Rabanal-Ruiz, Yoana

Link to this page

Authority KeyName Variants
b67562c4-95f9-4cd1-a821-342c5498aa02
  • Rabanal-Ruiz, Yoana (2)
Projects

Author's Bibliography

Transcriptional block of AMPK-induced autophagy promotes glutamate excitotoxicity in nutrient-deprived SH-SY5Y neuroblastoma cells.

Vučićević, Ljubica; Misirkić Marjanović, Maja; Ćirić, Darko; Martinović, Tamara; Jovanović, Maja; Isaković, Aleksandra; Marković, Ivanka; Šaponjić, Jasna; Foretz, Marc; Rabanal-Ruiz, Yoana; Korolchuk, Viktor I.; Trajković, Vladimir

(2020)

TY  - JOUR
AU  - Vučićević, Ljubica
AU  - Misirkić Marjanović, Maja
AU  - Ćirić, Darko
AU  - Martinović, Tamara
AU  - Jovanović, Maja
AU  - Isaković, Aleksandra
AU  - Marković, Ivanka
AU  - Šaponjić, Jasna
AU  - Foretz, Marc
AU  - Rabanal-Ruiz, Yoana
AU  - Korolchuk, Viktor I.
AU  - Trajković, Vladimir
PY  - 2020
UR  - http://link.springer.com/10.1007/s00018-019-03356-2
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3528
AB  - We investigated the role of autophagy, a controlled lysosomal degradation of cellular macromolecules and organelles, in glutamate excitotoxicity during nutrient deprivation in vitro. The incubation in low-glucose serum/amino acid-free cell culture medium synergized with glutamate in increasing AMP/ATP ratio and causing excitotoxic necrosis in SH-SY5Y human neuroblastoma cells. Glutamate suppressed starvation-triggered autophagy, as confirmed by diminished intracellular acidification, lower LC3 punctuation and LC3-I conversion to autophagosome-associated LC3-II, reduced expression of proautophagic beclin-1 and ATG5, increase of the selective autophagic target NBR1, and decreased number of autophagic vesicles. Similar results were observed in PC12 rat pheochromocytoma cells. Both glutamate-mediated excitotoxicity and autophagy inhibition in starved SH-SY5Y cells were reverted by NMDA antagonist memantine and mimicked by NMDA agonists D-aspartate and ibotenate. Glutamate reduced starvation-triggered phosphorylation of the energy sensor AMP-activated protein kinase (AMPK) without affecting the activity of mammalian target of rapamycin complex 1, a major negative regulator of autophagy. This was associated with reduced mRNA levels of autophagy transcriptional activators (FOXO3, ATF4) and molecules involved in autophagy initiation (ULK1, ATG13, FIP200), autophagosome nucleation/elongation (ATG14, beclin-1, ATG5), and autophagic cargo delivery to autophagosomes (SQSTM1). Glutamate-mediated transcriptional repression of autophagy was alleviated by overexpression of constitutively active AMPK. Genetic or pharmacological AMPK activation by AMPK overexpression or metformin, as well as genetic or pharmacological autophagy induction by TFEB overexpression or lithium chloride, reduced the sensitivity of nutrient-deprived SH-SY5Y cells to glutamate excitotoxicity. These data indicate that transcriptional inhibition of AMPK-dependent cytoprotective autophagy is involved in glutamate-mediated excitotoxicity during nutrient deprivation in vitro.
T2  - Cellular and Molecular Life Sciences
T1  - Transcriptional block of AMPK-induced autophagy promotes glutamate excitotoxicity in nutrient-deprived SH-SY5Y neuroblastoma cells.
VL  - 77
DO  - 10.1007/s00018-019-03356-2
SP  - 3383
EP  - 3399
ER  - 
@article{
author = "Vučićević, Ljubica and Misirkić Marjanović, Maja and Ćirić, Darko and Martinović, Tamara and Jovanović, Maja and Isaković, Aleksandra and Marković, Ivanka and Šaponjić, Jasna and Foretz, Marc and Rabanal-Ruiz, Yoana and Korolchuk, Viktor I. and Trajković, Vladimir",
year = "2020",
abstract = "We investigated the role of autophagy, a controlled lysosomal degradation of cellular macromolecules and organelles, in glutamate excitotoxicity during nutrient deprivation in vitro. The incubation in low-glucose serum/amino acid-free cell culture medium synergized with glutamate in increasing AMP/ATP ratio and causing excitotoxic necrosis in SH-SY5Y human neuroblastoma cells. Glutamate suppressed starvation-triggered autophagy, as confirmed by diminished intracellular acidification, lower LC3 punctuation and LC3-I conversion to autophagosome-associated LC3-II, reduced expression of proautophagic beclin-1 and ATG5, increase of the selective autophagic target NBR1, and decreased number of autophagic vesicles. Similar results were observed in PC12 rat pheochromocytoma cells. Both glutamate-mediated excitotoxicity and autophagy inhibition in starved SH-SY5Y cells were reverted by NMDA antagonist memantine and mimicked by NMDA agonists D-aspartate and ibotenate. Glutamate reduced starvation-triggered phosphorylation of the energy sensor AMP-activated protein kinase (AMPK) without affecting the activity of mammalian target of rapamycin complex 1, a major negative regulator of autophagy. This was associated with reduced mRNA levels of autophagy transcriptional activators (FOXO3, ATF4) and molecules involved in autophagy initiation (ULK1, ATG13, FIP200), autophagosome nucleation/elongation (ATG14, beclin-1, ATG5), and autophagic cargo delivery to autophagosomes (SQSTM1). Glutamate-mediated transcriptional repression of autophagy was alleviated by overexpression of constitutively active AMPK. Genetic or pharmacological AMPK activation by AMPK overexpression or metformin, as well as genetic or pharmacological autophagy induction by TFEB overexpression or lithium chloride, reduced the sensitivity of nutrient-deprived SH-SY5Y cells to glutamate excitotoxicity. These data indicate that transcriptional inhibition of AMPK-dependent cytoprotective autophagy is involved in glutamate-mediated excitotoxicity during nutrient deprivation in vitro.",
journal = "Cellular and Molecular Life Sciences",
title = "Transcriptional block of AMPK-induced autophagy promotes glutamate excitotoxicity in nutrient-deprived SH-SY5Y neuroblastoma cells.",
volume = "77",
doi = "10.1007/s00018-019-03356-2",
pages = "3383-3399"
}
Vučićević, L., Misirkić Marjanović, M., Ćirić, D., Martinović, T., Jovanović, M., Isaković, A., Marković, I., Šaponjić, J., Foretz, M., Rabanal-Ruiz, Y., Korolchuk, V. I.,& Trajković, V.. (2020). Transcriptional block of AMPK-induced autophagy promotes glutamate excitotoxicity in nutrient-deprived SH-SY5Y neuroblastoma cells.. in Cellular and Molecular Life Sciences, 77, 3383-3399.
https://doi.org/10.1007/s00018-019-03356-2
Vučićević L, Misirkić Marjanović M, Ćirić D, Martinović T, Jovanović M, Isaković A, Marković I, Šaponjić J, Foretz M, Rabanal-Ruiz Y, Korolchuk VI, Trajković V. Transcriptional block of AMPK-induced autophagy promotes glutamate excitotoxicity in nutrient-deprived SH-SY5Y neuroblastoma cells.. in Cellular and Molecular Life Sciences. 2020;77:3383-3399.
doi:10.1007/s00018-019-03356-2 .
Vučićević, Ljubica, Misirkić Marjanović, Maja, Ćirić, Darko, Martinović, Tamara, Jovanović, Maja, Isaković, Aleksandra, Marković, Ivanka, Šaponjić, Jasna, Foretz, Marc, Rabanal-Ruiz, Yoana, Korolchuk, Viktor I., Trajković, Vladimir, "Transcriptional block of AMPK-induced autophagy promotes glutamate excitotoxicity in nutrient-deprived SH-SY5Y neuroblastoma cells." in Cellular and Molecular Life Sciences, 77 (2020):3383-3399,
https://doi.org/10.1007/s00018-019-03356-2 . .
1
20
4
18

Autophagy regulation and its role in glutamate excitotoxicity during nutrient stress

Vučićević, Ljubica; Misirkić Marjanović, Maja; Ćirić, Darko; Martinović, Tamara; Jovanović, Maja; Isaković, Aleksandra; Marković, Ivanka; Zogović, Nevena; Foretz, Mark; Rabanal-Ruiz, Yoana; Korolchuk, Viktor; Trajković, Vladimir

(Belgrade : Serbian Neuroscience Society, 2019)

TY  - CONF
AU  - Vučićević, Ljubica
AU  - Misirkić Marjanović, Maja
AU  - Ćirić, Darko
AU  - Martinović, Tamara
AU  - Jovanović, Maja
AU  - Isaković, Aleksandra
AU  - Marković, Ivanka
AU  - Zogović, Nevena
AU  - Foretz, Mark
AU  - Rabanal-Ruiz, Yoana
AU  - Korolchuk, Viktor
AU  - Trajković, Vladimir
PY  - 2019
UR  - https://www.fens.org/news-activities/fens-and-societies-calendar/meeting-event/fens-regional-meeting-2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6357
AB  - We investigated the effect of excitotoxic glutamate on nutrient starvation-induced autophagy, a process of lysosome-mediated degradation of cellular macromolecules and organelles. Incubation of SH-SY5Y human neuroblastoma cell line in glucose/amino acid/serum-free Hank Balanced Salt solution synergized with glutamate in causing energy stress and excitotoxic necrosis. Glutamate inhibited starvation-induced autophagy, as demonstrated by decreased intracellular acidification, lower LC3 punctuation, reduced conversion of LC3-I to LC3-II, reduced expression of autophagy activators beclin-1 and ATG5, increased
levels of the selective autophagic target NBR1, and decline in the number of autophagic vesicles observed by transmission electron microscopy. NMDA antagonist memantine restored LC3B-II accumulation in starved cells exposed to glutamate, indicating that glutamate exerts its inhibitory role on autophagy by activating NMDA receptors. The modulation of mTOR, the negative regulator of autophagy, was not responsible for glutamate-mediated autophagy inhibition during starvation. On the other hand, glutamate downregulated starvation-induced activation of the intracellular energy sensor AMP-activated protein
kinase (AMPK). This was associated with reduced mRNA expression of autophagy transcription factors FOXO3 and ATF4, as well as molecules involved in autophagy process (ULK1, ATG13, FIP200, ATG14, beclin-1, ATG5, ATG12, SQSTM1). The ability of glutamate to repress transcription of autophagy genes in starved cells was partly mediated by AMPK downregulation. Genetic or pharmacological AMPK activation by AMPK overexpression or metformin, as well as genetic or pharmacological autophagy induction by TFEB overexpression or lithium chloride, rescued cells from glutamate-mediated excitoxicity. These data indicate that transcriptional inhibition of AMPK-dependent autophagy is involved in glutamate-mediated excitotoxicity during nutrient deprivation in vitro.
PB  - Belgrade : Serbian Neuroscience Society
C3  - Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
T1  - Autophagy regulation and its role in glutamate excitotoxicity during nutrient stress
SP  - 144
EP  - 144
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6357
ER  - 
@conference{
author = "Vučićević, Ljubica and Misirkić Marjanović, Maja and Ćirić, Darko and Martinović, Tamara and Jovanović, Maja and Isaković, Aleksandra and Marković, Ivanka and Zogović, Nevena and Foretz, Mark and Rabanal-Ruiz, Yoana and Korolchuk, Viktor and Trajković, Vladimir",
year = "2019",
abstract = "We investigated the effect of excitotoxic glutamate on nutrient starvation-induced autophagy, a process of lysosome-mediated degradation of cellular macromolecules and organelles. Incubation of SH-SY5Y human neuroblastoma cell line in glucose/amino acid/serum-free Hank Balanced Salt solution synergized with glutamate in causing energy stress and excitotoxic necrosis. Glutamate inhibited starvation-induced autophagy, as demonstrated by decreased intracellular acidification, lower LC3 punctuation, reduced conversion of LC3-I to LC3-II, reduced expression of autophagy activators beclin-1 and ATG5, increased
levels of the selective autophagic target NBR1, and decline in the number of autophagic vesicles observed by transmission electron microscopy. NMDA antagonist memantine restored LC3B-II accumulation in starved cells exposed to glutamate, indicating that glutamate exerts its inhibitory role on autophagy by activating NMDA receptors. The modulation of mTOR, the negative regulator of autophagy, was not responsible for glutamate-mediated autophagy inhibition during starvation. On the other hand, glutamate downregulated starvation-induced activation of the intracellular energy sensor AMP-activated protein
kinase (AMPK). This was associated with reduced mRNA expression of autophagy transcription factors FOXO3 and ATF4, as well as molecules involved in autophagy process (ULK1, ATG13, FIP200, ATG14, beclin-1, ATG5, ATG12, SQSTM1). The ability of glutamate to repress transcription of autophagy genes in starved cells was partly mediated by AMPK downregulation. Genetic or pharmacological AMPK activation by AMPK overexpression or metformin, as well as genetic or pharmacological autophagy induction by TFEB overexpression or lithium chloride, rescued cells from glutamate-mediated excitoxicity. These data indicate that transcriptional inhibition of AMPK-dependent autophagy is involved in glutamate-mediated excitotoxicity during nutrient deprivation in vitro.",
publisher = "Belgrade : Serbian Neuroscience Society",
journal = "Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia",
title = "Autophagy regulation and its role in glutamate excitotoxicity during nutrient stress",
pages = "144-144",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6357"
}
Vučićević, L., Misirkić Marjanović, M., Ćirić, D., Martinović, T., Jovanović, M., Isaković, A., Marković, I., Zogović, N., Foretz, M., Rabanal-Ruiz, Y., Korolchuk, V.,& Trajković, V.. (2019). Autophagy regulation and its role in glutamate excitotoxicity during nutrient stress. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
Belgrade : Serbian Neuroscience Society., 144-144.
https://hdl.handle.net/21.15107/rcub_ibiss_6357
Vučićević L, Misirkić Marjanović M, Ćirić D, Martinović T, Jovanović M, Isaković A, Marković I, Zogović N, Foretz M, Rabanal-Ruiz Y, Korolchuk V, Trajković V. Autophagy regulation and its role in glutamate excitotoxicity during nutrient stress. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia. 2019;:144-144.
https://hdl.handle.net/21.15107/rcub_ibiss_6357 .
Vučićević, Ljubica, Misirkić Marjanović, Maja, Ćirić, Darko, Martinović, Tamara, Jovanović, Maja, Isaković, Aleksandra, Marković, Ivanka, Zogović, Nevena, Foretz, Mark, Rabanal-Ruiz, Yoana, Korolchuk, Viktor, Trajković, Vladimir, "Autophagy regulation and its role in glutamate excitotoxicity during nutrient stress" in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia (2019):144-144,
https://hdl.handle.net/21.15107/rcub_ibiss_6357 .