Pěnčík, Aleš

Link to this page

Authority KeyName Variants
a8920614-be15-4c7c-95a1-0ad02d1ad66e
  • Pěnčík, Aleš (1)
Projects

Author's Bibliography

New Insights Into the Activity of Apple Dihydrochalcone Phloretin: Disturbance of Auxin Homeostasis as Physiological Basis of Phloretin Phytotoxic Action

Smailagić, Dijana; Banjac, Nevena; Ninković, Slavica; Savić, Jelena; Ćosić, Tatjana; Pěnčík, Aleš; Ćalić, Dušica; Bogdanović, Milica; Trajković, Milena; Stanišić, Mariana

(Lausanne: Frontiers Media SA, 2022)

TY  - JOUR
AU  - Smailagić, Dijana
AU  - Banjac, Nevena
AU  - Ninković, Slavica
AU  - Savić, Jelena
AU  - Ćosić, Tatjana
AU  - Pěnčík, Aleš
AU  - Ćalić, Dušica
AU  - Bogdanović, Milica
AU  - Trajković, Milena
AU  - Stanišić, Mariana
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5065
AB  - Apple species are the unique naturally rich source of dihydrochalcones, phenolic compounds with an elusive role in planta, but suggested auto-allelochemical features related to “apple replant disease” (ARD). Our aim was to elucidate the physiological basis of the phytotoxic action of dihydrochalcone phloretin in the model plant Arabidopsis and to promote phloretin as a new prospective eco-friendly phytotoxic compound. Phloretin treatment induced a significant dose-dependent growth retardation and severe morphological abnormalities and agravitropic behavior in Arabidopsis seedlings. Histological examination revealed a reduced starch content in the columella cells and a serious disturbance in root architecture, which resulted in the reduction in length of meristematic and elongation zones. Significantly disturbed auxin metabolome profile in roots with a particularly increased content of IAA accumulated in the lateral parts of the root apex, accompanied by changes in the expression of auxin biosynthetic and transport genes, especially PIN1, PIN3, PIN7, and ABCB1, indicates the role of auxin in physiological basis of phloretin-induced growth retardation. The results reveal a disturbance of auxin homeostasis as the main mechanism of phytotoxic action of phloretin. This mechanism makes phloretin a prospective candidate for an eco-friendly bioherbicide and paves the way for further research of phloretin role in ARD.
PB  - Lausanne: Frontiers Media SA
T2  - Frontiers in Plant Science
T1  - New Insights Into the Activity of Apple Dihydrochalcone Phloretin: Disturbance of Auxin Homeostasis as Physiological Basis of Phloretin Phytotoxic Action
VL  - 13
DO  - 0.3389/fpls.2022.875528
SP  - 875528
ER  - 
@article{
author = "Smailagić, Dijana and Banjac, Nevena and Ninković, Slavica and Savić, Jelena and Ćosić, Tatjana and Pěnčík, Aleš and Ćalić, Dušica and Bogdanović, Milica and Trajković, Milena and Stanišić, Mariana",
year = "2022",
abstract = "Apple species are the unique naturally rich source of dihydrochalcones, phenolic compounds with an elusive role in planta, but suggested auto-allelochemical features related to “apple replant disease” (ARD). Our aim was to elucidate the physiological basis of the phytotoxic action of dihydrochalcone phloretin in the model plant Arabidopsis and to promote phloretin as a new prospective eco-friendly phytotoxic compound. Phloretin treatment induced a significant dose-dependent growth retardation and severe morphological abnormalities and agravitropic behavior in Arabidopsis seedlings. Histological examination revealed a reduced starch content in the columella cells and a serious disturbance in root architecture, which resulted in the reduction in length of meristematic and elongation zones. Significantly disturbed auxin metabolome profile in roots with a particularly increased content of IAA accumulated in the lateral parts of the root apex, accompanied by changes in the expression of auxin biosynthetic and transport genes, especially PIN1, PIN3, PIN7, and ABCB1, indicates the role of auxin in physiological basis of phloretin-induced growth retardation. The results reveal a disturbance of auxin homeostasis as the main mechanism of phytotoxic action of phloretin. This mechanism makes phloretin a prospective candidate for an eco-friendly bioherbicide and paves the way for further research of phloretin role in ARD.",
publisher = "Lausanne: Frontiers Media SA",
journal = "Frontiers in Plant Science",
title = "New Insights Into the Activity of Apple Dihydrochalcone Phloretin: Disturbance of Auxin Homeostasis as Physiological Basis of Phloretin Phytotoxic Action",
volume = "13",
doi = "0.3389/fpls.2022.875528",
pages = "875528"
}
Smailagić, D., Banjac, N., Ninković, S., Savić, J., Ćosić, T., Pěnčík, A., Ćalić, D., Bogdanović, M., Trajković, M.,& Stanišić, M.. (2022). New Insights Into the Activity of Apple Dihydrochalcone Phloretin: Disturbance of Auxin Homeostasis as Physiological Basis of Phloretin Phytotoxic Action. in Frontiers in Plant Science
Lausanne: Frontiers Media SA., 13, 875528.
https://doi.org/0.3389/fpls.2022.875528
Smailagić D, Banjac N, Ninković S, Savić J, Ćosić T, Pěnčík A, Ćalić D, Bogdanović M, Trajković M, Stanišić M. New Insights Into the Activity of Apple Dihydrochalcone Phloretin: Disturbance of Auxin Homeostasis as Physiological Basis of Phloretin Phytotoxic Action. in Frontiers in Plant Science. 2022;13:875528.
doi:0.3389/fpls.2022.875528 .
Smailagić, Dijana, Banjac, Nevena, Ninković, Slavica, Savić, Jelena, Ćosić, Tatjana, Pěnčík, Aleš, Ćalić, Dušica, Bogdanović, Milica, Trajković, Milena, Stanišić, Mariana, "New Insights Into the Activity of Apple Dihydrochalcone Phloretin: Disturbance of Auxin Homeostasis as Physiological Basis of Phloretin Phytotoxic Action" in Frontiers in Plant Science, 13 (2022):875528,
https://doi.org/0.3389/fpls.2022.875528 . .
10