Čvoro, Aleksandra

Link to this page

Authority KeyName Variants
5b03be30-a2f5-4889-bdc2-b0a3722efc7f
  • Čvoro, Aleksandra (2)
Projects

Author's Bibliography

ACOX-driven peroxisomal heterogeneity and functional compartmentalization in brown adipocytes of hypothyroid rats

Aleksić, Marija; Golić, Igor; Janković, Aleksandra; Čvoro, Aleksandra; Korać, Aleksandra

(London: Royal society publishing, 2023)

TY  - JOUR
AU  - Aleksić, Marija
AU  - Golić, Igor
AU  - Janković, Aleksandra
AU  - Čvoro, Aleksandra
AU  - Korać, Aleksandra
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6529
AB  - We previously demonstrated that hypothyroidism increases peroxisomal biogenesis in rat brown adipose tissue (BAT). We also showed heterogeneity in peroxisomal origin and their unique structural association with mitochondria and/or lipid bodies to carry out β-oxidation, contributing thus to BAT thermogenesis. Distinctive heterogeneity creates structural compartmentalization within peroxisomal population, raising the question of whether it is followed by their functional compartmentalization regarding localization/colocalization of two main acyl-CoA oxidase (ACOX) isoforms, ACOX1 and ACOX3. ACOX is the first and rate-limiting enzyme of peroxisomal β-oxidation, and, to date, their protein expression patterns in BAT have not been fully defined. Therefore, we used methimazole-induced hypothyroidism to study ACOX1 and ACOX3 protein expression and their tissue immunolocalization. Additionally, we analysed their specific peroxisomal localization and colocalization in parallel with peroxisomal structural compartmentalization in brown adipocytes. Hypothyroidism caused a linear increase in ACOX1 expression, while a temporary decrease in ACOX3 levels is only recovered to the control level at day 21. Peroxisomal ACOX1 and ACOX3 localization and colocalization patterns entirely mirrored heterogeneous peroxisomal biogenesis pathways and structural compartmentalization, e.g. associations with mitochondria and/or lipid bodies. Hence, different ACOX isoforms localization/colocalization creates distinct functional heterogeneity of peroxisomes and drives their functional compartmentalization in rat brown adipocytes.
PB  - London: Royal society publishing
T2  - Royal Society Open Science
T1  - ACOX-driven peroxisomal heterogeneity and functional compartmentalization in brown adipocytes of hypothyroid rats
VL  - 10
DO  - 10.1098/rsos.230109
SP  - 230109
ER  - 
@article{
author = "Aleksić, Marija and Golić, Igor and Janković, Aleksandra and Čvoro, Aleksandra and Korać, Aleksandra",
year = "2023",
abstract = "We previously demonstrated that hypothyroidism increases peroxisomal biogenesis in rat brown adipose tissue (BAT). We also showed heterogeneity in peroxisomal origin and their unique structural association with mitochondria and/or lipid bodies to carry out β-oxidation, contributing thus to BAT thermogenesis. Distinctive heterogeneity creates structural compartmentalization within peroxisomal population, raising the question of whether it is followed by their functional compartmentalization regarding localization/colocalization of two main acyl-CoA oxidase (ACOX) isoforms, ACOX1 and ACOX3. ACOX is the first and rate-limiting enzyme of peroxisomal β-oxidation, and, to date, their protein expression patterns in BAT have not been fully defined. Therefore, we used methimazole-induced hypothyroidism to study ACOX1 and ACOX3 protein expression and their tissue immunolocalization. Additionally, we analysed their specific peroxisomal localization and colocalization in parallel with peroxisomal structural compartmentalization in brown adipocytes. Hypothyroidism caused a linear increase in ACOX1 expression, while a temporary decrease in ACOX3 levels is only recovered to the control level at day 21. Peroxisomal ACOX1 and ACOX3 localization and colocalization patterns entirely mirrored heterogeneous peroxisomal biogenesis pathways and structural compartmentalization, e.g. associations with mitochondria and/or lipid bodies. Hence, different ACOX isoforms localization/colocalization creates distinct functional heterogeneity of peroxisomes and drives their functional compartmentalization in rat brown adipocytes.",
publisher = "London: Royal society publishing",
journal = "Royal Society Open Science",
title = "ACOX-driven peroxisomal heterogeneity and functional compartmentalization in brown adipocytes of hypothyroid rats",
volume = "10",
doi = "10.1098/rsos.230109",
pages = "230109"
}
Aleksić, M., Golić, I., Janković, A., Čvoro, A.,& Korać, A.. (2023). ACOX-driven peroxisomal heterogeneity and functional compartmentalization in brown adipocytes of hypothyroid rats. in Royal Society Open Science
London: Royal society publishing., 10, 230109.
https://doi.org/10.1098/rsos.230109
Aleksić M, Golić I, Janković A, Čvoro A, Korać A. ACOX-driven peroxisomal heterogeneity and functional compartmentalization in brown adipocytes of hypothyroid rats. in Royal Society Open Science. 2023;10:230109.
doi:10.1098/rsos.230109 .
Aleksić, Marija, Golić, Igor, Janković, Aleksandra, Čvoro, Aleksandra, Korać, Aleksandra, "ACOX-driven peroxisomal heterogeneity and functional compartmentalization in brown adipocytes of hypothyroid rats" in Royal Society Open Science, 10 (2023):230109,
https://doi.org/10.1098/rsos.230109 . .
2
3
2

Expression and Subcellular Localization of Estrogen Receptors alpha and beta in Human Fetal Brown Adipose Tissue

Veličković, Ksenija; Čvoro, Aleksandra; Srdić, Biljana; Stokić, Edita; Markelić, Milica; Golić, Igor; Otašević, Vesna; Stančić, Ana; Janković, Aleksandra; Vučetić, Milica; Buzadžić, Biljana J.; Korać, Bato; Korać, Aleksandra

(2014)

TY  - JOUR
AU  - Veličković, Ksenija
AU  - Čvoro, Aleksandra
AU  - Srdić, Biljana
AU  - Stokić, Edita
AU  - Markelić, Milica
AU  - Golić, Igor
AU  - Otašević, Vesna
AU  - Stančić, Ana
AU  - Janković, Aleksandra
AU  - Vučetić, Milica
AU  - Buzadžić, Biljana J.
AU  - Korać, Bato
AU  - Korać, Aleksandra
PY  - 2014
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/2294
AB  - Context: Brown adipose tissue (BAT) has the unique ability of generating
   heat due to the expression of mitochondrial uncoupling protein 1 (UCP1).
   A recent discovery regarding functional BAT in adult humans has
   increased interest in the molecular pathways of BAT development and
   functionality. An important role for estrogen in white adipose tissue
   was shown, but the possible role of estrogen in human fetal BAT (fBAT)
   is unclear.
   Objective: The objective of this study was to determine whether human
   fBAT expresses estrogen receptor alpha (ER alpha) and ER beta. In
   addition, we examined their localization as well as their correlation
   with crucial proteins involved in BAT differentiation, proliferation,
   mitochondriogenesis and thermogenesis including peroxisome
   proliferator-activated receptor gamma (PPAR gamma), proliferating cell
   nuclear antigen (PCNA), PPAR gamma-coactivator-1 alpha (PGC-1 alpha),
   and UCP1.
   Design: The fBAT was obtained from 4 human male fetuses aged 15, 17, 20,
   and 23 weeks gestation. ER alpha and ER beta expression was assessed
   using Western blotting, immunohistochemistry, and immunocytochemistry.
   Possible correlations with PPAR gamma, PCNA, PGC-1 alpha, and UCP1 were
   examined by double immunofluorescence.
   Results: Both ER alpha and ER beta were expressed in human fBAT, with ER
   alpha being dominant. Unlike ER beta, which was present only in mature
   brown adipocytes, we detected ER alpha in mature adipocytes,
   preadipocytes, mesenchymal and endothelial cells. In addition, double
   immunofluorescence supported the notion that differentiation in fBAT
   probably involves ER alpha. Immunocytochemical analysis revealed
   mitochondrial localization of both receptors.
   Conclusion: The expression of both ER alpha and ER beta in human fBAT
   suggests a role for estrogen in its development, primarily via ER alpha.
   In addition, our results indicate that fBAT mitochondria could be
   targeted by estrogens and pointed out the possible role of both ERs in
   mitochondriogenesis.
T2  - Journal of Clinical Endocrinology & Metabolism
T1  - Expression and Subcellular Localization of Estrogen Receptors alpha and
 beta in Human Fetal Brown Adipose Tissue
IS  - 1
VL  - 99
DO  - 10.1210/jc.2013-2017
SP  - 151
EP  - 159
ER  - 
@article{
author = "Veličković, Ksenija and Čvoro, Aleksandra and Srdić, Biljana and Stokić, Edita and Markelić, Milica and Golić, Igor and Otašević, Vesna and Stančić, Ana and Janković, Aleksandra and Vučetić, Milica and Buzadžić, Biljana J. and Korać, Bato and Korać, Aleksandra",
year = "2014",
abstract = "Context: Brown adipose tissue (BAT) has the unique ability of generating
   heat due to the expression of mitochondrial uncoupling protein 1 (UCP1).
   A recent discovery regarding functional BAT in adult humans has
   increased interest in the molecular pathways of BAT development and
   functionality. An important role for estrogen in white adipose tissue
   was shown, but the possible role of estrogen in human fetal BAT (fBAT)
   is unclear.
   Objective: The objective of this study was to determine whether human
   fBAT expresses estrogen receptor alpha (ER alpha) and ER beta. In
   addition, we examined their localization as well as their correlation
   with crucial proteins involved in BAT differentiation, proliferation,
   mitochondriogenesis and thermogenesis including peroxisome
   proliferator-activated receptor gamma (PPAR gamma), proliferating cell
   nuclear antigen (PCNA), PPAR gamma-coactivator-1 alpha (PGC-1 alpha),
   and UCP1.
   Design: The fBAT was obtained from 4 human male fetuses aged 15, 17, 20,
   and 23 weeks gestation. ER alpha and ER beta expression was assessed
   using Western blotting, immunohistochemistry, and immunocytochemistry.
   Possible correlations with PPAR gamma, PCNA, PGC-1 alpha, and UCP1 were
   examined by double immunofluorescence.
   Results: Both ER alpha and ER beta were expressed in human fBAT, with ER
   alpha being dominant. Unlike ER beta, which was present only in mature
   brown adipocytes, we detected ER alpha in mature adipocytes,
   preadipocytes, mesenchymal and endothelial cells. In addition, double
   immunofluorescence supported the notion that differentiation in fBAT
   probably involves ER alpha. Immunocytochemical analysis revealed
   mitochondrial localization of both receptors.
   Conclusion: The expression of both ER alpha and ER beta in human fBAT
   suggests a role for estrogen in its development, primarily via ER alpha.
   In addition, our results indicate that fBAT mitochondria could be
   targeted by estrogens and pointed out the possible role of both ERs in
   mitochondriogenesis.",
journal = "Journal of Clinical Endocrinology & Metabolism",
title = "Expression and Subcellular Localization of Estrogen Receptors alpha and
 beta in Human Fetal Brown Adipose Tissue",
number = "1",
volume = "99",
doi = "10.1210/jc.2013-2017",
pages = "151-159"
}
Veličković, K., Čvoro, A., Srdić, B., Stokić, E., Markelić, M., Golić, I., Otašević, V., Stančić, A., Janković, A., Vučetić, M., Buzadžić, B. J., Korać, B.,& Korać, A.. (2014). Expression and Subcellular Localization of Estrogen Receptors alpha and
 beta in Human Fetal Brown Adipose Tissue. in Journal of Clinical Endocrinology & Metabolism, 99(1), 151-159.
https://doi.org/10.1210/jc.2013-2017
Veličković K, Čvoro A, Srdić B, Stokić E, Markelić M, Golić I, Otašević V, Stančić A, Janković A, Vučetić M, Buzadžić BJ, Korać B, Korać A. Expression and Subcellular Localization of Estrogen Receptors alpha and
 beta in Human Fetal Brown Adipose Tissue. in Journal of Clinical Endocrinology & Metabolism. 2014;99(1):151-159.
doi:10.1210/jc.2013-2017 .
Veličković, Ksenija, Čvoro, Aleksandra, Srdić, Biljana, Stokić, Edita, Markelić, Milica, Golić, Igor, Otašević, Vesna, Stančić, Ana, Janković, Aleksandra, Vučetić, Milica, Buzadžić, Biljana J., Korać, Bato, Korać, Aleksandra, "Expression and Subcellular Localization of Estrogen Receptors alpha and
 beta in Human Fetal Brown Adipose Tissue" in Journal of Clinical Endocrinology & Metabolism, 99, no. 1 (2014):151-159,
https://doi.org/10.1210/jc.2013-2017 . .
50
33
45