Swiss National Science Foundation, Grant SCOPES JRP IZ73Z0_152331

Link to this page

Swiss National Science Foundation, Grant SCOPES JRP IZ73Z0_152331

Authors

Publications

Decreased Glucocorticoid Signaling Potentiates Lipid-Induced Inflammation and Contributes to Insulin Resistance in the Skeletal Muscle of Fructose-Fed Male Rats Exposed to Stress

Shirif, Abdulbaset Zidane; Kovačević, Sanja; Brkljačić, Jelena; Teofilović, Ana; Elaković, Ivana; Đorđević, Ana; Matić, Gordana

(Basel, Switzerland: MDPI, 2021)

TY  - JOUR
AU  - Shirif, Abdulbaset Zidane
AU  - Kovačević, Sanja
AU  - Brkljačić, Jelena
AU  - Teofilović, Ana
AU  - Elaković, Ivana
AU  - Đorđević, Ana
AU  - Matić, Gordana
PY  - 2021
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4259
AB  - The modern lifestyle brings both excessive fructose consumption and daily exposure
to stress which could lead to metabolic disturbances and type 2 diabetes. Muscles are important
points of glucose and lipid metabolism, with a crucial role in the maintenance of systemic energy
homeostasis. We investigated whether 9-week fructose-enriched diet, with and without exposure to 4-
week unpredictable stress, disturbs insulin signaling in the skeletal muscle of male rats and evaluated
potential contributory roles of muscle lipid metabolism, glucocorticoid signaling and inflammation.
The combination of fructose-enriched diet and stress increased peroxisome proliferator-activated
receptors-  and -  and stimulated lipid uptake, lipolysis and  -oxidation in the muscle of fructosefed
stressed rats. Combination of treatment also decreased systemic insulin sensitivity judged by
lower R-QUICKI, and lowered muscle protein content and stimulatory phosphorylations of insulin
receptor supstrate-1 and Akt, as well as the level of 11 -hydroxysteroid dehydrogenase type 1
and glucocorticoid receptor. At the same time, increased levels of protein tyrosine phosphatase-1B,
nuclear factor- B, tumor necrosis factor- , were observed in the muscle of fructose-fed stressed rats.
Based on these results, we propose that decreased glucocorticoid signaling in the skeletal muscle
can make a setting for lipid-induced inflammation and the development of insulin resistance in
fructose-fed stressed rats.
PB  - Basel, Switzerland: MDPI
T2  - International Journal of Molecular Sciences, Special Issue Glucocorticoids and Metabolic Disorders
T1  - Decreased Glucocorticoid Signaling Potentiates Lipid-Induced Inflammation and Contributes to Insulin Resistance in the Skeletal Muscle of Fructose-Fed Male Rats Exposed to Stress
IS  - 13
VL  - 22
DO  - 10.3390/ijms22137206
SP  - 7206
ER  - 
@article{
author = "Shirif, Abdulbaset Zidane and Kovačević, Sanja and Brkljačić, Jelena and Teofilović, Ana and Elaković, Ivana and Đorđević, Ana and Matić, Gordana",
year = "2021",
abstract = "The modern lifestyle brings both excessive fructose consumption and daily exposure
to stress which could lead to metabolic disturbances and type 2 diabetes. Muscles are important
points of glucose and lipid metabolism, with a crucial role in the maintenance of systemic energy
homeostasis. We investigated whether 9-week fructose-enriched diet, with and without exposure to 4-
week unpredictable stress, disturbs insulin signaling in the skeletal muscle of male rats and evaluated
potential contributory roles of muscle lipid metabolism, glucocorticoid signaling and inflammation.
The combination of fructose-enriched diet and stress increased peroxisome proliferator-activated
receptors-  and -  and stimulated lipid uptake, lipolysis and  -oxidation in the muscle of fructosefed
stressed rats. Combination of treatment also decreased systemic insulin sensitivity judged by
lower R-QUICKI, and lowered muscle protein content and stimulatory phosphorylations of insulin
receptor supstrate-1 and Akt, as well as the level of 11 -hydroxysteroid dehydrogenase type 1
and glucocorticoid receptor. At the same time, increased levels of protein tyrosine phosphatase-1B,
nuclear factor- B, tumor necrosis factor- , were observed in the muscle of fructose-fed stressed rats.
Based on these results, we propose that decreased glucocorticoid signaling in the skeletal muscle
can make a setting for lipid-induced inflammation and the development of insulin resistance in
fructose-fed stressed rats.",
publisher = "Basel, Switzerland: MDPI",
journal = "International Journal of Molecular Sciences, Special Issue Glucocorticoids and Metabolic Disorders",
title = "Decreased Glucocorticoid Signaling Potentiates Lipid-Induced Inflammation and Contributes to Insulin Resistance in the Skeletal Muscle of Fructose-Fed Male Rats Exposed to Stress",
number = "13",
volume = "22",
doi = "10.3390/ijms22137206",
pages = "7206"
}
Shirif, A. Z., Kovačević, S., Brkljačić, J., Teofilović, A., Elaković, I., Đorđević, A.,& Matić, G.. (2021). Decreased Glucocorticoid Signaling Potentiates Lipid-Induced Inflammation and Contributes to Insulin Resistance in the Skeletal Muscle of Fructose-Fed Male Rats Exposed to Stress. in International Journal of Molecular Sciences, Special Issue Glucocorticoids and Metabolic Disorders
Basel, Switzerland: MDPI., 22(13), 7206.
https://doi.org/10.3390/ijms22137206
Shirif AZ, Kovačević S, Brkljačić J, Teofilović A, Elaković I, Đorđević A, Matić G. Decreased Glucocorticoid Signaling Potentiates Lipid-Induced Inflammation and Contributes to Insulin Resistance in the Skeletal Muscle of Fructose-Fed Male Rats Exposed to Stress. in International Journal of Molecular Sciences, Special Issue Glucocorticoids and Metabolic Disorders. 2021;22(13):7206.
doi:10.3390/ijms22137206 .
Shirif, Abdulbaset Zidane, Kovačević, Sanja, Brkljačić, Jelena, Teofilović, Ana, Elaković, Ivana, Đorđević, Ana, Matić, Gordana, "Decreased Glucocorticoid Signaling Potentiates Lipid-Induced Inflammation and Contributes to Insulin Resistance in the Skeletal Muscle of Fructose-Fed Male Rats Exposed to Stress" in International Journal of Molecular Sciences, Special Issue Glucocorticoids and Metabolic Disorders, 22, no. 13 (2021):7206,
https://doi.org/10.3390/ijms22137206 . .
4
4

Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats

Kovačević, Sanja; Brkljačić, Jelena; Vojnović-Milutinović, Danijela; Gligorovska, Ljupka; Bursać, Biljana; Elaković, Ivana; Đorđević, Ana

(Lausanne: Frontiers Media SA, 2021)

TY  - JOUR
AU  - Kovačević, Sanja
AU  - Brkljačić, Jelena
AU  - Vojnović-Milutinović, Danijela
AU  - Gligorovska, Ljupka
AU  - Bursać, Biljana
AU  - Elaković, Ivana
AU  - Đorđević, Ana
PY  - 2021
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/4705
AB  - Introduction: Obesity and related metabolic disturbances are frequently related to
modern lifestyle and are characterized by excessive fructose intake. Visceral adipose
tissue (VAT) inflammation has a central role in the development of insulin resistance, type
2 diabetes (T2D), and metabolic syndrome. Since sex-related differences in susceptibility
and progression of metabolic disorders are not yet fully understood, our aim was to
examine inflammation and insulin signaling in VAT of fructose-fed female and male
adult rats.
Methods: We analyzed effects of 9-week 10% fructose-enriched diet on energy intake,
VATmass and histology, and systemic insulin sensitivity. VAT insulin signaling andmarkers
of VAT inflammation, and antioxidative defense status were also evaluated.
Results: The fructose diet had no effect on VAT mass and systemic insulin signaling
in the female and male rats, while it raised plasma uric acid, increased PPARg level in
the VAT, and initiated the development of a distinctive population of small adipocytes
in the females. Also, adipose tissue insulin resistance, evidenced by increased PTP1B
and insulin receptor substrate 1 (IRS1) inhibitory phosphorylation and decreased Akt
activity, was detected. In addition, fructose stimulated the nuclear accumulation of NFkB,
increased expression of proinflammatory cytokines (IL-1b, IL-6, and TNFα), and protein
level of macrophage marker F4/80, superoxide dismutase 1, and glutathione reductase.
In contrast to the females, the fructose diet had no effect on plasma uric acid and
VAT inflammation in the male rats, but less prominent alterations in VAT insulin signaling
were observed.
Conclusion: Even though dietary fructose did not elicit changes in energy intake and
led to obesity in the females, it initiated the proliferation of small-sized adipocytes capable
of storing fats further. In contrast to the males, this state of VAT was accompanied
with enhanced inflammation, which most likely contributed to the development of insulin
resistance. The observed distinction could possibly originate from sex-related differences
in uric acid metabolism. Our results suggest that VAT inflammation could precede obesity and start even before the measurable increase in VAT mass, making it a silent risk factor
for the development of T2D. Our results emphasize that adipose tissue dysfunction,
rather than its simple enlargement, could significantly contribute to the onset and
development of obesity and related metabolic disorders.
PB  - Lausanne: Frontiers Media SA
T2  - Frontiers in Nutrition
T1  - Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats
VL  - 8
DO  - 10.3389/fnut.2021.749328
SP  - 749328
ER  - 
@article{
author = "Kovačević, Sanja and Brkljačić, Jelena and Vojnović-Milutinović, Danijela and Gligorovska, Ljupka and Bursać, Biljana and Elaković, Ivana and Đorđević, Ana",
year = "2021",
abstract = "Introduction: Obesity and related metabolic disturbances are frequently related to
modern lifestyle and are characterized by excessive fructose intake. Visceral adipose
tissue (VAT) inflammation has a central role in the development of insulin resistance, type
2 diabetes (T2D), and metabolic syndrome. Since sex-related differences in susceptibility
and progression of metabolic disorders are not yet fully understood, our aim was to
examine inflammation and insulin signaling in VAT of fructose-fed female and male
adult rats.
Methods: We analyzed effects of 9-week 10% fructose-enriched diet on energy intake,
VATmass and histology, and systemic insulin sensitivity. VAT insulin signaling andmarkers
of VAT inflammation, and antioxidative defense status were also evaluated.
Results: The fructose diet had no effect on VAT mass and systemic insulin signaling
in the female and male rats, while it raised plasma uric acid, increased PPARg level in
the VAT, and initiated the development of a distinctive population of small adipocytes
in the females. Also, adipose tissue insulin resistance, evidenced by increased PTP1B
and insulin receptor substrate 1 (IRS1) inhibitory phosphorylation and decreased Akt
activity, was detected. In addition, fructose stimulated the nuclear accumulation of NFkB,
increased expression of proinflammatory cytokines (IL-1b, IL-6, and TNFα), and protein
level of macrophage marker F4/80, superoxide dismutase 1, and glutathione reductase.
In contrast to the females, the fructose diet had no effect on plasma uric acid and
VAT inflammation in the male rats, but less prominent alterations in VAT insulin signaling
were observed.
Conclusion: Even though dietary fructose did not elicit changes in energy intake and
led to obesity in the females, it initiated the proliferation of small-sized adipocytes capable
of storing fats further. In contrast to the males, this state of VAT was accompanied
with enhanced inflammation, which most likely contributed to the development of insulin
resistance. The observed distinction could possibly originate from sex-related differences
in uric acid metabolism. Our results suggest that VAT inflammation could precede obesity and start even before the measurable increase in VAT mass, making it a silent risk factor
for the development of T2D. Our results emphasize that adipose tissue dysfunction,
rather than its simple enlargement, could significantly contribute to the onset and
development of obesity and related metabolic disorders.",
publisher = "Lausanne: Frontiers Media SA",
journal = "Frontiers in Nutrition",
title = "Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats",
volume = "8",
doi = "10.3389/fnut.2021.749328",
pages = "749328"
}
Kovačević, S., Brkljačić, J., Vojnović-Milutinović, D., Gligorovska, L., Bursać, B., Elaković, I.,& Đorđević, A.. (2021). Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats. in Frontiers in Nutrition
Lausanne: Frontiers Media SA., 8, 749328.
https://doi.org/10.3389/fnut.2021.749328
Kovačević S, Brkljačić J, Vojnović-Milutinović D, Gligorovska L, Bursać B, Elaković I, Đorđević A. Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats. in Frontiers in Nutrition. 2021;8:749328.
doi:10.3389/fnut.2021.749328 .
Kovačević, Sanja, Brkljačić, Jelena, Vojnović-Milutinović, Danijela, Gligorovska, Ljupka, Bursać, Biljana, Elaković, Ivana, Đorđević, Ana, "Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats" in Frontiers in Nutrition, 8 (2021):749328,
https://doi.org/10.3389/fnut.2021.749328 . .
2
14
12

Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action

Kovačević, Sanja; Brkljačić, Jelena; Matić, Gordana; Elaković, Ivana

(Heidelberg: Springer, 2017)

TY  - JOUR
AU  - Kovačević, Sanja
AU  - Brkljačić, Jelena
AU  - Matić, Gordana
AU  - Elaković, Ivana
PY  - 2017
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5148
AB  - Purpose Daily exposure to stress and excessive fruc-
tose intake coincides with the growing rate of obesity and
related disorders, to which women are more prone than
men. Glucocorticoids, the main regulators of energy bal-
ance and response to stress, have been associated with the
development of metabolic disturbances. The aim of the pre-
sent study was to examine the effects of fructose overcon-
sumption and/or chronic stress on glucocorticoid signaliza-
tion and lipid metabolism in female rat adipose tissue.
Methods We examined the effects of fructose-enriched
diet and chronic unpredictable stress, separately and in
combination, on glucocorticoid signaling in terms of
11β-hydroxysteroid dehydrogenase 1 (HSD1)-catalyzed
corticosterone regeneration, glucocorticoid receptor (GR)
intracellular distribution, hormone binding and transcrip-
tional regulation of genes involved in lipolysis (hormone-
sensitive lipase) and lipogenesis (lipoprotein lipase,
acetyl-CoA carboxylase, fatty acid synthase and phospho-
enolpyruvate carboxykinase) in the visceral adipose tis-
sue (VAT) of adult female rats. Additionally, the nuclear
level of the peroxisomal proliferator-activated receptor γ
(PPARγ) was analyzed.
Results The combination of stress and fructose-enriched
diet led to an elevation in HSD1 expression and intracel-
lular corticosterone concentration, whereas GR nuclear
accumulation was enhanced after separate treatments. Fur-
thermore, fructose was shown to induce the expression of
all examined lipogenic genes and nuclear accumulation
of PPARγ, thereby stimulating adipogenesis, while stress
upregulated HSL, reducing the adipose tissue mass regard-
less of fructose consumption.
Conclusions Prolonged overconsumption of fructose and
chronic exposure to stress promote opposite effects on lipid
metabolism in the VAT of adult female rats and suggest that
these effects could be mediated by glucocorticoids
PB  - Heidelberg: Springer
T2  - European Journal of Nutrition
T1  - Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action
IS  - 6
VL  - 56
DO  - 10.1007/s00394-016-1251-8
SP  - 2115
EP  - 2128
ER  - 
@article{
author = "Kovačević, Sanja and Brkljačić, Jelena and Matić, Gordana and Elaković, Ivana",
year = "2017",
abstract = "Purpose Daily exposure to stress and excessive fruc-
tose intake coincides with the growing rate of obesity and
related disorders, to which women are more prone than
men. Glucocorticoids, the main regulators of energy bal-
ance and response to stress, have been associated with the
development of metabolic disturbances. The aim of the pre-
sent study was to examine the effects of fructose overcon-
sumption and/or chronic stress on glucocorticoid signaliza-
tion and lipid metabolism in female rat adipose tissue.
Methods We examined the effects of fructose-enriched
diet and chronic unpredictable stress, separately and in
combination, on glucocorticoid signaling in terms of
11β-hydroxysteroid dehydrogenase 1 (HSD1)-catalyzed
corticosterone regeneration, glucocorticoid receptor (GR)
intracellular distribution, hormone binding and transcrip-
tional regulation of genes involved in lipolysis (hormone-
sensitive lipase) and lipogenesis (lipoprotein lipase,
acetyl-CoA carboxylase, fatty acid synthase and phospho-
enolpyruvate carboxykinase) in the visceral adipose tis-
sue (VAT) of adult female rats. Additionally, the nuclear
level of the peroxisomal proliferator-activated receptor γ
(PPARγ) was analyzed.
Results The combination of stress and fructose-enriched
diet led to an elevation in HSD1 expression and intracel-
lular corticosterone concentration, whereas GR nuclear
accumulation was enhanced after separate treatments. Fur-
thermore, fructose was shown to induce the expression of
all examined lipogenic genes and nuclear accumulation
of PPARγ, thereby stimulating adipogenesis, while stress
upregulated HSL, reducing the adipose tissue mass regard-
less of fructose consumption.
Conclusions Prolonged overconsumption of fructose and
chronic exposure to stress promote opposite effects on lipid
metabolism in the VAT of adult female rats and suggest that
these effects could be mediated by glucocorticoids",
publisher = "Heidelberg: Springer",
journal = "European Journal of Nutrition",
title = "Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action",
number = "6",
volume = "56",
doi = "10.1007/s00394-016-1251-8",
pages = "2115-2128"
}
Kovačević, S., Brkljačić, J., Matić, G.,& Elaković, I.. (2017). Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. in European Journal of Nutrition
Heidelberg: Springer., 56(6), 2115-2128.
https://doi.org/10.1007/s00394-016-1251-8
Kovačević S, Brkljačić J, Matić G, Elaković I. Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. in European Journal of Nutrition. 2017;56(6):2115-2128.
doi:10.1007/s00394-016-1251-8 .
Kovačević, Sanja, Brkljačić, Jelena, Matić, Gordana, Elaković, Ivana, "Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action" in European Journal of Nutrition, 56, no. 6 (2017):2115-2128,
https://doi.org/10.1007/s00394-016-1251-8 . .
14
3
13