Arsikin-Csordas, Katarina

Link to this page

Authority KeyName Variants
9eff9f5c-b846-456e-acbe-8fe66dac1016
  • Arsikin-Csordas, Katarina (5)
Projects

Author's Bibliography

Dual role of mitochondrial damage in anticancer and antipsychotic treatment

Misirkić Marjanović, Maja; Vučićević, Ljubica; Kosić, Milica; Paunović, Verica; Arsikin-Csordas, Katarina; Ristić, Biljana; Marić, Nađa; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Kravić-Stevović, Tamara; Martinović, Tamara; Ćirić, Darko; Mirčić, Aleksandar; Petričević, Saša; Bumbaširević, Vladimir; Harhaji-Trajković, Ljubica; Trajković, Vladimir

(The Mitochondrial Physiology Society, 2019)

TY  - CONF
AU  - Misirkić Marjanović, Maja
AU  - Vučićević, Ljubica
AU  - Kosić, Milica
AU  - Paunović, Verica
AU  - Arsikin-Csordas, Katarina
AU  - Ristić, Biljana
AU  - Marić, Nađa
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Kravić-Stevović, Tamara
AU  - Martinović, Tamara
AU  - Ćirić, Darko
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bumbaširević, Vladimir
AU  - Harhaji-Trajković, Ljubica
AU  - Trajković, Vladimir
PY  - 2019
UR  - https://www.mitoeagle.org/index.php/MiP2019/MitoEAGLE_Belgrade_RS
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6353
AB  - We analyzed the impact of mitochondrial damage in anticancer action of combining lysosomal
membrane permeabilization (LMP)-inducing agent N- dodecylimidazole (NDI)[1] with
glycolytic inhibitor 2-deoxy-D-glucose (2DG) and in antipsychotic action of atypical antipsychotic
olanzapine.
NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing ATP depletion,
mitochondrial damage and reactive oxygen species production, eventually leading to necrotic
death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma
cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant tocopherol, suggesting
the involvement of LMP and oxidative stress in the observed cytotoxicity. Moreover, the
combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6
mice by inducing necrotic death of tumor cells.
Based on these results, we propose that NDI-triggered LMPcauses initial mitochondrial damage
that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial
health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss,
and reactive oxygen species production, culminating in necrotic cell death.
We also investigated the role of autophagy, a controlled cellular self-digestion process, in regulating
survival of neurons exposed to olanzapine. Olanzapine induced autophagy in human
SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of
autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression
of autophagy-related (ATG) genes ATG4B, ATG5, andATG7. The production of reactive oxygen
species, but not modulation of the main autophagy repressor mTOR or its upstream regulators
AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy.
Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage,
and the autophagic clearance of dysfunctional mitochondria [2] was confirmed by electron microscopy,
colocalization of autophagosome associated MAP1LC3B (LC3B) and mitochondria,
and mitochondrial association with the autophagic cargo receptor p62. While olanzapine-triggered
mitochondrial damage was not visibly toxic to SH-SY5Ycells, their death was readily initiated
upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown
of BECN1 and LC3B. The treatment of mice with olanzapine increased the brain levels of
LC3B-II and mRNA encoding Atg4b,Atg5, Atg7, Atg12, Gabarap, and Becn1.
These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal
mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action
of the drug.
References;
1. Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death.
Mitochondrion10: 662-669.
2. Wang K, Klionsky DJ(2011) Mitochondrial removal by autophagy. Autophagy 7:297-300.
PB  - The Mitochondrial Physiology Society
C3  - Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia
T1  - Dual role of mitochondrial damage in anticancer and antipsychotic treatment
SP  - 29
EP  - 29
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6353
ER  - 
@conference{
author = "Misirkić Marjanović, Maja and Vučićević, Ljubica and Kosić, Milica and Paunović, Verica and Arsikin-Csordas, Katarina and Ristić, Biljana and Marić, Nađa and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Kravić-Stevović, Tamara and Martinović, Tamara and Ćirić, Darko and Mirčić, Aleksandar and Petričević, Saša and Bumbaširević, Vladimir and Harhaji-Trajković, Ljubica and Trajković, Vladimir",
year = "2019",
abstract = "We analyzed the impact of mitochondrial damage in anticancer action of combining lysosomal
membrane permeabilization (LMP)-inducing agent N- dodecylimidazole (NDI)[1] with
glycolytic inhibitor 2-deoxy-D-glucose (2DG) and in antipsychotic action of atypical antipsychotic
olanzapine.
NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing ATP depletion,
mitochondrial damage and reactive oxygen species production, eventually leading to necrotic
death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma
cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant tocopherol, suggesting
the involvement of LMP and oxidative stress in the observed cytotoxicity. Moreover, the
combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6
mice by inducing necrotic death of tumor cells.
Based on these results, we propose that NDI-triggered LMPcauses initial mitochondrial damage
that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial
health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss,
and reactive oxygen species production, culminating in necrotic cell death.
We also investigated the role of autophagy, a controlled cellular self-digestion process, in regulating
survival of neurons exposed to olanzapine. Olanzapine induced autophagy in human
SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of
autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression
of autophagy-related (ATG) genes ATG4B, ATG5, andATG7. The production of reactive oxygen
species, but not modulation of the main autophagy repressor mTOR or its upstream regulators
AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy.
Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage,
and the autophagic clearance of dysfunctional mitochondria [2] was confirmed by electron microscopy,
colocalization of autophagosome associated MAP1LC3B (LC3B) and mitochondria,
and mitochondrial association with the autophagic cargo receptor p62. While olanzapine-triggered
mitochondrial damage was not visibly toxic to SH-SY5Ycells, their death was readily initiated
upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown
of BECN1 and LC3B. The treatment of mice with olanzapine increased the brain levels of
LC3B-II and mRNA encoding Atg4b,Atg5, Atg7, Atg12, Gabarap, and Becn1.
These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal
mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action
of the drug.
References;
1. Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death.
Mitochondrion10: 662-669.
2. Wang K, Klionsky DJ(2011) Mitochondrial removal by autophagy. Autophagy 7:297-300.",
publisher = "The Mitochondrial Physiology Society",
journal = "Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia",
title = "Dual role of mitochondrial damage in anticancer and antipsychotic treatment",
pages = "29-29",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6353"
}
Misirkić Marjanović, M., Vučićević, L., Kosić, M., Paunović, V., Arsikin-Csordas, K., Ristić, B., Marić, N., Bošnjak, M., Zogović, N., Mandić, M., Kravić-Stevović, T., Martinović, T., Ćirić, D., Mirčić, A., Petričević, S., Bumbaširević, V., Harhaji-Trajković, L.,& Trajković, V.. (2019). Dual role of mitochondrial damage in anticancer and antipsychotic treatment. in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia
The Mitochondrial Physiology Society., 29-29.
https://hdl.handle.net/21.15107/rcub_ibiss_6353
Misirkić Marjanović M, Vučićević L, Kosić M, Paunović V, Arsikin-Csordas K, Ristić B, Marić N, Bošnjak M, Zogović N, Mandić M, Kravić-Stevović T, Martinović T, Ćirić D, Mirčić A, Petričević S, Bumbaširević V, Harhaji-Trajković L, Trajković V. Dual role of mitochondrial damage in anticancer and antipsychotic treatment. in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia. 2019;:29-29.
https://hdl.handle.net/21.15107/rcub_ibiss_6353 .
Misirkić Marjanović, Maja, Vučićević, Ljubica, Kosić, Milica, Paunović, Verica, Arsikin-Csordas, Katarina, Ristić, Biljana, Marić, Nađa, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Kravić-Stevović, Tamara, Martinović, Tamara, Ćirić, Darko, Mirčić, Aleksandar, Petričević, Saša, Bumbaširević, Vladimir, Harhaji-Trajković, Ljubica, Trajković, Vladimir, "Dual role of mitochondrial damage in anticancer and antipsychotic treatment" in Programme abstract book: 14th Conference on Mitochondrial Physiology: Mitochondrial function: changes during life cycle and in noncommunicable diseases: COST MitoEAGLE perspectives and MitoEAGLE WG and MC Meeting: MiP2019/MitoEAGLE; 2019 Oct 13-16; Belgrade, Serbia (2019):29-29,
https://hdl.handle.net/21.15107/rcub_ibiss_6353 .

Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition

Paunović, Verica; Kosić, Milica; Arsikin-Csordas, Katarina; Firestone, Raymond A; Ristić, Biljana; Mirčić, Aleksandar; Petričević, Saša; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Bumbaširević, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Belgrade: Serbian Neuroscience Society, 2019)

TY  - CONF
AU  - Paunović, Verica
AU  - Kosić, Milica
AU  - Arsikin-Csordas, Katarina
AU  - Firestone, Raymond A
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Bumbaširević, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2019
UR  - https://www.fens.org/news-activities/fens-and-societies-calendar/meeting-event/fens-regional-meeting-2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6355
AB  - During malignant transformation cells acquire changes in metabolism, signaling pathways as well as organelle content. The preferential use of aerobic glycolysis (Warburg effect), along with the increased number and volume of lysosomes can be viewed as glioma cells’ Achilles heels. In the present study, we aimed to examine the in vitro antiglioma effects of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG).
NDI-triggered LMP and 2DG-mediated glycolysis block synergistically induced rapid ATP depletion, mitochondrial damage, and reactive oxygen species (ROS) production causing necrotic cell death of U251 glioma cells, but not primary astrocytes. Lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol partially prevented NDI/2DG-induced glioma cell death, thus implying the involvement of LMP and oxidative stress in the observed cytotoxicity. Likewise, LMP-inducing agent chloroquine
showed synergistic cytotoxic effect with 2DG. Similarly, glucose deprivation as well as other glycolytic inhibitors, iodoacetate and sodium fluoride, synergistically cooperated with NDI, further corroborating that the observed antiglioma effect of the NDI/2DG combined treatment was indeed based on LMP and glycolysis block. Based on these results, we concluded that NDI-triggered LMP caused initial mitochondrial damage, which was further increased by 2DG causing the lack of glycolytic ATP
required to maintain mitochondrial health. This created a positive feedback loop of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrosis. Therefore, the combination of glycolysis inhibitors and LMP-inducing agents seems promising antiglioma strategy.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
T1  - Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition
SP  - 213
EP  - 213
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6355
ER  - 
@conference{
author = "Paunović, Verica and Kosić, Milica and Arsikin-Csordas, Katarina and Firestone, Raymond A and Ristić, Biljana and Mirčić, Aleksandar and Petričević, Saša and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Bumbaširević, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2019",
abstract = "During malignant transformation cells acquire changes in metabolism, signaling pathways as well as organelle content. The preferential use of aerobic glycolysis (Warburg effect), along with the increased number and volume of lysosomes can be viewed as glioma cells’ Achilles heels. In the present study, we aimed to examine the in vitro antiglioma effects of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG).
NDI-triggered LMP and 2DG-mediated glycolysis block synergistically induced rapid ATP depletion, mitochondrial damage, and reactive oxygen species (ROS) production causing necrotic cell death of U251 glioma cells, but not primary astrocytes. Lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol partially prevented NDI/2DG-induced glioma cell death, thus implying the involvement of LMP and oxidative stress in the observed cytotoxicity. Likewise, LMP-inducing agent chloroquine
showed synergistic cytotoxic effect with 2DG. Similarly, glucose deprivation as well as other glycolytic inhibitors, iodoacetate and sodium fluoride, synergistically cooperated with NDI, further corroborating that the observed antiglioma effect of the NDI/2DG combined treatment was indeed based on LMP and glycolysis block. Based on these results, we concluded that NDI-triggered LMP caused initial mitochondrial damage, which was further increased by 2DG causing the lack of glycolytic ATP
required to maintain mitochondrial health. This created a positive feedback loop of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrosis. Therefore, the combination of glycolysis inhibitors and LMP-inducing agents seems promising antiglioma strategy.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia",
title = "Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition",
pages = "213-213",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6355"
}
Paunović, V., Kosić, M., Arsikin-Csordas, K., Firestone, R. A., Ristić, B., Mirčić, A., Petričević, S., Bošnjak, M., Zogović, N., Mandić, M., Bumbaširević, V., Trajković, V.,& Harhaji-Trajković, L.. (2019). Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 213-213.
https://hdl.handle.net/21.15107/rcub_ibiss_6355
Paunović V, Kosić M, Arsikin-Csordas K, Firestone RA, Ristić B, Mirčić A, Petričević S, Bošnjak M, Zogović N, Mandić M, Bumbaširević V, Trajković V, Harhaji-Trajković L. Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia. 2019;:213-213.
https://hdl.handle.net/21.15107/rcub_ibiss_6355 .
Paunović, Verica, Kosić, Milica, Arsikin-Csordas, Katarina, Firestone, Raymond A, Ristić, Biljana, Mirčić, Aleksandar, Petričević, Saša, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Bumbaširević, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Synergistic antiglioma action of lysosomal membrane permeabilization and glycolysis inhibition" in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia (2019):213-213,
https://hdl.handle.net/21.15107/rcub_ibiss_6355 .

Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition

Kosić, Milica; Arsikin-Csordas, Katarina; Paunović, Verica; Firestone, Raymond A; Ristić, Biljana; Mirčić, Aleksandar; Petričević, Saša; Bošnjak, Mihajlo; Zogović, Nevena; Mandić, Miloš; Bumbaširević, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Amsterdam: Elsevier, 2016)

TY  - JOUR
AU  - Kosić, Milica
AU  - Arsikin-Csordas, Katarina
AU  - Paunović, Verica
AU  - Firestone, Raymond A
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Mandić, Miloš
AU  - Bumbaširević, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2016
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6364
AB  - We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). NDI-triggered LMP and 2DG-me diated glycolysis block synergized in inducing rapid ATP
depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant a-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer
effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an
anticancer strategy.
PB  - Amsterdam: Elsevier
T2  - Journal of Biological Chemistry
T1  - Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition
IS  - 44
VL  - 291
DO  - 10.1074/jbc.M116.752113
SP  - 22936
EP  - 22948
ER  - 
@article{
author = "Kosić, Milica and Arsikin-Csordas, Katarina and Paunović, Verica and Firestone, Raymond A and Ristić, Biljana and Mirčić, Aleksandar and Petričević, Saša and Bošnjak, Mihajlo and Zogović, Nevena and Mandić, Miloš and Bumbaširević, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2016",
abstract = "We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). NDI-triggered LMP and 2DG-me diated glycolysis block synergized in inducing rapid ATP
depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant a-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer
effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an
anticancer strategy.",
publisher = "Amsterdam: Elsevier",
journal = "Journal of Biological Chemistry",
title = "Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition",
number = "44",
volume = "291",
doi = "10.1074/jbc.M116.752113",
pages = "22936-22948"
}
Kosić, M., Arsikin-Csordas, K., Paunović, V., Firestone, R. A., Ristić, B., Mirčić, A., Petričević, S., Bošnjak, M., Zogović, N., Mandić, M., Bumbaširević, V., Trajković, V.,& Harhaji-Trajković, L.. (2016). Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition. in Journal of Biological Chemistry
Amsterdam: Elsevier., 291(44), 22936-22948.
https://doi.org/10.1074/jbc.M116.752113
Kosić M, Arsikin-Csordas K, Paunović V, Firestone RA, Ristić B, Mirčić A, Petričević S, Bošnjak M, Zogović N, Mandić M, Bumbaširević V, Trajković V, Harhaji-Trajković L. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition. in Journal of Biological Chemistry. 2016;291(44):22936-22948.
doi:10.1074/jbc.M116.752113 .
Kosić, Milica, Arsikin-Csordas, Katarina, Paunović, Verica, Firestone, Raymond A, Ristić, Biljana, Mirčić, Aleksandar, Petričević, Saša, Bošnjak, Mihajlo, Zogović, Nevena, Mandić, Miloš, Bumbaširević, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition" in Journal of Biological Chemistry, 291, no. 44 (2016):22936-22948,
https://doi.org/10.1074/jbc.M116.752113 . .
14
4
13

Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition

Kosić, Milica; Arsikin-Csordas, Katarina; Paunović, Verica; Firestone, Raymond A; Ristić, Biljana; Mirčić, Aleksandar; Petričević, Saša; Bošnjak, Mihajlo; Zogović, Nevena; Bumbaširević, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology, 2015)

TY  - CONF
AU  - Kosić, Milica
AU  - Arsikin-Csordas, Katarina
AU  - Paunović, Verica
AU  - Firestone, Raymond A
AU  - Ristić, Biljana
AU  - Mirčić, Aleksandar
AU  - Petričević, Saša
AU  - Bošnjak, Mihajlo
AU  - Zogović, Nevena
AU  - Bumbaširević, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2015
UR  - http://ssmfrp.edu.rs/article-12
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6356
AB  - We investigated the in vitro anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). Cell viability was measured by MTT and LDH tests. Oxidative stress, lysosomal permeabilization, mitochondrial depolarization and apoptosis/necrosis were analyzed by flow cytometry. Cell morphology was examined by electron microscopy. Intracellular ATP content was measured by bioluminescence assay. NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial
damage, and reactive oxygen species (ROS) production, eventually leading to necrotic death
of U251 glioma cells, but not primary astrocytes. NDI/2DG-induced death of glioma cells was
partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, indicating the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agents chloroquine and NH4Cl also displayed synergistic anticancer effect with 2DG, while glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus confirming that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block, respectively. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive
feedback cycle of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy.
PB  - Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology
C3  - Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia
T1  - Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition
SP  - 71
EP  - 71
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6356
ER  - 
@conference{
author = "Kosić, Milica and Arsikin-Csordas, Katarina and Paunović, Verica and Firestone, Raymond A and Ristić, Biljana and Mirčić, Aleksandar and Petričević, Saša and Bošnjak, Mihajlo and Zogović, Nevena and Bumbaširević, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2015",
abstract = "We investigated the in vitro anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-D-glucose (2DG). Cell viability was measured by MTT and LDH tests. Oxidative stress, lysosomal permeabilization, mitochondrial depolarization and apoptosis/necrosis were analyzed by flow cytometry. Cell morphology was examined by electron microscopy. Intracellular ATP content was measured by bioluminescence assay. NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial
damage, and reactive oxygen species (ROS) production, eventually leading to necrotic death
of U251 glioma cells, but not primary astrocytes. NDI/2DG-induced death of glioma cells was
partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, indicating the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agents chloroquine and NH4Cl also displayed synergistic anticancer effect with 2DG, while glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus confirming that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block, respectively. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive
feedback cycle of mitochondrial dysfunction, ATP loss, and ROS production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy.",
publisher = "Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology",
journal = "Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia",
title = "Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition",
pages = "71-71",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6356"
}
Kosić, M., Arsikin-Csordas, K., Paunović, V., Firestone, R. A., Ristić, B., Mirčić, A., Petričević, S., Bošnjak, M., Zogović, N., Bumbaširević, V., Trajković, V.,& Harhaji-Trajković, L.. (2015). Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia
Belgrade : Serbian Society for Mitochondrial and Free-Radical Physiology., 71-71.
https://hdl.handle.net/21.15107/rcub_ibiss_6356
Kosić M, Arsikin-Csordas K, Paunović V, Firestone RA, Ristić B, Mirčić A, Petričević S, Bošnjak M, Zogović N, Bumbaširević V, Trajković V, Harhaji-Trajković L. Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition. in Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia. 2015;:71-71.
https://hdl.handle.net/21.15107/rcub_ibiss_6356 .
Kosić, Milica, Arsikin-Csordas, Katarina, Paunović, Verica, Firestone, Raymond A, Ristić, Biljana, Mirčić, Aleksandar, Petričević, Saša, Bošnjak, Mihajlo, Zogović, Nevena, Bumbaširević, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Synergistic anticancer action of lysosomal membrane permeabilization and glycolysis inhibition" in Book of Abstracts: Third Congress Redox Medicine: Reactive Species Signaling, Analytical Methods, Phytopharmacy, Molecular Mechanisms of Disease - SSMFRP-2015; 2015 Sep 25-26; Belgrade, Serbia (2015):71-71,
https://hdl.handle.net/21.15107/rcub_ibiss_6356 .

Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells

Arsikin-Csordas, Katarina; Kravić-Stevović, Tamara; Jovanović, Maja; Ristić, Biljana; Tovilović-Kovačević, Gordana; Zogović, Nevena; Bumbaširević, Vladimir; Trajković, Vladimir; Harhaji-Trajković, Ljubica

(Amsterdam: Elsevier, 2012)

TY  - JOUR
AU  - Arsikin-Csordas, Katarina
AU  - Kravić-Stevović, Tamara
AU  - Jovanović, Maja
AU  - Ristić, Biljana
AU  - Tovilović-Kovačević, Gordana
AU  - Zogović, Nevena
AU  - Bumbaširević, Vladimir
AU  - Trajković, Vladimir
AU  - Harhaji-Trajković, Ljubica
PY  - 2012
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6366
AB  - The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.
PB  - Amsterdam: Elsevier
T2  - Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
T1  - Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells
IS  - 11
VL  - 1822
DO  - 10.1016/j.bbadis.2012.08.006.
SP  - 1826
EP  - 1836
ER  - 
@article{
author = "Arsikin-Csordas, Katarina and Kravić-Stevović, Tamara and Jovanović, Maja and Ristić, Biljana and Tovilović-Kovačević, Gordana and Zogović, Nevena and Bumbaširević, Vladimir and Trajković, Vladimir and Harhaji-Trajković, Ljubica",
year = "2012",
abstract = "The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.",
publisher = "Amsterdam: Elsevier",
journal = "Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease",
title = "Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells",
number = "11",
volume = "1822",
doi = "10.1016/j.bbadis.2012.08.006.",
pages = "1826-1836"
}
Arsikin-Csordas, K., Kravić-Stevović, T., Jovanović, M., Ristić, B., Tovilović-Kovačević, G., Zogović, N., Bumbaširević, V., Trajković, V.,& Harhaji-Trajković, L.. (2012). Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. in Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Amsterdam: Elsevier., 1822(11), 1826-1836.
https://doi.org/10.1016/j.bbadis.2012.08.006.
Arsikin-Csordas K, Kravić-Stevović T, Jovanović M, Ristić B, Tovilović-Kovačević G, Zogović N, Bumbaširević V, Trajković V, Harhaji-Trajković L. Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. in Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2012;1822(11):1826-1836.
doi:10.1016/j.bbadis.2012.08.006. .
Arsikin-Csordas, Katarina, Kravić-Stevović, Tamara, Jovanović, Maja, Ristić, Biljana, Tovilović-Kovačević, Gordana, Zogović, Nevena, Bumbaširević, Vladimir, Trajković, Vladimir, Harhaji-Trajković, Ljubica, "Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells" in Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822, no. 11 (2012):1826-1836,
https://doi.org/10.1016/j.bbadis.2012.08.006. . .
34
45