmima delovanja, predstavlja potencijal za preusmeravanje ka novim terapijskim indikacijama, kao što su kancer ili multipla skleroza.
PB  - Belgrade: Serbian Biological Society
C3  - Drugi kongres biologa Srbije; 2018 Sep 25-30; Kladovo, Srbija
T1  - Preusmeravanje antivirusnog leka ribavirina ka novim terapijskim indikacijama: primer multiple skleroze i neoplastičnih transformacija
SP  - 146
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5888
ER  - 
@conference{
author = "Savić, Danijela and Lavrnja, Irena and Bjelobaba, Ivana and Dacić, Sanja and Laketa, Danijela and Božić, Iva and Jakovljević, Marija and Nedeljković, Nadežda and Rakić, Ljubisav and Peković, Sanja",
year = "2018",
abstract = "Ribavirin je purinski nukleozidni analog, otkriven pre više decenija i odobren kao lek protiv virusa hepatitisa C. Sa otkrićem direktnih antivirusnih agenasa, nastupila je revolucija u lečenju hepatitisa C, a terapijska uloga ribavirina je marginalizovana. Međutim, ribavirin ima širok spektar dejstva što je otvorilo mogućnost da se ovaj lek preusmeri ka tretmanu drugih oboljenja. Naime, osim što deluje antivirusno (inhibicija virusne RNK polimeraze i izazivanje letalne mutageneze) ribavirin je i inhibitor eukariotskog faktora za inicijaciju translacije e4E, što je zaslužno za njegov anti-tumorski efekat, pokazan u leukemiji i na ćelijama glioma. Njegova druga opšte poznata unutarćelijska meta jeste enzim inozin-5’-monofosfat dehidrogenaza (IMPDH), koji predstavlja ključni faktor u de novo sintezi guaninskih nukleotida. Ćelije koje se isključivo na ovaj način snabdevaju purinskim nukleotidima, kao što su aktivirani limfociti i neke proliferišuće ćelije, izuzetno su senzitivne na delovanje ribavirina. Inhibicija IMPDH odgovorna je za imunosupresivno i imunomodulatorno dejstvo ribavirina, pokazano u in vitro i in vivo modelima neuroinflamacije. Dakle, iako ribavirin gubi centralnu ulogu koju je imao u terapiji infekcije virusom hepatitisa C, njegova multipotentna priroda koja se ogleda u različitim mehanizmima delovanja, predstavlja potencijal za preusmeravanje ka novim terapijskim indikacijama, kao što su kancer ili multipla skleroza.",
publisher = "Belgrade: Serbian Biological Society",
journal = "Drugi kongres biologa Srbije; 2018 Sep 25-30; Kladovo, Srbija",
title = "Preusmeravanje antivirusnog leka ribavirina ka novim terapijskim indikacijama: primer multiple skleroze i neoplastičnih transformacija",
pages = "146",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5888"
}
Savić, D., Lavrnja, I., Bjelobaba, I., Dacić, S., Laketa, D., Božić, I., Jakovljević, M., Nedeljković, N., Rakić, L.,& Peković, S.. (2018). Preusmeravanje antivirusnog leka ribavirina ka novim terapijskim indikacijama: primer multiple skleroze i neoplastičnih transformacija. in Drugi kongres biologa Srbije; 2018 Sep 25-30; Kladovo, Srbija
Belgrade: Serbian Biological Society., 146.
https://hdl.handle.net/21.15107/rcub_ibiss_5888
Savić D, Lavrnja I, Bjelobaba I, Dacić S, Laketa D, Božić I, Jakovljević M, Nedeljković N, Rakić L, Peković S. Preusmeravanje antivirusnog leka ribavirina ka novim terapijskim indikacijama: primer multiple skleroze i neoplastičnih transformacija. in Drugi kongres biologa Srbije; 2018 Sep 25-30; Kladovo, Srbija. 2018;:146.
https://hdl.handle.net/21.15107/rcub_ibiss_5888 .
Savić, Danijela, Lavrnja, Irena, Bjelobaba, Ivana, Dacić, Sanja, Laketa, Danijela, Božić, Iva, Jakovljević, Marija, Nedeljković, Nadežda, Rakić, Ljubisav, Peković, Sanja, "Preusmeravanje antivirusnog leka ribavirina ka novim terapijskim indikacijama: primer multiple skleroze i neoplastičnih transformacija" in Drugi kongres biologa Srbije; 2018 Sep 25-30; Kladovo, Srbija (2018):146,
https://hdl.handle.net/21.15107/rcub_ibiss_5888 .

Appearance of second ecto-5'-nucleotidase isoform during experimental autoimmune encephalomyelitis is caused by changes in glycosylation pattern

Laketa, Danijela; Josipović, Nataša; Lavrnja, Irena; Bjelobaba, Ivana; Jakovljević, Marija; Božić, Iva; Savić, Danijela; Dacić, Sanja; Peković, Sanja; Nedeljković, Nadežda

(Belgrade: Serbian Neuroscience Society, 2017)

TY  - CONF
AU  - Laketa, Danijela
AU  - Josipović, Nataša
AU  - Lavrnja, Irena
AU  - Bjelobaba, Ivana
AU  - Jakovljević, Marija
AU  - Božić, Iva
AU  - Savić, Danijela
AU  - Dacić, Sanja
AU  - Peković, Sanja
AU  - Nedeljković, Nadežda
PY  - 2017
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5988
AB  - Introduction. Ecto-5'–nucleotidase (eN) catalyzes terminal step of extracellular ATP hydrolysis, producing anti-inflammatory adenosine. We reported significantly increased eN activity in lumbar spinal cord during experimental autoimmune encephalomyelitis (EAE), together with increased protein expression connected mainly with reactive astrocytes and appearance of new isoform at ~75kDa at the peak of the disease, besides usual ~71kDa isoform. Since eN is glycoprotein with five potential N-glycosylation sites and 
redicted molecular weight of 57-59 kDa, we hypothesized that occurrence of second isoform during EAE is due to changes in glycosylation pattern, possibly affecting kinetic properties of the enzyme. Methods. Lumbar parts of the spinal cords were obtained from Dark Agouti rats at the onset (Eo), peak (Ep) and the end of symptoms (Er) during EAE and from naïve control animals (C). Results. We here report significant changes of kinetic properties regarding AMP-hydrolysis during EAE, with almost 50% increase of maximal velocity at Ep (92.35±1.86nmolPi/min/mg) and Er (90.68±2.17nmolPi/min/mg), compared to C, whilst Km increased double at Ep (0.041±0.003mmol/l). Enzymatic deglycosylation caused triple decrease of Vmax (33.6±1.8nmolPi/mg/min) at Ep, and double decrease of Km (0.022±0.008mmol/l), whilst immunoblot
probed with anti-eN antibody revealed triple protein band at ~60kDa at all investigated time-points. Conclusion. Our results show that changes of kinetic properties during EAE, at least partially, are governed by modification of glycosylation pattern. Also, appearance of new isoform at the peak of EAE is direct consequence of glycosylation changes. In summary, besides gene and protein expression changes of eN, glycosylation might be additional route of inflammation control conducted by astrocytes.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia
T1  - Appearance of second ecto-5'-nucleotidase isoform during experimental autoimmune encephalomyelitis is caused by changes in glycosylation pattern
SP  - 70
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5988
ER  - 
@conference{
author = "Laketa, Danijela and Josipović, Nataša and Lavrnja, Irena and Bjelobaba, Ivana and Jakovljević, Marija and Božić, Iva and Savić, Danijela and Dacić, Sanja and Peković, Sanja and Nedeljković, Nadežda",
year = "2017",
abstract = "Introduction. Ecto-5'–nucleotidase (eN) catalyzes terminal step of extracellular ATP hydrolysis, producing anti-inflammatory adenosine. We reported significantly increased eN activity in lumbar spinal cord during experimental autoimmune encephalomyelitis (EAE), together with increased protein expression connected mainly with reactive astrocytes and appearance of new isoform at ~75kDa at the peak of the disease, besides usual ~71kDa isoform. Since eN is glycoprotein with five potential N-glycosylation sites and 
redicted molecular weight of 57-59 kDa, we hypothesized that occurrence of second isoform during EAE is due to changes in glycosylation pattern, possibly affecting kinetic properties of the enzyme. Methods. Lumbar parts of the spinal cords were obtained from Dark Agouti rats at the onset (Eo), peak (Ep) and the end of symptoms (Er) during EAE and from naïve control animals (C). Results. We here report significant changes of kinetic properties regarding AMP-hydrolysis during EAE, with almost 50% increase of maximal velocity at Ep (92.35±1.86nmolPi/min/mg) and Er (90.68±2.17nmolPi/min/mg), compared to C, whilst Km increased double at Ep (0.041±0.003mmol/l). Enzymatic deglycosylation caused triple decrease of Vmax (33.6±1.8nmolPi/mg/min) at Ep, and double decrease of Km (0.022±0.008mmol/l), whilst immunoblot
probed with anti-eN antibody revealed triple protein band at ~60kDa at all investigated time-points. Conclusion. Our results show that changes of kinetic properties during EAE, at least partially, are governed by modification of glycosylation pattern. Also, appearance of new isoform at the peak of EAE is direct consequence of glycosylation changes. In summary, besides gene and protein expression changes of eN, glycosylation might be additional route of inflammation control conducted by astrocytes.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia",
title = "Appearance of second ecto-5'-nucleotidase isoform during experimental autoimmune encephalomyelitis is caused by changes in glycosylation pattern",
pages = "70",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5988"
}
Laketa, D., Josipović, N., Lavrnja, I., Bjelobaba, I., Jakovljević, M., Božić, I., Savić, D., Dacić, S., Peković, S.,& Nedeljković, N.. (2017). Appearance of second ecto-5'-nucleotidase isoform during experimental autoimmune encephalomyelitis is caused by changes in glycosylation pattern. in Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 70.
https://hdl.handle.net/21.15107/rcub_ibiss_5988
Laketa D, Josipović N, Lavrnja I, Bjelobaba I, Jakovljević M, Božić I, Savić D, Dacić S, Peković S, Nedeljković N. Appearance of second ecto-5'-nucleotidase isoform during experimental autoimmune encephalomyelitis is caused by changes in glycosylation pattern. in Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia. 2017;:70.
https://hdl.handle.net/21.15107/rcub_ibiss_5988 .
Laketa, Danijela, Josipović, Nataša, Lavrnja, Irena, Bjelobaba, Ivana, Jakovljević, Marija, Božić, Iva, Savić, Danijela, Dacić, Sanja, Peković, Sanja, Nedeljković, Nadežda, "Appearance of second ecto-5'-nucleotidase isoform during experimental autoimmune encephalomyelitis is caused by changes in glycosylation pattern" in Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia (2017):70,
https://hdl.handle.net/21.15107/rcub_ibiss_5988 .

ADP receptors P2Y1, P2Y12 and P2Y13 are differentially regulated in a rat model of multiple sclerosis

Jakovljević, Marija; Lavrnja, Irena; Božić, Iva; Adžić, Marija; Bjelobaba, Ivana; Savić, Danijela; Peković, Sanja; Nedeljković, Nadežda; Laketa, Danijela

(Belgrade: Serbian Neuroscience Society, 2017)

TY  - CONF
AU  - Jakovljević, Marija
AU  - Lavrnja, Irena
AU  - Božić, Iva
AU  - Adžić, Marija
AU  - Bjelobaba, Ivana
AU  - Savić, Danijela
AU  - Peković, Sanja
AU  - Nedeljković, Nadežda
AU  - Laketa, Danijela
PY  - 2017
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5985
AB  - Introduction. Multiple sclerosis (MS) is a chronic disease of central nervous system (CNS), characterized by neuroinflammation, demyelination and neurodegeneration. Despite well-established role of purinergic signaling in MS pathology, the role of ADP as ectonucleotidase inter-product between proinflammatory ATP and anti-inflammatory adenosine is still obscure. Among ADP-sensitive receptors P2Y1, P2Y12 and P2Y13, there are few data indicating involvement of P2Y12 receptor in MS. The aim of this study was to elucidate a potential impact of ADP on CNS pathology in animal model of MS - experimental autoimmune encephalomyelitis (EAE). Material and Methods. EAE was induced in 8-week old female rats of Dark Agouti strain. The abundance and localization of ADP receptors – P2Y1, P2Y12 and P2Y13 was analyzed in lumbosacral spinal cord tissue by real-time PCR, Western Blot and immunohistochemistry at different disease stages – onset (Eo), peak (Ep) and recovery (Er). Results. Results of this study show that ADP-sensing purinergic receptors are differentially regulated during EAE. Namely, mRNA and protein expression of P2Y1 and P2Y12was decreased at Eo, while significantly increased for P2Y12and P2Y13 at Ep and/or Er. In addition, immunohistochemical labeling showed similar pattern of changes during EAE for investigated receptors, thus providing novel insight into their spinal cord tissue distribution. Conclusion. Our results strongly indicate involvement of ADP-sensitive purinergic receptors P2Y1, P2Y12 and P2Y13 in pathophysiology of EAE. Their differential regulation and tissue distribution implies diverse effects in the course of the disease during EAE. Further studies would be necessary to elucidate their mechanisms of action.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia
T1  - ADP receptors P2Y1, P2Y12 and P2Y13 are differentially regulated in a rat model of multiple sclerosis
SP  - 68
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5985
ER  - 
@conference{
author = "Jakovljević, Marija and Lavrnja, Irena and Božić, Iva and Adžić, Marija and Bjelobaba, Ivana and Savić, Danijela and Peković, Sanja and Nedeljković, Nadežda and Laketa, Danijela",
year = "2017",
abstract = "Introduction. Multiple sclerosis (MS) is a chronic disease of central nervous system (CNS), characterized by neuroinflammation, demyelination and neurodegeneration. Despite well-established role of purinergic signaling in MS pathology, the role of ADP as ectonucleotidase inter-product between proinflammatory ATP and anti-inflammatory adenosine is still obscure. Among ADP-sensitive receptors P2Y1, P2Y12 and P2Y13, there are few data indicating involvement of P2Y12 receptor in MS. The aim of this study was to elucidate a potential impact of ADP on CNS pathology in animal model of MS - experimental autoimmune encephalomyelitis (EAE). Material and Methods. EAE was induced in 8-week old female rats of Dark Agouti strain. The abundance and localization of ADP receptors – P2Y1, P2Y12 and P2Y13 was analyzed in lumbosacral spinal cord tissue by real-time PCR, Western Blot and immunohistochemistry at different disease stages – onset (Eo), peak (Ep) and recovery (Er). Results. Results of this study show that ADP-sensing purinergic receptors are differentially regulated during EAE. Namely, mRNA and protein expression of P2Y1 and P2Y12was decreased at Eo, while significantly increased for P2Y12and P2Y13 at Ep and/or Er. In addition, immunohistochemical labeling showed similar pattern of changes during EAE for investigated receptors, thus providing novel insight into their spinal cord tissue distribution. Conclusion. Our results strongly indicate involvement of ADP-sensitive purinergic receptors P2Y1, P2Y12 and P2Y13 in pathophysiology of EAE. Their differential regulation and tissue distribution implies diverse effects in the course of the disease during EAE. Further studies would be necessary to elucidate their mechanisms of action.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia",
title = "ADP receptors P2Y1, P2Y12 and P2Y13 are differentially regulated in a rat model of multiple sclerosis",
pages = "68",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5985"
}
Jakovljević, M., Lavrnja, I., Božić, I., Adžić, M., Bjelobaba, I., Savić, D., Peković, S., Nedeljković, N.,& Laketa, D.. (2017). ADP receptors P2Y1, P2Y12 and P2Y13 are differentially regulated in a rat model of multiple sclerosis. in Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 68.
https://hdl.handle.net/21.15107/rcub_ibiss_5985
Jakovljević M, Lavrnja I, Božić I, Adžić M, Bjelobaba I, Savić D, Peković S, Nedeljković N, Laketa D. ADP receptors P2Y1, P2Y12 and P2Y13 are differentially regulated in a rat model of multiple sclerosis. in Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia. 2017;:68.
https://hdl.handle.net/21.15107/rcub_ibiss_5985 .
Jakovljević, Marija, Lavrnja, Irena, Božić, Iva, Adžić, Marija, Bjelobaba, Ivana, Savić, Danijela, Peković, Sanja, Nedeljković, Nadežda, Laketa, Danijela, "ADP receptors P2Y1, P2Y12 and P2Y13 are differentially regulated in a rat model of multiple sclerosis" in Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia (2017):68,
https://hdl.handle.net/21.15107/rcub_ibiss_5985 .

Estrous cycle disruption during experimental autoimmune encephalomyelitis is followed by the changes in hypothalamic kisspeptin expression

Milošević, Ana; Lavrnja, Irena; Jakovljević, Marija; Božić, Iva; Peković, Sanja; Bjelobaba, Ivana

(Belgrade: Serbian Neuroscience Society, 2017)

TY  - CONF
AU  - Milošević, Ana
AU  - Lavrnja, Irena
AU  - Jakovljević, Marija
AU  - Božić, Iva
AU  - Peković, Sanja
AU  - Bjelobaba, Ivana
PY  - 2017
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5980
AB  - Introduction. Multiple sclerosis (MS) is a chronic neuroinflammatory disease that is at least twice as common in women as it is in men. Since the effects of neuroinflammation on reproductive functions haven't been thoroughly investigated in MS or its animal models, we wanted to explore the changes in the hypothalamo-pituitary-gonadal axis, in a rat model of MS, experimental autoimmune encephalomyelitis (EAE), focusing on kisspeptin as a key regulator of the mammalian reproductive axis. Methods. Dark-Agouti rats were used and EAE actively induced by an intradermal injection of 150 µl mixture of the spinal cord homogenate and complete Freund’s adjuvant (CFA). Naïve animals served as controls. The rats were examined daily for disease symptoms, weight changes, and estrous cycle phase. The animals were sacrificed 9, 14 and 28 days after induction, corresponding to the phases of the disease – onset, peak, and recovery, respectively. The hypothalamic tissue was isolated and the obtained cDNA used for qRT-PCR. For kisspeptin immunohistochemistry, the whole brains were fixed, cryo-preserved and cut on a cryotome. Results. With the onset of the disease, females stop cycling and get arrested in diestrus phase, which is accompanied with a significant drop in serum luteinizing hormone levels.HypothalamicKiss1mRNA expression was significantly lower at the peak of the disease, compared to the control group. Immunohistochemical analysis indicates a decrease of kisspeptin immunoreactivity in the arcuate nucleus and median eminence. Conclusion. Our results implicate that EAE affects the expression of kisspeptin and thus the regulation of hypothalamo-pituitarygonadal axis, but further analyses are needed to explain the details of this process.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia
T1  - Estrous cycle disruption during experimental autoimmune encephalomyelitis is followed by the changes in hypothalamic kisspeptin expression
SP  - 69
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5980
ER  - 
@conference{
author = "Milošević, Ana and Lavrnja, Irena and Jakovljević, Marija and Božić, Iva and Peković, Sanja and Bjelobaba, Ivana",
year = "2017",
abstract = "Introduction. Multiple sclerosis (MS) is a chronic neuroinflammatory disease that is at least twice as common in women as it is in men. Since the effects of neuroinflammation on reproductive functions haven't been thoroughly investigated in MS or its animal models, we wanted to explore the changes in the hypothalamo-pituitary-gonadal axis, in a rat model of MS, experimental autoimmune encephalomyelitis (EAE), focusing on kisspeptin as a key regulator of the mammalian reproductive axis. Methods. Dark-Agouti rats were used and EAE actively induced by an intradermal injection of 150 µl mixture of the spinal cord homogenate and complete Freund’s adjuvant (CFA). Naïve animals served as controls. The rats were examined daily for disease symptoms, weight changes, and estrous cycle phase. The animals were sacrificed 9, 14 and 28 days after induction, corresponding to the phases of the disease – onset, peak, and recovery, respectively. The hypothalamic tissue was isolated and the obtained cDNA used for qRT-PCR. For kisspeptin immunohistochemistry, the whole brains were fixed, cryo-preserved and cut on a cryotome. Results. With the onset of the disease, females stop cycling and get arrested in diestrus phase, which is accompanied with a significant drop in serum luteinizing hormone levels.HypothalamicKiss1mRNA expression was significantly lower at the peak of the disease, compared to the control group. Immunohistochemical analysis indicates a decrease of kisspeptin immunoreactivity in the arcuate nucleus and median eminence. Conclusion. Our results implicate that EAE affects the expression of kisspeptin and thus the regulation of hypothalamo-pituitarygonadal axis, but further analyses are needed to explain the details of this process.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia",
title = "Estrous cycle disruption during experimental autoimmune encephalomyelitis is followed by the changes in hypothalamic kisspeptin expression",
pages = "69",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5980"
}
Milošević, A., Lavrnja, I., Jakovljević, M., Božić, I., Peković, S.,& Bjelobaba, I.. (2017). Estrous cycle disruption during experimental autoimmune encephalomyelitis is followed by the changes in hypothalamic kisspeptin expression. in Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 69.
https://hdl.handle.net/21.15107/rcub_ibiss_5980
Milošević A, Lavrnja I, Jakovljević M, Božić I, Peković S, Bjelobaba I. Estrous cycle disruption during experimental autoimmune encephalomyelitis is followed by the changes in hypothalamic kisspeptin expression. in Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia. 2017;:69.
https://hdl.handle.net/21.15107/rcub_ibiss_5980 .
Milošević, Ana, Lavrnja, Irena, Jakovljević, Marija, Božić, Iva, Peković, Sanja, Bjelobaba, Ivana, "Estrous cycle disruption during experimental autoimmune encephalomyelitis is followed by the changes in hypothalamic kisspeptin expression" in Book of Abstract: 7th Congress of Serbian Neuroscience Society with international participation; 2017 Oct 25-27; Belgrade, Serbia (2017):69,
https://hdl.handle.net/21.15107/rcub_ibiss_5980 .

Down-regulation of NTPDase2 and ADP-sensitive P2 Purinoceptors Correlate with Severity of Symptoms during Experimental Autoimmune Encephalomyelitis.

Jakovljević, Marija; Lavrnja, Irena; Božić, Iva; Savić, Danijela; Bjelobaba, Ivana; Peković, Sanja; Sévigny, Jean; Nedeljković, Nadežda; Laketa, Danijela

(2017)

TY  - JOUR
AU  - Jakovljević, Marija
AU  - Lavrnja, Irena
AU  - Božić, Iva
AU  - Savić, Danijela
AU  - Bjelobaba, Ivana
AU  - Peković, Sanja
AU  - Sévigny, Jean
AU  - Nedeljković, Nadežda
AU  - Laketa, Danijela
PY  - 2017
UR  - http://journal.frontiersin.org/article/10.3389/fncel.2017.00333/full
UR  - http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5670145
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3152
AB  - The present study explores tissue and cellular distribution of ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and the gene and protein expression in rat spinal cord during the course of experimental autoimmune encephalomyelitis (EAE). Given that NTPDase2 hydrolyzes ATP with a transient accumulation of ADP, the expression of ADP-sensitive P2 purinoceptors was analyzed as well. The autoimmune disease was actively induced in Dark Agouti female rats and the changes were analyzed 10, 15 and 29 days after the induction. These selected time points correspond to the onset ( Eo ), peak ( Ep ) and recovery ( Er ) from EAE. In control animals, NTPDase2 was confined in the white matter, in most of the glial fibrillary acidic protein (GFAP)-immunoreactive (ir) astrocytes and in a considerable number of nestin-ir cells, while the other cell types were immunonegative. Immunoreactivity corresponding to NTPDase2 decreased significantly at Eo and Ep and then returned to the baseline levels at Er . The preservation of the proportion of GFAP single-labeled and GFAP/NTPDase2 double-labeled elements along the course of EAE indicated that changes in NTPDase2-ir occurred at fibrous astrocytes that typically express NTPDase2 in normal conditions. Significant downregulation of P2Y1 and P2Y12 receptor proteins at Eo and several-fold induction of P2Y12 and P2Y13 receptor proteins at Ep and/or Er were observed implying that the pathophysiological process in EAE may be linked to ADP signaling. Cell-surface expression of NTPDase2, NTPDase1/CD39 and ecto-5'-nucleotidase (eN/CD73) was analyzed in CD4+ T cells of a draining lymph node by fluorescence-activated cell sorting. The induction of EAE was associated with a transient decrease in a number of CD4+ NTPDase2+ T cells in a draining lymph node, whereas the recovery was characterized by an increase in NTPDase2+ cells in both CD4+ and CD4- cell populations. The opposite was found for NTPDase1/CD39+ and eN/CD73+ cells, which slightly increased in number with progression of the disease, particularly in CD4- cells, and then decreased in the recovery. Finally, CD4+ NTPDase2+ cells were never observed in the spinal cord parenchyma. Taken together, our results suggest that the process of neuroinflammation in EAE may be associated with altered ADP signaling.
T2  - Frontiers in Cellular Neuroscience
T1  - Down-regulation of NTPDase2 and ADP-sensitive P2 Purinoceptors Correlate with Severity of Symptoms during Experimental Autoimmune Encephalomyelitis.
VL  - 11
DO  - 10.3389/fncel.2017.00333
SP  - 333
ER  - 
@article{
author = "Jakovljević, Marija and Lavrnja, Irena and Božić, Iva and Savić, Danijela and Bjelobaba, Ivana and Peković, Sanja and Sévigny, Jean and Nedeljković, Nadežda and Laketa, Danijela",
year = "2017",
abstract = "The present study explores tissue and cellular distribution of ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and the gene and protein expression in rat spinal cord during the course of experimental autoimmune encephalomyelitis (EAE). Given that NTPDase2 hydrolyzes ATP with a transient accumulation of ADP, the expression of ADP-sensitive P2 purinoceptors was analyzed as well. The autoimmune disease was actively induced in Dark Agouti female rats and the changes were analyzed 10, 15 and 29 days after the induction. These selected time points correspond to the onset ( Eo ), peak ( Ep ) and recovery ( Er ) from EAE. In control animals, NTPDase2 was confined in the white matter, in most of the glial fibrillary acidic protein (GFAP)-immunoreactive (ir) astrocytes and in a considerable number of nestin-ir cells, while the other cell types were immunonegative. Immunoreactivity corresponding to NTPDase2 decreased significantly at Eo and Ep and then returned to the baseline levels at Er . The preservation of the proportion of GFAP single-labeled and GFAP/NTPDase2 double-labeled elements along the course of EAE indicated that changes in NTPDase2-ir occurred at fibrous astrocytes that typically express NTPDase2 in normal conditions. Significant downregulation of P2Y1 and P2Y12 receptor proteins at Eo and several-fold induction of P2Y12 and P2Y13 receptor proteins at Ep and/or Er were observed implying that the pathophysiological process in EAE may be linked to ADP signaling. Cell-surface expression of NTPDase2, NTPDase1/CD39 and ecto-5'-nucleotidase (eN/CD73) was analyzed in CD4+ T cells of a draining lymph node by fluorescence-activated cell sorting. The induction of EAE was associated with a transient decrease in a number of CD4+ NTPDase2+ T cells in a draining lymph node, whereas the recovery was characterized by an increase in NTPDase2+ cells in both CD4+ and CD4- cell populations. The opposite was found for NTPDase1/CD39+ and eN/CD73+ cells, which slightly increased in number with progression of the disease, particularly in CD4- cells, and then decreased in the recovery. Finally, CD4+ NTPDase2+ cells were never observed in the spinal cord parenchyma. Taken together, our results suggest that the process of neuroinflammation in EAE may be associated with altered ADP signaling.",
journal = "Frontiers in Cellular Neuroscience",
title = "Down-regulation of NTPDase2 and ADP-sensitive P2 Purinoceptors Correlate with Severity of Symptoms during Experimental Autoimmune Encephalomyelitis.",
volume = "11",
doi = "10.3389/fncel.2017.00333",
pages = "333"
}
Jakovljević, M., Lavrnja, I., Božić, I., Savić, D., Bjelobaba, I., Peković, S., Sévigny, J., Nedeljković, N.,& Laketa, D.. (2017). Down-regulation of NTPDase2 and ADP-sensitive P2 Purinoceptors Correlate with Severity of Symptoms during Experimental Autoimmune Encephalomyelitis.. in Frontiers in Cellular Neuroscience, 11, 333.
https://doi.org/10.3389/fncel.2017.00333
Jakovljević M, Lavrnja I, Božić I, Savić D, Bjelobaba I, Peković S, Sévigny J, Nedeljković N, Laketa D. Down-regulation of NTPDase2 and ADP-sensitive P2 Purinoceptors Correlate with Severity of Symptoms during Experimental Autoimmune Encephalomyelitis.. in Frontiers in Cellular Neuroscience. 2017;11:333.
doi:10.3389/fncel.2017.00333 .
Jakovljević, Marija, Lavrnja, Irena, Božić, Iva, Savić, Danijela, Bjelobaba, Ivana, Peković, Sanja, Sévigny, Jean, Nedeljković, Nadežda, Laketa, Danijela, "Down-regulation of NTPDase2 and ADP-sensitive P2 Purinoceptors Correlate with Severity of Symptoms during Experimental Autoimmune Encephalomyelitis." in Frontiers in Cellular Neuroscience, 11 (2017):333,
https://doi.org/10.3389/fncel.2017.00333 . .
2
21
14
19