Stojanović, Marijana

Link to this page

Authority KeyName Variants
orcid::0000-0002-8204-4183
  • Stojanović, Marijana (2)

Author's Bibliography

Removal of Ni2+ ions from Contaminated Water by New Exopolysaccharide Extracted from K. oxytoca J7 as Biosorbent

Ljubić, Verica; Perendija, Jovana; Cvetković, Slobodan; Rogan, Jelena; Trivunac, Katarina; Stojanović, Marijana; Popović, Mina

(New York: Springer, 2023)

TY  - JOUR
AU  - Ljubić, Verica
AU  - Perendija, Jovana
AU  - Cvetković, Slobodan
AU  - Rogan, Jelena
AU  - Trivunac, Katarina
AU  - Stojanović, Marijana
AU  - Popović, Mina
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6402
AB  - Nowadays, exopolysaccharides (EPS) produced from bacterial cells are manufactured for their use in different industries in the world, mainly in the food, pharmaceutical, and wastewater industries. The characteristics of EPS, such as being biodegradable, safe, high adsorption capacity, and reusable, make them significant and potential applications in the purification of contaminated water of heavy metals. In this study, the possible application in biosorption Ni2+ ions from contaminated water was assessed using this exopolysaccharide as a biosorbent. The new exopolysaccharide from the bacterial strain K. oxytoca J7 was extracted, isolated, and characterized using SEM, FTIR, XRD, TGA/DTG, and MALDI-TOF MS analysis. Likewise, the cytotoxic activity was performed for EPS from K. oxytoca J7 strain. The aim of this study was to investigate the possible application of non-toxic exopolysaccharide in the purification of contaminated water by removing Ni2+ ions. The results obtained from the biosorption study showed that the Langmuir model is well suited to describe the adsorption process of Ni2+ ions by EPS from K. oxytoca J7, with a maximum adsorption capacity of 269.97 mg g–1. The importance of this study is the possible use of natural nontoxic exopolysaccharide extracted from the pathogen microorganism, K. oxytoca J7, for the removal of Ni2+ ions from the contaminated water.
PB  - New York: Springer
T2  - Journal of Polymers and the Environment
T1  - Removal of Ni2+ ions from Contaminated Water by New Exopolysaccharide Extracted from K. oxytoca J7 as Biosorbent
DO  - 10.1007/s10924-023-03031-5
ER  - 
@article{
author = "Ljubić, Verica and Perendija, Jovana and Cvetković, Slobodan and Rogan, Jelena and Trivunac, Katarina and Stojanović, Marijana and Popović, Mina",
year = "2023",
abstract = "Nowadays, exopolysaccharides (EPS) produced from bacterial cells are manufactured for their use in different industries in the world, mainly in the food, pharmaceutical, and wastewater industries. The characteristics of EPS, such as being biodegradable, safe, high adsorption capacity, and reusable, make them significant and potential applications in the purification of contaminated water of heavy metals. In this study, the possible application in biosorption Ni2+ ions from contaminated water was assessed using this exopolysaccharide as a biosorbent. The new exopolysaccharide from the bacterial strain K. oxytoca J7 was extracted, isolated, and characterized using SEM, FTIR, XRD, TGA/DTG, and MALDI-TOF MS analysis. Likewise, the cytotoxic activity was performed for EPS from K. oxytoca J7 strain. The aim of this study was to investigate the possible application of non-toxic exopolysaccharide in the purification of contaminated water by removing Ni2+ ions. The results obtained from the biosorption study showed that the Langmuir model is well suited to describe the adsorption process of Ni2+ ions by EPS from K. oxytoca J7, with a maximum adsorption capacity of 269.97 mg g–1. The importance of this study is the possible use of natural nontoxic exopolysaccharide extracted from the pathogen microorganism, K. oxytoca J7, for the removal of Ni2+ ions from the contaminated water.",
publisher = "New York: Springer",
journal = "Journal of Polymers and the Environment",
title = "Removal of Ni2+ ions from Contaminated Water by New Exopolysaccharide Extracted from K. oxytoca J7 as Biosorbent",
doi = "10.1007/s10924-023-03031-5"
}
Ljubić, V., Perendija, J., Cvetković, S., Rogan, J., Trivunac, K., Stojanović, M.,& Popović, M.. (2023). Removal of Ni2+ ions from Contaminated Water by New Exopolysaccharide Extracted from K. oxytoca J7 as Biosorbent. in Journal of Polymers and the Environment
New York: Springer..
https://doi.org/10.1007/s10924-023-03031-5
Ljubić V, Perendija J, Cvetković S, Rogan J, Trivunac K, Stojanović M, Popović M. Removal of Ni2+ ions from Contaminated Water by New Exopolysaccharide Extracted from K. oxytoca J7 as Biosorbent. in Journal of Polymers and the Environment. 2023;.
doi:10.1007/s10924-023-03031-5 .
Ljubić, Verica, Perendija, Jovana, Cvetković, Slobodan, Rogan, Jelena, Trivunac, Katarina, Stojanović, Marijana, Popović, Mina, "Removal of Ni2+ ions from Contaminated Water by New Exopolysaccharide Extracted from K. oxytoca J7 as Biosorbent" in Journal of Polymers and the Environment (2023),
https://doi.org/10.1007/s10924-023-03031-5 . .
2
1

Expression of recombinant SARS-CoV-2 nucleocapsid protein in mammalian cells

Sibinčić, Nikolina; Krstić Ristivojević, Maja; Stojanović, Marijana; Mladenović Stokanić, Maja; Vasović, Tamara; Ćirković Veličković, Tanja; Stojadinović, Marija

(Belgrade: Faculty of Chemistry, 2023)

TY  - CONF
AU  - Sibinčić, Nikolina
AU  - Krstić Ristivojević, Maja
AU  - Stojanović, Marijana
AU  - Mladenović Stokanić, Maja
AU  - Vasović, Tamara
AU  - Ćirković Veličković, Tanja
AU  - Stojadinović, Marija
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6318
AB  - The SARS-CoV-2 nucleocapsid (N) protein plays a significant role in the coronavirus life cycle and participates in a variety of critical events following viral invasion1. In infected patients, high titers of immunoglobulin G (IgG) targeting N protein were detected and correlated with the clinical course of the disease2. Therefore, N protein and anti-N protein IgGs were recognized as important diagnostic indicators of COVID-19 infection in serological and quick antigen tests3. In this study, we optimized the expression of the recombinant form of SARS-CoV-2 N protein in a mammalian cell line HEK293T by comparing the transfection efficiency between Polyethylenimine (PEI) and Calcium Phosphate (CaP) DNA-complexing agents. Transfection potency was tested at different cell confluence and passage number, in several cell culture media, pre-transfection and post-transfection media change and in conditions of reduced serum. Chloroquine and glycerol treatments were included to enhance transfection efficiency as they might inhibit DNA degradation in lysosomes or increase membrane permeability. Protein expression was monitored in cell supernatants up to 7 days post-transfection in dot-bot and Western blot using anti-N protein antibodies. Both transfection methods have shown moderate to relatively high transfection efficiency dependent on the applied conditions, making them affordable and easy to use techniques for recombinant N protein production on a small-scale in adherent mammalian systems. PEI acts as a good delivery system regardless of the presence of the fetal bovine serum (FBS), while CaP transfection is more dependent on the presence of FBS which in turn favors N protein degradation. However, we have optimized both methods to achieve optimal expression of unfragmented N-protein in serum-free conditions. Apart from setting up a cost-effective platform for expression of N protein in mammalian cells, we plan on investigating the mechanisms behind the PEI and CaP non-viral gene delivery systems as there are still some uncertainties in the scientific community.
PB  - Belgrade: Faculty of Chemistry
C3  - Biochemistry in Biotechnology: Serbian Biochemical Society, Twelfth Conference, International scientific meeting; 2023 Sep 21-23; Belgrade, Serbia
T1  - Expression of recombinant SARS-CoV-2 nucleocapsid protein in mammalian cells
SP  - 91
EP  - 92
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6318
ER  - 
@conference{
author = "Sibinčić, Nikolina and Krstić Ristivojević, Maja and Stojanović, Marijana and Mladenović Stokanić, Maja and Vasović, Tamara and Ćirković Veličković, Tanja and Stojadinović, Marija",
year = "2023",
abstract = "The SARS-CoV-2 nucleocapsid (N) protein plays a significant role in the coronavirus life cycle and participates in a variety of critical events following viral invasion1. In infected patients, high titers of immunoglobulin G (IgG) targeting N protein were detected and correlated with the clinical course of the disease2. Therefore, N protein and anti-N protein IgGs were recognized as important diagnostic indicators of COVID-19 infection in serological and quick antigen tests3. In this study, we optimized the expression of the recombinant form of SARS-CoV-2 N protein in a mammalian cell line HEK293T by comparing the transfection efficiency between Polyethylenimine (PEI) and Calcium Phosphate (CaP) DNA-complexing agents. Transfection potency was tested at different cell confluence and passage number, in several cell culture media, pre-transfection and post-transfection media change and in conditions of reduced serum. Chloroquine and glycerol treatments were included to enhance transfection efficiency as they might inhibit DNA degradation in lysosomes or increase membrane permeability. Protein expression was monitored in cell supernatants up to 7 days post-transfection in dot-bot and Western blot using anti-N protein antibodies. Both transfection methods have shown moderate to relatively high transfection efficiency dependent on the applied conditions, making them affordable and easy to use techniques for recombinant N protein production on a small-scale in adherent mammalian systems. PEI acts as a good delivery system regardless of the presence of the fetal bovine serum (FBS), while CaP transfection is more dependent on the presence of FBS which in turn favors N protein degradation. However, we have optimized both methods to achieve optimal expression of unfragmented N-protein in serum-free conditions. Apart from setting up a cost-effective platform for expression of N protein in mammalian cells, we plan on investigating the mechanisms behind the PEI and CaP non-viral gene delivery systems as there are still some uncertainties in the scientific community.",
publisher = "Belgrade: Faculty of Chemistry",
journal = "Biochemistry in Biotechnology: Serbian Biochemical Society, Twelfth Conference, International scientific meeting; 2023 Sep 21-23; Belgrade, Serbia",
title = "Expression of recombinant SARS-CoV-2 nucleocapsid protein in mammalian cells",
pages = "91-92",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6318"
}
Sibinčić, N., Krstić Ristivojević, M., Stojanović, M., Mladenović Stokanić, M., Vasović, T., Ćirković Veličković, T.,& Stojadinović, M.. (2023). Expression of recombinant SARS-CoV-2 nucleocapsid protein in mammalian cells. in Biochemistry in Biotechnology: Serbian Biochemical Society, Twelfth Conference, International scientific meeting; 2023 Sep 21-23; Belgrade, Serbia
Belgrade: Faculty of Chemistry., 91-92.
https://hdl.handle.net/21.15107/rcub_ibiss_6318
Sibinčić N, Krstić Ristivojević M, Stojanović M, Mladenović Stokanić M, Vasović T, Ćirković Veličković T, Stojadinović M. Expression of recombinant SARS-CoV-2 nucleocapsid protein in mammalian cells. in Biochemistry in Biotechnology: Serbian Biochemical Society, Twelfth Conference, International scientific meeting; 2023 Sep 21-23; Belgrade, Serbia. 2023;:91-92.
https://hdl.handle.net/21.15107/rcub_ibiss_6318 .
Sibinčić, Nikolina, Krstić Ristivojević, Maja, Stojanović, Marijana, Mladenović Stokanić, Maja, Vasović, Tamara, Ćirković Veličković, Tanja, Stojadinović, Marija, "Expression of recombinant SARS-CoV-2 nucleocapsid protein in mammalian cells" in Biochemistry in Biotechnology: Serbian Biochemical Society, Twelfth Conference, International scientific meeting; 2023 Sep 21-23; Belgrade, Serbia (2023):91-92,
https://hdl.handle.net/21.15107/rcub_ibiss_6318 .