Fogarty International Research Award, NIH R03AG046216

Link to this page

Fogarty International Research Award, NIH R03AG046216

Authors

Publications

Dietary restriction suppresses apoptotic cell death, promotes Bcl-2 and Bcl-xl mRNA expression and increases the Bcl-2/Bax protein ratio in the rat cortex after cortical injury.

Lončarević-Vasiljković, Nataša; Milanović, Desanka; Pešić, Vesna; Tešić, Vesna; Brkić, Marjana; Lazić, Divna; Avramović, Vladimir; Kanazir, Selma

(England : Elsevier, 2016)

TY  - JOUR
AU  - Lončarević-Vasiljković, Nataša
AU  - Milanović, Desanka
AU  - Pešić, Vesna
AU  - Tešić, Vesna
AU  - Brkić, Marjana
AU  - Lazić, Divna
AU  - Avramović, Vladimir
AU  - Kanazir, Selma
PY  - 2016
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5437
AB  - Subsequent pathological events occurring in the brain after TBI, referred to as secondary injury, continue to damage surrounding tissue resulting in substantial neuronal loss. Using an animal model of TBI we examined the effect of dietary restriction (DR) on the neuroapoptosis and Bcl-2 family genes as the main regulators of the intrinsic apoptotic pathway. Bcl-2, Bcl-xl and Bax mRNA and protein expression in the ipsilateral cortex of adult Wistar rats exposed to DR before TBI were studied from 2 to 28 days post injury. Our results showed that DR suppressed neuroapoptosis and promoted significant upregulation of antiapoptotic Bcl-2 and Bcl-xl mRNAs in the ipsilateral cortex following injury. Expression of the proapoptotic Bax gene increased in ad libitum (AL) fed rats but remained unchanged in rats exposed to DR. Although the expression of Bcl-2, Bcl-xl and Bax proteins was changed in a similar manner in both experimental groups, DR promoted a continuous increase in the Bcl-2:Bax protein ratio throughout the recovery period. Together with our previous finding that DR mediates inhibition of the extrinsic apoptotic pathway the present work reveals that modulation of the intrinsic pathway contributes to the beneficial effect of DR in brain injury. These findings provide new insight into the effects of DR on pro-survival signaling after injury, lending further support to its neuroprotective effect.
PB  - England : Elsevier
T2  - Neurochemistry International
T1  - Dietary restriction suppresses apoptotic cell death, promotes Bcl-2 and Bcl-xl mRNA expression and increases the Bcl-2/Bax protein ratio in the rat cortex after cortical injury.
VL  - 96
DO  - 10.1016/j.neuint.2016.02.017
SP  - 69
EP  - 76
ER  - 
@article{
author = "Lončarević-Vasiljković, Nataša and Milanović, Desanka and Pešić, Vesna and Tešić, Vesna and Brkić, Marjana and Lazić, Divna and Avramović, Vladimir and Kanazir, Selma",
year = "2016",
abstract = "Subsequent pathological events occurring in the brain after TBI, referred to as secondary injury, continue to damage surrounding tissue resulting in substantial neuronal loss. Using an animal model of TBI we examined the effect of dietary restriction (DR) on the neuroapoptosis and Bcl-2 family genes as the main regulators of the intrinsic apoptotic pathway. Bcl-2, Bcl-xl and Bax mRNA and protein expression in the ipsilateral cortex of adult Wistar rats exposed to DR before TBI were studied from 2 to 28 days post injury. Our results showed that DR suppressed neuroapoptosis and promoted significant upregulation of antiapoptotic Bcl-2 and Bcl-xl mRNAs in the ipsilateral cortex following injury. Expression of the proapoptotic Bax gene increased in ad libitum (AL) fed rats but remained unchanged in rats exposed to DR. Although the expression of Bcl-2, Bcl-xl and Bax proteins was changed in a similar manner in both experimental groups, DR promoted a continuous increase in the Bcl-2:Bax protein ratio throughout the recovery period. Together with our previous finding that DR mediates inhibition of the extrinsic apoptotic pathway the present work reveals that modulation of the intrinsic pathway contributes to the beneficial effect of DR in brain injury. These findings provide new insight into the effects of DR on pro-survival signaling after injury, lending further support to its neuroprotective effect.",
publisher = "England : Elsevier",
journal = "Neurochemistry International",
title = "Dietary restriction suppresses apoptotic cell death, promotes Bcl-2 and Bcl-xl mRNA expression and increases the Bcl-2/Bax protein ratio in the rat cortex after cortical injury.",
volume = "96",
doi = "10.1016/j.neuint.2016.02.017",
pages = "69-76"
}
Lončarević-Vasiljković, N., Milanović, D., Pešić, V., Tešić, V., Brkić, M., Lazić, D., Avramović, V.,& Kanazir, S.. (2016). Dietary restriction suppresses apoptotic cell death, promotes Bcl-2 and Bcl-xl mRNA expression and increases the Bcl-2/Bax protein ratio in the rat cortex after cortical injury.. in Neurochemistry International
England : Elsevier., 96, 69-76.
https://doi.org/10.1016/j.neuint.2016.02.017
Lončarević-Vasiljković N, Milanović D, Pešić V, Tešić V, Brkić M, Lazić D, Avramović V, Kanazir S. Dietary restriction suppresses apoptotic cell death, promotes Bcl-2 and Bcl-xl mRNA expression and increases the Bcl-2/Bax protein ratio in the rat cortex after cortical injury.. in Neurochemistry International. 2016;96:69-76.
doi:10.1016/j.neuint.2016.02.017 .
Lončarević-Vasiljković, Nataša, Milanović, Desanka, Pešić, Vesna, Tešić, Vesna, Brkić, Marjana, Lazić, Divna, Avramović, Vladimir, Kanazir, Selma, "Dietary restriction suppresses apoptotic cell death, promotes Bcl-2 and Bcl-xl mRNA expression and increases the Bcl-2/Bax protein ratio in the rat cortex after cortical injury." in Neurochemistry International, 96 (2016):69-76,
https://doi.org/10.1016/j.neuint.2016.02.017 . .
29
7
25