Croatian Science Foundation (grant IP-2016-06-2563)

Link to this page

Croatian Science Foundation (grant IP-2016-06-2563)

Authors

Publications

Changing climate may mitigate the invasiveness risk of non-native salmonids in the Danube and Adriatic basins of the Balkan Peninsula (south-eastern Europe)

Marić, Ana; Špelić, Ivan; Radočaj, Tena; Vidović, Zoran; Kanjuh, Tamara; Vilizzi, Lorenzo; Piria, Marina; Nikolić, Vera; Škraba Jurlina, Dubravka; Mrdak, Danilo; Simonović, Predrag

(Sofia: Pensoft Publishers, 2022)

TY  - JOUR
AU  - Marić, Ana
AU  - Špelić, Ivan
AU  - Radočaj, Tena
AU  - Vidović, Zoran
AU  - Kanjuh, Tamara
AU  - Vilizzi, Lorenzo
AU  - Piria, Marina
AU  - Nikolić, Vera
AU  - Škraba Jurlina, Dubravka
AU  - Mrdak, Danilo
AU  - Simonović, Predrag
PY  - 2022
UR  - https://neobiota.pensoft.net/article/82964/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5184
AB  - Salmonids are an extensively hatchery-reared group of fishes that have been introduced worldwide mainly for their high commercial and recreational value. The Balkan Peninsula (south-eastern Europe) is characterised by an outstanding salmonid diversity that has become threatened by the introduction of non-native salmonids whose potential risk of invasiveness in the region remains unknown and especially so under predicted climate change conditions. In this study, 13 extant and four horizon non-native salmonid species were screened for their risk of invasiveness in the Danube and Adriatic basins of four Balkan countries. Overall, six (35%) of the screened species were ranked as carrying a high risk of invasiveness under current climate conditions, whereas under predicted conditions of global warming, this number decreased to three (17%). Under current climate conditions, the very high risk (‘top invasive’) species were rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta ( sensu stricto ), whereas under predicted climate change, this was true only of O. mykiss . A high risk was also attributed to horizon vendace Coregonus albula and lake charr Salvelinus namaycush , and to extant Atlantic salmon Salmo salar and brook trout Salvelinus fontinalis , whose risk of invasiveness, except for S. fontinalis , decreased to medium. For the other eleven medium-risk species, the risk score decreased under predicted climate change, but still remained medium. The outcomes of this study reveal that global warming will influence salmonids and that only species with wider temperature tolerance, such as O. mykiss will likely prevail. It is anticipated that the present results may contribute to the implementation of appropriate management plans to prevent the introduction and translocation of non-native salmonids across the Balkan Peninsula. Additionally, adequate measures should be developed for aquaculture facilities to prevent escapees of non-native salmonids with a high risk of invasiveness, especially into recipient areas of high conservation value.
PB  - Sofia: Pensoft Publishers
T2  - NeoBiota
T1  - Changing climate may mitigate the invasiveness risk of non-native salmonids in the Danube and Adriatic basins of the Balkan Peninsula (south-eastern Europe)
VL  - 76
DO  - 10.3897/neobiota.76.82964
SP  - 135
EP  - 161
ER  - 
@article{
author = "Marić, Ana and Špelić, Ivan and Radočaj, Tena and Vidović, Zoran and Kanjuh, Tamara and Vilizzi, Lorenzo and Piria, Marina and Nikolić, Vera and Škraba Jurlina, Dubravka and Mrdak, Danilo and Simonović, Predrag",
year = "2022",
abstract = "Salmonids are an extensively hatchery-reared group of fishes that have been introduced worldwide mainly for their high commercial and recreational value. The Balkan Peninsula (south-eastern Europe) is characterised by an outstanding salmonid diversity that has become threatened by the introduction of non-native salmonids whose potential risk of invasiveness in the region remains unknown and especially so under predicted climate change conditions. In this study, 13 extant and four horizon non-native salmonid species were screened for their risk of invasiveness in the Danube and Adriatic basins of four Balkan countries. Overall, six (35%) of the screened species were ranked as carrying a high risk of invasiveness under current climate conditions, whereas under predicted conditions of global warming, this number decreased to three (17%). Under current climate conditions, the very high risk (‘top invasive’) species were rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta ( sensu stricto ), whereas under predicted climate change, this was true only of O. mykiss . A high risk was also attributed to horizon vendace Coregonus albula and lake charr Salvelinus namaycush , and to extant Atlantic salmon Salmo salar and brook trout Salvelinus fontinalis , whose risk of invasiveness, except for S. fontinalis , decreased to medium. For the other eleven medium-risk species, the risk score decreased under predicted climate change, but still remained medium. The outcomes of this study reveal that global warming will influence salmonids and that only species with wider temperature tolerance, such as O. mykiss will likely prevail. It is anticipated that the present results may contribute to the implementation of appropriate management plans to prevent the introduction and translocation of non-native salmonids across the Balkan Peninsula. Additionally, adequate measures should be developed for aquaculture facilities to prevent escapees of non-native salmonids with a high risk of invasiveness, especially into recipient areas of high conservation value.",
publisher = "Sofia: Pensoft Publishers",
journal = "NeoBiota",
title = "Changing climate may mitigate the invasiveness risk of non-native salmonids in the Danube and Adriatic basins of the Balkan Peninsula (south-eastern Europe)",
volume = "76",
doi = "10.3897/neobiota.76.82964",
pages = "135-161"
}
Marić, A., Špelić, I., Radočaj, T., Vidović, Z., Kanjuh, T., Vilizzi, L., Piria, M., Nikolić, V., Škraba Jurlina, D., Mrdak, D.,& Simonović, P.. (2022). Changing climate may mitigate the invasiveness risk of non-native salmonids in the Danube and Adriatic basins of the Balkan Peninsula (south-eastern Europe). in NeoBiota
Sofia: Pensoft Publishers., 76, 135-161.
https://doi.org/10.3897/neobiota.76.82964
Marić A, Špelić I, Radočaj T, Vidović Z, Kanjuh T, Vilizzi L, Piria M, Nikolić V, Škraba Jurlina D, Mrdak D, Simonović P. Changing climate may mitigate the invasiveness risk of non-native salmonids in the Danube and Adriatic basins of the Balkan Peninsula (south-eastern Europe). in NeoBiota. 2022;76:135-161.
doi:10.3897/neobiota.76.82964 .
Marić, Ana, Špelić, Ivan, Radočaj, Tena, Vidović, Zoran, Kanjuh, Tamara, Vilizzi, Lorenzo, Piria, Marina, Nikolić, Vera, Škraba Jurlina, Dubravka, Mrdak, Danilo, Simonović, Predrag, "Changing climate may mitigate the invasiveness risk of non-native salmonids in the Danube and Adriatic basins of the Balkan Peninsula (south-eastern Europe)" in NeoBiota, 76 (2022):135-161,
https://doi.org/10.3897/neobiota.76.82964 . .
7
7
4