Pajović, Milica

Link to this page

Authority KeyName Variants
orcid::0000-0001-7312-0861
  • Pajović, Milica (6)
Projects

Author's Bibliography

The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium

Pajović, Milica; Stanković Jeremić, Jovana; Jovanović Stojanov, Sofija; Gođevac, Dejan; Pešić, Milica; Podolski-Renić, Ana

(Belgrade: Serbian Association for Cancer Research, 2023)

TY  - CONF
AU  - Pajović, Milica
AU  - Stanković Jeremić, Jovana
AU  - Jovanović Stojanov, Sofija
AU  - Gođevac, Dejan
AU  - Pešić, Milica
AU  - Podolski-Renić, Ana
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6483
AB  - Background: Following the traditional Serbian use of cyclamen tubers in the treatment of the most aggressive forms of lung cancer, we performed methanolic extraction of fresh tubers of Cyclamen hederifolium to isolate and identify bioactive constituents. The triterpene saponin deglucocyclamine (SDGC) was identified as a major constituent of cyclamen extract, and its anticancer effects were studied using a panel of NCI-60 cell lines and primary cell cultures obtained from patients with non-small cell lung cancer (NSCLC). Material and Methods: The cyclamen tubers were ground, lyophilized, and extracted with methanol at room temperature with the use of an ultrasonic bath. The part of the methanol extract was further fractionated by dissolving in H2O and then washed with CH2Cl2. The water layer was extracted with n-BuOH. The butanol extract was fractionated by isocratic CC on silica gel with CHCl3−MeOH−H2O eluent. This resulted in the isolation of triterpene (SDGC, C52H84O22) which was identified using 1D and 2D NMR spectra. SDGC was tested at 10 µM against a panel of NCI-60 cancer cell lines and then over a concentration range of 0.01-100 µM using the sulforhodamine B (SRB) assay. SDGC was also tested in the concentration range of 0.01-10 µM against 5 primary patient-derived NSCLC cell cultures (2 stage IB, 2 stage IIA, and 1 stage IIB) using the MTT assay. Cell death analysis was performed in patient-derived NSCLC cells using annexin/propidium iodide staining and flow cytometry. Results: SDGC at 10 µM after 72 h significantly inhibited cell growth of all tested cancer cell lines in the NCI-60 panel. Therefore, SDGC IC50 values were evaluated across the entire NCI-60 panel and ranged from 600 nM to 1 µM. In patient-derived NSCLC cells, SDGC IC50 values were between 1.3 µM and 4.6 µM after 72 h of treatment. SDGC at 10 µM induced late apoptosis and necrosis, significantly reducing the percentage of viable cells to 40% after 48 h. At the same concentration, cisplatin was ineffective against patient-derived NSCLC cells. Conclusions: The triterpene saponin deglucocyclamine (SDGC), whose anticancer effects have not been studied before, showed promising results against NSCLC, melanoma, colon, breast, ovarian, kidney, prostate, and CNS cancer cell lines, as well as patient-derived NSCLC cells. Further more detailed studies of SDGC at the cellular and molecular level are planned.
PB  - Belgrade: Serbian Association for Cancer Research
C3  - Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
T1  - The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium
SP  - 61
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6483
ER  - 
@conference{
author = "Pajović, Milica and Stanković Jeremić, Jovana and Jovanović Stojanov, Sofija and Gođevac, Dejan and Pešić, Milica and Podolski-Renić, Ana",
year = "2023",
abstract = "Background: Following the traditional Serbian use of cyclamen tubers in the treatment of the most aggressive forms of lung cancer, we performed methanolic extraction of fresh tubers of Cyclamen hederifolium to isolate and identify bioactive constituents. The triterpene saponin deglucocyclamine (SDGC) was identified as a major constituent of cyclamen extract, and its anticancer effects were studied using a panel of NCI-60 cell lines and primary cell cultures obtained from patients with non-small cell lung cancer (NSCLC). Material and Methods: The cyclamen tubers were ground, lyophilized, and extracted with methanol at room temperature with the use of an ultrasonic bath. The part of the methanol extract was further fractionated by dissolving in H2O and then washed with CH2Cl2. The water layer was extracted with n-BuOH. The butanol extract was fractionated by isocratic CC on silica gel with CHCl3−MeOH−H2O eluent. This resulted in the isolation of triterpene (SDGC, C52H84O22) which was identified using 1D and 2D NMR spectra. SDGC was tested at 10 µM against a panel of NCI-60 cancer cell lines and then over a concentration range of 0.01-100 µM using the sulforhodamine B (SRB) assay. SDGC was also tested in the concentration range of 0.01-10 µM against 5 primary patient-derived NSCLC cell cultures (2 stage IB, 2 stage IIA, and 1 stage IIB) using the MTT assay. Cell death analysis was performed in patient-derived NSCLC cells using annexin/propidium iodide staining and flow cytometry. Results: SDGC at 10 µM after 72 h significantly inhibited cell growth of all tested cancer cell lines in the NCI-60 panel. Therefore, SDGC IC50 values were evaluated across the entire NCI-60 panel and ranged from 600 nM to 1 µM. In patient-derived NSCLC cells, SDGC IC50 values were between 1.3 µM and 4.6 µM after 72 h of treatment. SDGC at 10 µM induced late apoptosis and necrosis, significantly reducing the percentage of viable cells to 40% after 48 h. At the same concentration, cisplatin was ineffective against patient-derived NSCLC cells. Conclusions: The triterpene saponin deglucocyclamine (SDGC), whose anticancer effects have not been studied before, showed promising results against NSCLC, melanoma, colon, breast, ovarian, kidney, prostate, and CNS cancer cell lines, as well as patient-derived NSCLC cells. Further more detailed studies of SDGC at the cellular and molecular level are planned.",
publisher = "Belgrade: Serbian Association for Cancer Research",
journal = "Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia",
title = "The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium",
pages = "61",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6483"
}
Pajović, M., Stanković Jeremić, J., Jovanović Stojanov, S., Gođevac, D., Pešić, M.,& Podolski-Renić, A.. (2023). The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
Belgrade: Serbian Association for Cancer Research., 61.
https://hdl.handle.net/21.15107/rcub_ibiss_6483
Pajović M, Stanković Jeremić J, Jovanović Stojanov S, Gođevac D, Pešić M, Podolski-Renić A. The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia. 2023;:61.
https://hdl.handle.net/21.15107/rcub_ibiss_6483 .
Pajović, Milica, Stanković Jeremić, Jovana, Jovanović Stojanov, Sofija, Gođevac, Dejan, Pešić, Milica, Podolski-Renić, Ana, "The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium" in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia (2023):61,
https://hdl.handle.net/21.15107/rcub_ibiss_6483 .

Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells

Dinić, Jelena; Podolski-Renić, Ana; Dragoj, Miodrag; Jovanović Stojanov, Sofija; Stepanović, Ana; Lupšić, Ema; Pajović, Milica; Jovanović, Mirna; Petrović Rodić, Dušica; Marić, Dragana; Ercegovac, Maja; Pešić, Milica

(Basel: MDPI, 2023)

TY  - JOUR
AU  - Dinić, Jelena
AU  - Podolski-Renić, Ana
AU  - Dragoj, Miodrag
AU  - Jovanović Stojanov, Sofija
AU  - Stepanović, Ana
AU  - Lupšić, Ema
AU  - Pajović, Milica
AU  - Jovanović, Mirna
AU  - Petrović Rodić, Dušica
AU  - Marić, Dragana
AU  - Ercegovac, Maja
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6448
AB  - Lung cancer remains the leading cause of cancer death globally, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Multidrug resistance (MDR), often caused by ATP-binding cassette (ABC) transporters, represents a significant obstacle in the treatment of NSCLC. While genetic profiling has an important role in personalized therapy, functional assays that measure cellular responses to drugs are gaining in importance. We developed an automated microplate-based immunofluorescence assay for the evaluation of MDR markers ABCB1, ABCC1, and ABCG2 in cells obtained from NSCLC patients through high-content imaging and image analysis, as part of a functional diagnostic approach. This assay effectively discriminated cancer from non-cancer cells within mixed cultures, which is vital for accurate assessment of changes in MDR marker expression in different cell populations in response to anticancer drugs. Validation was performed using established drug-sensitive (NCI-H460) and drug-resistant (NCI-H460/R) NSCLC cell lines, demonstrating the assay’s capacity to distinguish and evaluate different MDR profiles. The obtained results revealed wide-ranging effects of various chemotherapeutic agents on MDR marker expression in different patient-derived NSCLC cultures, emphasizing the need for MDR diagnostics in NSCLC. In addition to being a valuable tool for assessing drug effects on MDR markers in different cell populations, the assay can complement genetic profiling to optimize treatment. Further assay adaptations may extend its application to other cancer types, improving treatment efficacy while minimizing the development of resistance.
PB  - Basel: MDPI
T2  - Diagnostics
T1  - Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells
IS  - 24
VL  - 13
DO  - 10.3390/diagnostics13243617
SP  - 3617
ER  - 
@article{
author = "Dinić, Jelena and Podolski-Renić, Ana and Dragoj, Miodrag and Jovanović Stojanov, Sofija and Stepanović, Ana and Lupšić, Ema and Pajović, Milica and Jovanović, Mirna and Petrović Rodić, Dušica and Marić, Dragana and Ercegovac, Maja and Pešić, Milica",
year = "2023",
abstract = "Lung cancer remains the leading cause of cancer death globally, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Multidrug resistance (MDR), often caused by ATP-binding cassette (ABC) transporters, represents a significant obstacle in the treatment of NSCLC. While genetic profiling has an important role in personalized therapy, functional assays that measure cellular responses to drugs are gaining in importance. We developed an automated microplate-based immunofluorescence assay for the evaluation of MDR markers ABCB1, ABCC1, and ABCG2 in cells obtained from NSCLC patients through high-content imaging and image analysis, as part of a functional diagnostic approach. This assay effectively discriminated cancer from non-cancer cells within mixed cultures, which is vital for accurate assessment of changes in MDR marker expression in different cell populations in response to anticancer drugs. Validation was performed using established drug-sensitive (NCI-H460) and drug-resistant (NCI-H460/R) NSCLC cell lines, demonstrating the assay’s capacity to distinguish and evaluate different MDR profiles. The obtained results revealed wide-ranging effects of various chemotherapeutic agents on MDR marker expression in different patient-derived NSCLC cultures, emphasizing the need for MDR diagnostics in NSCLC. In addition to being a valuable tool for assessing drug effects on MDR markers in different cell populations, the assay can complement genetic profiling to optimize treatment. Further assay adaptations may extend its application to other cancer types, improving treatment efficacy while minimizing the development of resistance.",
publisher = "Basel: MDPI",
journal = "Diagnostics",
title = "Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells",
number = "24",
volume = "13",
doi = "10.3390/diagnostics13243617",
pages = "3617"
}
Dinić, J., Podolski-Renić, A., Dragoj, M., Jovanović Stojanov, S., Stepanović, A., Lupšić, E., Pajović, M., Jovanović, M., Petrović Rodić, D., Marić, D., Ercegovac, M.,& Pešić, M.. (2023). Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells. in Diagnostics
Basel: MDPI., 13(24), 3617.
https://doi.org/10.3390/diagnostics13243617
Dinić J, Podolski-Renić A, Dragoj M, Jovanović Stojanov S, Stepanović A, Lupšić E, Pajović M, Jovanović M, Petrović Rodić D, Marić D, Ercegovac M, Pešić M. Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells. in Diagnostics. 2023;13(24):3617.
doi:10.3390/diagnostics13243617 .
Dinić, Jelena, Podolski-Renić, Ana, Dragoj, Miodrag, Jovanović Stojanov, Sofija, Stepanović, Ana, Lupšić, Ema, Pajović, Milica, Jovanović, Mirna, Petrović Rodić, Dušica, Marić, Dragana, Ercegovac, Maja, Pešić, Milica, "Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells" in Diagnostics, 13, no. 24 (2023):3617,
https://doi.org/10.3390/diagnostics13243617 . .
1

High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment

Jovanović Stojanov, Sofija; Podolski-Renić, Ana; Dinić, Jelena; Dragoj, Miodrag; Jovanović, Mirna; Stepanović, Ana; Lupšić, Ema; Pajović, Milica; Petrović Rodić, Dušica; Marić, Dragana; Ercegovac, Maja; Pešić, Milica

(Belgrade: Serbian Association for Cancer Research Belgrade, Serbia, 2023)

TY  - CONF
AU  - Jovanović Stojanov, Sofija
AU  - Podolski-Renić, Ana
AU  - Dinić, Jelena
AU  - Dragoj, Miodrag
AU  - Jovanović, Mirna
AU  - Stepanović, Ana
AU  - Lupšić, Ema
AU  - Pajović, Milica
AU  - Petrović Rodić, Dušica
AU  - Marić, Dragana
AU  - Ercegovac, Maja
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6449
AB  - Introduction

Cancer remains one of the leading causes of death globally, despite significant advancements in cancer treatment over the past decades. A major challenge in cancer therapy is multidrug resistance (MDR), which is responsible for over 90% of deaths in cancer patients receiving both traditional chemotherapeutics and novel targeted drugs. MDR arises from various mechanisms, including elevated metabolism of foreign substances (xenobiotics), enhanced drug efflux from cells, increased DNA repair capacity, and genetic factors such as gene mutations, amplifications, and epigenetic alterations.1 It is categorized into two types: primary resistance, which exists before initiating therapy and acquired resistance, which develops after the initial treatment. The incidence of primary resistance to cancer treatment can be remarkably high (up to 60%) in certain cancer types.2 Furthermore, the majority of cancer patients are likely to develop resistance at some point during treatment.
Although, the various underlying mechanism for drug resistance development in tumors have been highlighted in the past years, enhanced drug efflux, caused by increased expression of ATP-binding cassette (ABC) membrane transporters, is one of the major contributors to MDR. Among the known ABC transporters, three members, P-glycoprotein (P-gp, encoded by the MDR1 gene), Multidrug Resistance-Associated Protein 1 (MRP1), and Breast Cancer Resistance Protein - BCRP or Placenta ABC Protein - ABC-P), have been linked to chemoresistance to various drugs. P-gp and BCRP regulate various chemical compounds' distribution, absorption, and excretion. However, their overexpression can interfere with drug administration, reducing drug bioavailability and intracellular concentration.3 There is a significant correlation between increased expression of P-gp in cancer cells and enhanced resistance to drugs like paclitaxel, etoposide, DOX, and vinblastine. Overexpression of P-gp has been observed in approximately 50% of all human cancers. While in some tumor types, such as lung, liver, kidney, rectum, and colon, increased P-gp expression has been observed before chemotherapy treatment, in others, such as acute lymphoblastic leukemia and acute myeloid leukemia, it has been noticed after exposure to anticancer agents.4 Overexpression of P-gp and BCRP has been associated with poor clinical response and MDR in patients. Therefore, the pharmacological inhibition of the efflux function of these transporters was pursued as a strategy to overcome resistance to anticancer drugs in the clinic. However, despite showing high efficacy in preclinical studies, none of the P-gp inhibitors have been approved yet by the U.S. Food and Drug Administration (FDA) for clinical use in cancer treatment.5
Taking into account all the above mentioned it is clear that screening and assessment of MDR markers in patient’s cancer cells could play an important role in personalized treatment approaches. Expressing MDR markers in cancer cells could predict a patient's response to specific drugs or drug classes, allowing the selection of the most effective treatment regimen and avoiding using drugs that are likely ineffective due to resistance. Moreover, the presence of MDR markers associated with resistance to multiple drugs could guide the design of personalized treatment regimens with a combination of drugs that have a higher chance of overcoming the patient's specific drug resistance profile. Monitoring the expression level of MDR markers during the course of treatment could provide valuable insights into the development of drug resistance, and would allow healthcare professionals to adjust the treatment plan if drug resistance emerges, ensuring that the patient receives the most effective therapy.
Our team established a promising method for high-throughput screening for MDR markers in non-small cell lung carcinoma (NSCLC) patient-derived cells, which implies pharmacological screening and an ex vivo experimental setting. It enables gaining valuable insights into patient characteristics and drug responses that may not be apparent through conventional sequencing or clinical trials. This strategy has the potential to improve personalized cancer treatment approaches, offering patients more effective and tailored therapies based on their individual characteristics and drug responses.

Methodology

Patient-derived NSCLC cell cultures 
Samples from NSCLC patients are collected from the Thoracic Surgery Clinic at the Clinical Center of Serbia. The histological grade is determined by histopathological analysis of the surgical specimen. Collected NSCLC samples are used to establish patient-derived NSCLC cell cultures comprising cancer and stromal cells (mainly fibroblasts). It is well known that the sensitivity of cancer cells depends on their interaction with the microenvironment including neighboring cells.6 The primary cultures obtained from the samples are grown for 1-2 weeks prior to drug testing.

Fluorescence immunoassay for high-throughput identification of cancers cells and MDR markers in NSCLC patient-derived cell cultures
The fluorescence immunoassay utilizes antibodies against CK8 and CK18, which are expressed in nearly all carcinomas of epithelial origin, to identify epithelial cancer cells. Co-staining of CK8/18 with Hoechst 33342 allows the identification and quantification of two types of cells: CK8/18-negative (non-cancer cells) and CK8/18-positive (cancer cells). This immunoassay is also used to identify and quantify changes in the expression of MDR markers ABCB1, ABCC1, and ABCG2 both in cancer and non-cancer cells in primary NSCLC cultures that may occur during chemotherapy and tyrosine kinase inhibitors (TKIs) treatment.7 Co-staining of ABCB1, ABCC1, and ABCG2 with CK8/18 and Hoechst 33342 enables the identification of four types of cells in NSCLC primary cell cultures: drug-sensitive non-cancer cells, MDR non-cancer cells, drug-sensitive cancer cells, and MDR cancer cells.
For validation of the immunoassay patient-derived cells are seeded in 384 well-plates and treated with 5 different concentrations of 8 chemotherapeutics known to induce overexpression of MDR markers (cisplatin, carboplatin, paclitaxel, docetaxel, gemcitabine, vinorelbine, etoposide, and pemetrexed), allowing the ex vivo evaluation of NSCLC MDR profile. Validated immunoassay is further used to evaluate the expression of MDR markers ABCB1, ABCC1, and ABCG2 (MDR profile) in patient-derived cell cultures after treatment with a panel of 10 TKIs (erlotinib, gefitinib, afatinib, osimertinib crizotinib, alectinib, ceritinib, nintedanib, dabrafenib, and trametinib), allowing evaluation of MDR profile in both cancer and stromal cells. The sensitivity of cancer and stromal cells for each individual NSCLC patient to a particular TKI is assessed using a discriminative immunoassay employing CK8/18 antibodies cocktail.
Whole Exome Sequencing (WES)
	Paired patient samples (normal and tumor) were subjected to a DNA isolation procedure using Qiagen genomic DNA extraction kit, recommended for NGS applications. Isolated DNA samples underwent WES analyses by Novogene Company. Bioinformatics and statistics tools were employed to define clinically relevant gene alterations in MDR markers ABCB1, ABCC1, and ABCG2.

Results


In order to understand how NSCLC patient cells respond to chemotherapy and targeted therapy, ex vivo testing was performed. The maximum concentration of drugs in human plasma that the patient is exposed to during therapy (Cmax) was used as an upper limit for drug concentration during testing, with four lower concentrations also used. The results showed that patient-derived cells display individual differences in sensitivity to both chemo and targeted therapeutics. IC50 values, which indicate sensitivity, fell within the concentration range for most chemotherapeutics. Only some chemotherapeutics (cisplatin, etoposide, docetaxel, gemcitabine, and pemetrexed) showed selectivity towards cancer cells with lower IC50 values in cancer than in stromal cells. Among TKIs, only erlotinib was efficient with IC50 below Cmax, showing selectivity towards cancer cells in all investigated patient-derived cell cultures. A number of chemotherapeutics increased the expression of ABCB1, ABCC1, and ABCG2, while TKIs afatinib, alectinib, ceritinib, osimertinib, and trametinib did not affect these transporters. Some TKIs increased the expression of ABC transporters, with nintedanib showing the potential to select cancer cells with higher MDR marker expression. WES showed significant ABCC1 gene instability, while ABCB1 had many SNPs with clinical relevance for drug response. ABCG2 had the lowest number of SNPs, but intron deletions were still identified. However, the clinical significance of these changes is currently unknown.

Conclusion

Screening for multidrug-resistance markers through a high-throughput process provides valuable information about how a patient will respond to therapy. This process can identify if the MDR phenotype is already present or if it can be induced with targeted or chemotherapy. Based on this information, it can provide recommendations for a patient's mono- and combined therapy. This methodology has the potential to greatly impact cancer treatment strategies and improve patient outcomes by tailoring therapies to individual patient profiles. Ultimately, this will benefit a wider range of patients with non-small cell lung carcinoma and other cancers, as it leads to more precise and targeted treatment selections.


References
1.	Bukowski, K., Kciuk, M., & Kontek, R. (2020). Mechanisms of Multidrug Resistance in Cancer Chemotherapy. International Journal of Molecular Sciences, 21(9). 
2.	Sharma, P., Hu-Lieskovan, S., Wargo, J. A., & Ribas, A. (2017). Primary, Adaptive and Acquired Resistance to Cancer Immunotherapy. Cell, 168(4), 707. 
3.	Wang, J. Q., Wu, Z. X., Yang, Y., Teng, Q. X., Li, Y. D., Lei, Z. N., Jani, K. A., Kaushal, N., & Chen, Z. S. (2021). ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. Journal of Evidence-Based Medicine, 14(3), 232–256. 
4.	Wang, X., Zhang, H., & Chen, X. (n.d.). Review Open Access Cancer Drug Resistance Drug resistance and combating drug resistance in cancer.
5.	Nanayakkara, A. K., Follit, C. A., Chen, G., Williams, N. S., Vogel, P. D., & Wise, J. G. (n.d.). Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells OPEN. 
6.	 Sazeides, C., & Le, A. (2021). Metabolic Relationship Between Cancer-Associated Fibroblasts and Cancer Cells. Advances in Experimental Medicine and Biology, 1311, 189–204. 
7.	Beretta, G. L., Cassinelli, G., Pennati, M., Zuco, V., & Gatti, L. (2017). Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. European Journal of Medicinal Chemistry, 142, 271–289.
PB  - Belgrade: Serbian Association for Cancer Research Belgrade, Serbia
C3  - Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
T1  - High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment
SP  - 37
EP  - 39
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6449
ER  - 
@conference{
author = "Jovanović Stojanov, Sofija and Podolski-Renić, Ana and Dinić, Jelena and Dragoj, Miodrag and Jovanović, Mirna and Stepanović, Ana and Lupšić, Ema and Pajović, Milica and Petrović Rodić, Dušica and Marić, Dragana and Ercegovac, Maja and Pešić, Milica",
year = "2023",
abstract = "Introduction

Cancer remains one of the leading causes of death globally, despite significant advancements in cancer treatment over the past decades. A major challenge in cancer therapy is multidrug resistance (MDR), which is responsible for over 90% of deaths in cancer patients receiving both traditional chemotherapeutics and novel targeted drugs. MDR arises from various mechanisms, including elevated metabolism of foreign substances (xenobiotics), enhanced drug efflux from cells, increased DNA repair capacity, and genetic factors such as gene mutations, amplifications, and epigenetic alterations.1 It is categorized into two types: primary resistance, which exists before initiating therapy and acquired resistance, which develops after the initial treatment. The incidence of primary resistance to cancer treatment can be remarkably high (up to 60%) in certain cancer types.2 Furthermore, the majority of cancer patients are likely to develop resistance at some point during treatment.
Although, the various underlying mechanism for drug resistance development in tumors have been highlighted in the past years, enhanced drug efflux, caused by increased expression of ATP-binding cassette (ABC) membrane transporters, is one of the major contributors to MDR. Among the known ABC transporters, three members, P-glycoprotein (P-gp, encoded by the MDR1 gene), Multidrug Resistance-Associated Protein 1 (MRP1), and Breast Cancer Resistance Protein - BCRP or Placenta ABC Protein - ABC-P), have been linked to chemoresistance to various drugs. P-gp and BCRP regulate various chemical compounds' distribution, absorption, and excretion. However, their overexpression can interfere with drug administration, reducing drug bioavailability and intracellular concentration.3 There is a significant correlation between increased expression of P-gp in cancer cells and enhanced resistance to drugs like paclitaxel, etoposide, DOX, and vinblastine. Overexpression of P-gp has been observed in approximately 50% of all human cancers. While in some tumor types, such as lung, liver, kidney, rectum, and colon, increased P-gp expression has been observed before chemotherapy treatment, in others, such as acute lymphoblastic leukemia and acute myeloid leukemia, it has been noticed after exposure to anticancer agents.4 Overexpression of P-gp and BCRP has been associated with poor clinical response and MDR in patients. Therefore, the pharmacological inhibition of the efflux function of these transporters was pursued as a strategy to overcome resistance to anticancer drugs in the clinic. However, despite showing high efficacy in preclinical studies, none of the P-gp inhibitors have been approved yet by the U.S. Food and Drug Administration (FDA) for clinical use in cancer treatment.5
Taking into account all the above mentioned it is clear that screening and assessment of MDR markers in patient’s cancer cells could play an important role in personalized treatment approaches. Expressing MDR markers in cancer cells could predict a patient's response to specific drugs or drug classes, allowing the selection of the most effective treatment regimen and avoiding using drugs that are likely ineffective due to resistance. Moreover, the presence of MDR markers associated with resistance to multiple drugs could guide the design of personalized treatment regimens with a combination of drugs that have a higher chance of overcoming the patient's specific drug resistance profile. Monitoring the expression level of MDR markers during the course of treatment could provide valuable insights into the development of drug resistance, and would allow healthcare professionals to adjust the treatment plan if drug resistance emerges, ensuring that the patient receives the most effective therapy.
Our team established a promising method for high-throughput screening for MDR markers in non-small cell lung carcinoma (NSCLC) patient-derived cells, which implies pharmacological screening and an ex vivo experimental setting. It enables gaining valuable insights into patient characteristics and drug responses that may not be apparent through conventional sequencing or clinical trials. This strategy has the potential to improve personalized cancer treatment approaches, offering patients more effective and tailored therapies based on their individual characteristics and drug responses.

Methodology

Patient-derived NSCLC cell cultures 
Samples from NSCLC patients are collected from the Thoracic Surgery Clinic at the Clinical Center of Serbia. The histological grade is determined by histopathological analysis of the surgical specimen. Collected NSCLC samples are used to establish patient-derived NSCLC cell cultures comprising cancer and stromal cells (mainly fibroblasts). It is well known that the sensitivity of cancer cells depends on their interaction with the microenvironment including neighboring cells.6 The primary cultures obtained from the samples are grown for 1-2 weeks prior to drug testing.

Fluorescence immunoassay for high-throughput identification of cancers cells and MDR markers in NSCLC patient-derived cell cultures
The fluorescence immunoassay utilizes antibodies against CK8 and CK18, which are expressed in nearly all carcinomas of epithelial origin, to identify epithelial cancer cells. Co-staining of CK8/18 with Hoechst 33342 allows the identification and quantification of two types of cells: CK8/18-negative (non-cancer cells) and CK8/18-positive (cancer cells). This immunoassay is also used to identify and quantify changes in the expression of MDR markers ABCB1, ABCC1, and ABCG2 both in cancer and non-cancer cells in primary NSCLC cultures that may occur during chemotherapy and tyrosine kinase inhibitors (TKIs) treatment.7 Co-staining of ABCB1, ABCC1, and ABCG2 with CK8/18 and Hoechst 33342 enables the identification of four types of cells in NSCLC primary cell cultures: drug-sensitive non-cancer cells, MDR non-cancer cells, drug-sensitive cancer cells, and MDR cancer cells.
For validation of the immunoassay patient-derived cells are seeded in 384 well-plates and treated with 5 different concentrations of 8 chemotherapeutics known to induce overexpression of MDR markers (cisplatin, carboplatin, paclitaxel, docetaxel, gemcitabine, vinorelbine, etoposide, and pemetrexed), allowing the ex vivo evaluation of NSCLC MDR profile. Validated immunoassay is further used to evaluate the expression of MDR markers ABCB1, ABCC1, and ABCG2 (MDR profile) in patient-derived cell cultures after treatment with a panel of 10 TKIs (erlotinib, gefitinib, afatinib, osimertinib crizotinib, alectinib, ceritinib, nintedanib, dabrafenib, and trametinib), allowing evaluation of MDR profile in both cancer and stromal cells. The sensitivity of cancer and stromal cells for each individual NSCLC patient to a particular TKI is assessed using a discriminative immunoassay employing CK8/18 antibodies cocktail.
Whole Exome Sequencing (WES)
	Paired patient samples (normal and tumor) were subjected to a DNA isolation procedure using Qiagen genomic DNA extraction kit, recommended for NGS applications. Isolated DNA samples underwent WES analyses by Novogene Company. Bioinformatics and statistics tools were employed to define clinically relevant gene alterations in MDR markers ABCB1, ABCC1, and ABCG2.

Results


In order to understand how NSCLC patient cells respond to chemotherapy and targeted therapy, ex vivo testing was performed. The maximum concentration of drugs in human plasma that the patient is exposed to during therapy (Cmax) was used as an upper limit for drug concentration during testing, with four lower concentrations also used. The results showed that patient-derived cells display individual differences in sensitivity to both chemo and targeted therapeutics. IC50 values, which indicate sensitivity, fell within the concentration range for most chemotherapeutics. Only some chemotherapeutics (cisplatin, etoposide, docetaxel, gemcitabine, and pemetrexed) showed selectivity towards cancer cells with lower IC50 values in cancer than in stromal cells. Among TKIs, only erlotinib was efficient with IC50 below Cmax, showing selectivity towards cancer cells in all investigated patient-derived cell cultures. A number of chemotherapeutics increased the expression of ABCB1, ABCC1, and ABCG2, while TKIs afatinib, alectinib, ceritinib, osimertinib, and trametinib did not affect these transporters. Some TKIs increased the expression of ABC transporters, with nintedanib showing the potential to select cancer cells with higher MDR marker expression. WES showed significant ABCC1 gene instability, while ABCB1 had many SNPs with clinical relevance for drug response. ABCG2 had the lowest number of SNPs, but intron deletions were still identified. However, the clinical significance of these changes is currently unknown.

Conclusion

Screening for multidrug-resistance markers through a high-throughput process provides valuable information about how a patient will respond to therapy. This process can identify if the MDR phenotype is already present or if it can be induced with targeted or chemotherapy. Based on this information, it can provide recommendations for a patient's mono- and combined therapy. This methodology has the potential to greatly impact cancer treatment strategies and improve patient outcomes by tailoring therapies to individual patient profiles. Ultimately, this will benefit a wider range of patients with non-small cell lung carcinoma and other cancers, as it leads to more precise and targeted treatment selections.


References
1.	Bukowski, K., Kciuk, M., & Kontek, R. (2020). Mechanisms of Multidrug Resistance in Cancer Chemotherapy. International Journal of Molecular Sciences, 21(9). 
2.	Sharma, P., Hu-Lieskovan, S., Wargo, J. A., & Ribas, A. (2017). Primary, Adaptive and Acquired Resistance to Cancer Immunotherapy. Cell, 168(4), 707. 
3.	Wang, J. Q., Wu, Z. X., Yang, Y., Teng, Q. X., Li, Y. D., Lei, Z. N., Jani, K. A., Kaushal, N., & Chen, Z. S. (2021). ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. Journal of Evidence-Based Medicine, 14(3), 232–256. 
4.	Wang, X., Zhang, H., & Chen, X. (n.d.). Review Open Access Cancer Drug Resistance Drug resistance and combating drug resistance in cancer.
5.	Nanayakkara, A. K., Follit, C. A., Chen, G., Williams, N. S., Vogel, P. D., & Wise, J. G. (n.d.). Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells OPEN. 
6.	 Sazeides, C., & Le, A. (2021). Metabolic Relationship Between Cancer-Associated Fibroblasts and Cancer Cells. Advances in Experimental Medicine and Biology, 1311, 189–204. 
7.	Beretta, G. L., Cassinelli, G., Pennati, M., Zuco, V., & Gatti, L. (2017). Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. European Journal of Medicinal Chemistry, 142, 271–289.",
publisher = "Belgrade: Serbian Association for Cancer Research Belgrade, Serbia",
journal = "Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia",
title = "High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment",
pages = "37-39",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6449"
}
Jovanović Stojanov, S., Podolski-Renić, A., Dinić, J., Dragoj, M., Jovanović, M., Stepanović, A., Lupšić, E., Pajović, M., Petrović Rodić, D., Marić, D., Ercegovac, M.,& Pešić, M.. (2023). High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
Belgrade: Serbian Association for Cancer Research Belgrade, Serbia., 37-39.
https://hdl.handle.net/21.15107/rcub_ibiss_6449
Jovanović Stojanov S, Podolski-Renić A, Dinić J, Dragoj M, Jovanović M, Stepanović A, Lupšić E, Pajović M, Petrović Rodić D, Marić D, Ercegovac M, Pešić M. High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia. 2023;:37-39.
https://hdl.handle.net/21.15107/rcub_ibiss_6449 .
Jovanović Stojanov, Sofija, Podolski-Renić, Ana, Dinić, Jelena, Dragoj, Miodrag, Jovanović, Mirna, Stepanović, Ana, Lupšić, Ema, Pajović, Milica, Petrović Rodić, Dušica, Marić, Dragana, Ercegovac, Maja, Pešić, Milica, "High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment" in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia (2023):37-39,
https://hdl.handle.net/21.15107/rcub_ibiss_6449 .

Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy

Dinić, Jelena; Podolski-Renić, Ana; Dragoj, Miodrag; Jovanović Stojanov, Sofija; Stepanović, Ana; Lupšić, Ema; Pajović, Milica; Petrović Rodić, Dušica; Marić, Dragana; Ercegovac, Maja; Pešić, Milica

(Elsevier Inc, 2023)

TY  - CONF
AU  - Dinić, Jelena
AU  - Podolski-Renić, Ana
AU  - Dragoj, Miodrag
AU  - Jovanović Stojanov, Sofija
AU  - Stepanović, Ana
AU  - Lupšić, Ema
AU  - Pajović, Milica
AU  - Petrović Rodić, Dušica
AU  - Marić, Dragana
AU  - Ercegovac, Maja
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6380
AB  - Background: Multidrug resistance (MDR) hampers tyrosine kinase inhibitor (TKI) efficacy in non-small cell lung carcinoma (NSCLC). ABC transporters ABCB1, ABCC1, and ABCG2 trigger MDR by effluxing drugs from cancer cells. We studied erlotinib and nintedanib effects in patient-derived NSCLC cultures, MDR phenotype impact, and genetic alterations influencing drug response.
Methods: ABC transporter expression in 10 NSCLC patient-derived cell cultures was assessed after TKI treatment via immunofluorescence assay which enables discrimination between cancer and stromal cells. Erlotinib (1 µM – 4 µM) and nintedanib (2.5 µM – 20 µM) were used in clinically relevant concentrations. Whole exome sequencing was employed to analyze genetic alterations in NSCLC samples. 
Results: Erlotinib selectively inhibited cancer cell growth (IC50: 0.25 µM – 3.2 µM). It increased ABCC1 expression in 4/10 cultures and ABCB1/ABCG2 in 2/10 cultures. Erlotinib induced MDR markers expression at all concentrations. Nintedanib stimulated cancer cell growth at lower concentrations (˂10 µM) and caused 90% cell death at higher concentrations (˃15 µM), enriching the culture with cancer cells with high expression of ABCB1, ABCC1, and ABCG2. TKIs had no impact on MDR marker expression in stromal cells. Genetic alterations without clinical relevance for NSCLC were found in EGFR, ALK, ROS1, RET, and BRAF. L858R mutation in EGFR, indicated for erlotinib treatment, was detected in one patient, although all patients were responsive to erlotinib. Genetic alterations related to drug response were found in ABCB1 (7/10 patients) and ABCG2 (1/10 patients). 
Conclusions: The employed functional diagnostics approach can effectively assess how erlotinib and nintedanib influence the MDR phenotype for individual patients. The ex-vivo screening system utilized in this study identifies the sensitivity of cancer and stromal cells and the correlation between response and their MDR profile, as well as the dependence of drug response on genetic alterations. This approach holds great promise for advancing personalized treatment strategies in NSCLC.
PB  - Elsevier Inc
C3  - Abstract book: Molecular Analysis for Precision Oncology Congress 2023; 2023 Oct 4-6; Paris, France
T1  - Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy
DO  - 10.1016/j.esmoop.2023.101680
SP  - 12
EP  - 12
ER  - 
@conference{
author = "Dinić, Jelena and Podolski-Renić, Ana and Dragoj, Miodrag and Jovanović Stojanov, Sofija and Stepanović, Ana and Lupšić, Ema and Pajović, Milica and Petrović Rodić, Dušica and Marić, Dragana and Ercegovac, Maja and Pešić, Milica",
year = "2023",
abstract = "Background: Multidrug resistance (MDR) hampers tyrosine kinase inhibitor (TKI) efficacy in non-small cell lung carcinoma (NSCLC). ABC transporters ABCB1, ABCC1, and ABCG2 trigger MDR by effluxing drugs from cancer cells. We studied erlotinib and nintedanib effects in patient-derived NSCLC cultures, MDR phenotype impact, and genetic alterations influencing drug response.
Methods: ABC transporter expression in 10 NSCLC patient-derived cell cultures was assessed after TKI treatment via immunofluorescence assay which enables discrimination between cancer and stromal cells. Erlotinib (1 µM – 4 µM) and nintedanib (2.5 µM – 20 µM) were used in clinically relevant concentrations. Whole exome sequencing was employed to analyze genetic alterations in NSCLC samples. 
Results: Erlotinib selectively inhibited cancer cell growth (IC50: 0.25 µM – 3.2 µM). It increased ABCC1 expression in 4/10 cultures and ABCB1/ABCG2 in 2/10 cultures. Erlotinib induced MDR markers expression at all concentrations. Nintedanib stimulated cancer cell growth at lower concentrations (˂10 µM) and caused 90% cell death at higher concentrations (˃15 µM), enriching the culture with cancer cells with high expression of ABCB1, ABCC1, and ABCG2. TKIs had no impact on MDR marker expression in stromal cells. Genetic alterations without clinical relevance for NSCLC were found in EGFR, ALK, ROS1, RET, and BRAF. L858R mutation in EGFR, indicated for erlotinib treatment, was detected in one patient, although all patients were responsive to erlotinib. Genetic alterations related to drug response were found in ABCB1 (7/10 patients) and ABCG2 (1/10 patients). 
Conclusions: The employed functional diagnostics approach can effectively assess how erlotinib and nintedanib influence the MDR phenotype for individual patients. The ex-vivo screening system utilized in this study identifies the sensitivity of cancer and stromal cells and the correlation between response and their MDR profile, as well as the dependence of drug response on genetic alterations. This approach holds great promise for advancing personalized treatment strategies in NSCLC.",
publisher = "Elsevier Inc",
journal = "Abstract book: Molecular Analysis for Precision Oncology Congress 2023; 2023 Oct 4-6; Paris, France",
title = "Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy",
doi = "10.1016/j.esmoop.2023.101680",
pages = "12-12"
}
Dinić, J., Podolski-Renić, A., Dragoj, M., Jovanović Stojanov, S., Stepanović, A., Lupšić, E., Pajović, M., Petrović Rodić, D., Marić, D., Ercegovac, M.,& Pešić, M.. (2023). Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy. in Abstract book: Molecular Analysis for Precision Oncology Congress 2023; 2023 Oct 4-6; Paris, France
Elsevier Inc., 12-12.
https://doi.org/10.1016/j.esmoop.2023.101680
Dinić J, Podolski-Renić A, Dragoj M, Jovanović Stojanov S, Stepanović A, Lupšić E, Pajović M, Petrović Rodić D, Marić D, Ercegovac M, Pešić M. Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy. in Abstract book: Molecular Analysis for Precision Oncology Congress 2023; 2023 Oct 4-6; Paris, France. 2023;:12-12.
doi:10.1016/j.esmoop.2023.101680 .
Dinić, Jelena, Podolski-Renić, Ana, Dragoj, Miodrag, Jovanović Stojanov, Sofija, Stepanović, Ana, Lupšić, Ema, Pajović, Milica, Petrović Rodić, Dušica, Marić, Dragana, Ercegovac, Maja, Pešić, Milica, "Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy" in Abstract book: Molecular Analysis for Precision Oncology Congress 2023; 2023 Oct 4-6; Paris, France (2023):12-12,
https://doi.org/10.1016/j.esmoop.2023.101680 . .

Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition

Jovanović Stojanov, Sofija; Ntungwe, Epole N.; Dinić, Jelena; Podolski-Renić, Ana; Pajović, Milica; Rijo, Patrícia; Pešić, Milica

(Basel: MDPI, 2023)

TY  - JOUR
AU  - Jovanović Stojanov, Sofija
AU  - Ntungwe, Epole N.
AU  - Dinić, Jelena
AU  - Podolski-Renić, Ana
AU  - Pajović, Milica
AU  - Rijo, Patrícia
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6027
AB  - Multidrug resistance in cancer is often mediated by P-glycoprotein. Natural compounds
have been suggested as a fourth generation of P-glycoprotein inhibitors. Coleon U, isolated from
Plectranthus mutabilis Codd., was reported to modulate P-glycoprotein activity but the underlying
mechanism has not yet been revealed. Therefore, the effects of Coleon U on cell viability, proliferation, and cell death induction were studied in a non-small-cell lung carcinoma model comprising
sensitive and multidrug-resistant cells with P-glycoprotein overexpression. P-glycoprotein activity
and mitochondrial membrane potential were assessed by flow cytometry upon Coleon U, sodiumorthovanadate (an ATPase inhibitor), and verapamil (an ATPase stimulator) treatments. SwissADME
was used to identify the pharmacokinetic properties of Coleon U, while P-glycoprotein expression
was studied by immunofluorescence. Our results showed that Coleon U is not a P-glycoprotein
substrate and is equally efficient in sensitive and multidrug-resistant cancer cells. A decrease in
P-glycoprotein activity observed with Coleon U and verapamil after 72 h is antagonized in combination with sodium-orthovanadate. Coleon U induced a pronounced effect on mitochondrial membrane
depolarization and showed a tendency to decrease P-glycoprotein expression. In conclusion, Coleon
U-delayed effect on the decrease in P-glycoprotein activity is due to P-glycoprotein’s functioning
dependence on ATP production in mitochondria.
PB  - Basel: MDPI
T2  - Pharmaceutics
T1  - Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition
IS  - 7
VL  - 15
DO  - 10.3390/pharmaceutics15071942
SP  - 1942
ER  - 
@article{
author = "Jovanović Stojanov, Sofija and Ntungwe, Epole N. and Dinić, Jelena and Podolski-Renić, Ana and Pajović, Milica and Rijo, Patrícia and Pešić, Milica",
year = "2023",
abstract = "Multidrug resistance in cancer is often mediated by P-glycoprotein. Natural compounds
have been suggested as a fourth generation of P-glycoprotein inhibitors. Coleon U, isolated from
Plectranthus mutabilis Codd., was reported to modulate P-glycoprotein activity but the underlying
mechanism has not yet been revealed. Therefore, the effects of Coleon U on cell viability, proliferation, and cell death induction were studied in a non-small-cell lung carcinoma model comprising
sensitive and multidrug-resistant cells with P-glycoprotein overexpression. P-glycoprotein activity
and mitochondrial membrane potential were assessed by flow cytometry upon Coleon U, sodiumorthovanadate (an ATPase inhibitor), and verapamil (an ATPase stimulator) treatments. SwissADME
was used to identify the pharmacokinetic properties of Coleon U, while P-glycoprotein expression
was studied by immunofluorescence. Our results showed that Coleon U is not a P-glycoprotein
substrate and is equally efficient in sensitive and multidrug-resistant cancer cells. A decrease in
P-glycoprotein activity observed with Coleon U and verapamil after 72 h is antagonized in combination with sodium-orthovanadate. Coleon U induced a pronounced effect on mitochondrial membrane
depolarization and showed a tendency to decrease P-glycoprotein expression. In conclusion, Coleon
U-delayed effect on the decrease in P-glycoprotein activity is due to P-glycoprotein’s functioning
dependence on ATP production in mitochondria.",
publisher = "Basel: MDPI",
journal = "Pharmaceutics",
title = "Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition",
number = "7",
volume = "15",
doi = "10.3390/pharmaceutics15071942",
pages = "1942"
}
Jovanović Stojanov, S., Ntungwe, E. N., Dinić, J., Podolski-Renić, A., Pajović, M., Rijo, P.,& Pešić, M.. (2023). Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition. in Pharmaceutics
Basel: MDPI., 15(7), 1942.
https://doi.org/10.3390/pharmaceutics15071942
Jovanović Stojanov S, Ntungwe EN, Dinić J, Podolski-Renić A, Pajović M, Rijo P, Pešić M. Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition. in Pharmaceutics. 2023;15(7):1942.
doi:10.3390/pharmaceutics15071942 .
Jovanović Stojanov, Sofija, Ntungwe, Epole N., Dinić, Jelena, Podolski-Renić, Ana, Pajović, Milica, Rijo, Patrícia, Pešić, Milica, "Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition" in Pharmaceutics, 15, no. 7 (2023):1942,
https://doi.org/10.3390/pharmaceutics15071942 . .
1
1

New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin

Stepanović, Ana; Lupšić, Ema; Dinić, Jelena; Podolski-Renić, Ana; Pajović, Milica; Jovanović Stojanov, Sofija; Dragoj, Miodrag; Terzić Jovanović, Nataša; Opsenica, Igor; Pešić, Milica

(Belgrade: Serbian Neuroscience Society, 2023)

TY  - CONF
AU  - Stepanović, Ana
AU  - Lupšić, Ema
AU  - Dinić, Jelena
AU  - Podolski-Renić, Ana
AU  - Pajović, Milica
AU  - Jovanović Stojanov, Sofija
AU  - Dragoj, Miodrag
AU  - Terzić Jovanović, Nataša
AU  - Opsenica, Igor
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5905
AB  - Background: Doxorubicin (DOX) has been very effective against glioblastoma in
vitro. Its application in vivo is hampered because it cannot pass the blood–brain
barrier (BBB). Significant research efforts are invested to overcome this limitation.
Sclareol (SC) is an aromatic compound naturally found in clary sage. The
combination of SC and DOX showed promising effects in different tumor types in
vitro and in vivo. Therefore, we tested their combination and innovative hybrid
molecules (SC:DOX) on glioblastoma cells with the expression of P-glycoprotein, a
major component of BBB and cancer multidrug resistance marker. Methods:
Cytotoxicity and selectivity towards glioblastoma cells of SC, DOX, their
combination, and SC:DOX were examined by MTT assay. The effect of SC on DOX
accumulation was determined by flow cytometry. We also studied SC:DOX
accumulation, cellular uptake, localization imaging, and DNA damage induction.
Results: The effects of simultaneous SC and DOX treatments demonstrated the
considerable potential of SC to reverse DOX resistance in glioblastoma cells and
increase DOX accumulation. SC:DOX hybrids, named CON1 and CON2 were less
cytotoxic than DOX, but with reduced resistance and increased selectivity towards
glioblastoma cells. Cellular uptake of CON1 and CON2 was increased in glioblastoma
cells compared to DOX. Perinuclear localization of CON1 and CON2 vs. nuclear
localization of DOX as well as no DNA damaging effects suggest a different
mechanism of action for SC:DOX. Conclusion: The combination of SC and DOX, and
their innovative hybrids, could be considered a promising strategy that can overcome
the limitations of DOX application in glioblastoma.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia
T1  - New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin
SP  - 71
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5905
ER  - 
@conference{
author = "Stepanović, Ana and Lupšić, Ema and Dinić, Jelena and Podolski-Renić, Ana and Pajović, Milica and Jovanović Stojanov, Sofija and Dragoj, Miodrag and Terzić Jovanović, Nataša and Opsenica, Igor and Pešić, Milica",
year = "2023",
abstract = "Background: Doxorubicin (DOX) has been very effective against glioblastoma in
vitro. Its application in vivo is hampered because it cannot pass the blood–brain
barrier (BBB). Significant research efforts are invested to overcome this limitation.
Sclareol (SC) is an aromatic compound naturally found in clary sage. The
combination of SC and DOX showed promising effects in different tumor types in
vitro and in vivo. Therefore, we tested their combination and innovative hybrid
molecules (SC:DOX) on glioblastoma cells with the expression of P-glycoprotein, a
major component of BBB and cancer multidrug resistance marker. Methods:
Cytotoxicity and selectivity towards glioblastoma cells of SC, DOX, their
combination, and SC:DOX were examined by MTT assay. The effect of SC on DOX
accumulation was determined by flow cytometry. We also studied SC:DOX
accumulation, cellular uptake, localization imaging, and DNA damage induction.
Results: The effects of simultaneous SC and DOX treatments demonstrated the
considerable potential of SC to reverse DOX resistance in glioblastoma cells and
increase DOX accumulation. SC:DOX hybrids, named CON1 and CON2 were less
cytotoxic than DOX, but with reduced resistance and increased selectivity towards
glioblastoma cells. Cellular uptake of CON1 and CON2 was increased in glioblastoma
cells compared to DOX. Perinuclear localization of CON1 and CON2 vs. nuclear
localization of DOX as well as no DNA damaging effects suggest a different
mechanism of action for SC:DOX. Conclusion: The combination of SC and DOX, and
their innovative hybrids, could be considered a promising strategy that can overcome
the limitations of DOX application in glioblastoma.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia",
title = "New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin",
pages = "71",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5905"
}
Stepanović, A., Lupšić, E., Dinić, J., Podolski-Renić, A., Pajović, M., Jovanović Stojanov, S., Dragoj, M., Terzić Jovanović, N., Opsenica, I.,& Pešić, M.. (2023). New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin. in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 71.
https://hdl.handle.net/21.15107/rcub_ibiss_5905
Stepanović A, Lupšić E, Dinić J, Podolski-Renić A, Pajović M, Jovanović Stojanov S, Dragoj M, Terzić Jovanović N, Opsenica I, Pešić M. New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin. in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia. 2023;:71.
https://hdl.handle.net/21.15107/rcub_ibiss_5905 .
Stepanović, Ana, Lupšić, Ema, Dinić, Jelena, Podolski-Renić, Ana, Pajović, Milica, Jovanović Stojanov, Sofija, Dragoj, Miodrag, Terzić Jovanović, Nataša, Opsenica, Igor, Pešić, Milica, "New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin" in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia (2023):71,
https://hdl.handle.net/21.15107/rcub_ibiss_5905 .