Russian State Academies of Sciences Fundamental Research Program for 2013-2020

Link to this page

Russian State Academies of Sciences Fundamental Research Program for 2013-2020

Authors

Publications

New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking.

Merlani, Maia; Barbakadze, Vakhtang; Amiranashvili, Lela; Gogilashvili, Lali; Poroikov, Vladimir; Petrou, Anthi; Geronikaki, Athina; Ćirić, Ana; Glamočlija, Jasmina; Soković, Marina

(2019)

TY  - JOUR
AU  - Merlani, Maia
AU  - Barbakadze, Vakhtang
AU  - Amiranashvili, Lela
AU  - Gogilashvili, Lali
AU  - Poroikov, Vladimir
AU  - Petrou, Anthi
AU  - Geronikaki, Athina
AU  - Ćirić, Ana
AU  - Glamočlija, Jasmina
AU  - Soković, Marina
PY  - 2019
UR  - http://www.eurekaselect.com/169251/article
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3346
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3411
AB  - BACKGROUND Phenolic acids (caffeic-, ferulic and p-coumaric acid) are widely distributed in the plant kingdom and exhibit broad spectrum of biological activities, including antimicrobial activity. OBJECTIVE The goal of this paper is the synthesis of some caffeic acid derivatives selected based on computer-aided predictions and evaluate their in vitro antimicrobial properties against Gram positive and Gram negative bacteria and also a series of fungi. METHODS In silico prediction of biological activity was used to identify the most promising structures for synthesis and biological testing, and the putative mechanisms of their antimicrobial action. The designed compounds were synthesized using classical organic synthesis methods. The antimicrobial activity was studied using microdilution method. RESULTS Twelve tested compounds have shown good antibacterial activity. Five out of twelve tested compounds appeared to be more active than the reference drugs ampicillin and streptomycin. Despite that all compounds exhibited good activity against all bacteria tested, the sensitivity of bacteria towards compounds in general was different. The evaluation of antifungal activity revealed that all compounds were more active than ketoconazole, while seven compounds (2, 3, 4, 5, 7, 8 and 12) appeared to be more active than bifonazole. Docking results indicate that gyrase inhibition is the putative mechanism of antibacterial action while the inhibition of 14α-demethylase may be responsible for antifungal action. Prediction of cytotoxicity by PROTOX showed that compounds are not toxic (LD50 1000-2000 mg/kg). CONCLUSION Thirteen compounds, from which six are new ones, were synthesized, and twelve compounds were tested for antimicrobial activity. The studied compounds appeared to be promising potent and non-toxic antimicrobials, which could be considered as leads for new pharmaceutical agents.
T2  - Current Topics in Medicinal Chemistry
T1  - New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking.
IS  - 4
VL  - 19
DO  - 10.2174/1568026619666190122152957
SP  - 292
EP  - 304
ER  - 
@article{
author = "Merlani, Maia and Barbakadze, Vakhtang and Amiranashvili, Lela and Gogilashvili, Lali and Poroikov, Vladimir and Petrou, Anthi and Geronikaki, Athina and Ćirić, Ana and Glamočlija, Jasmina and Soković, Marina",
year = "2019",
abstract = "BACKGROUND Phenolic acids (caffeic-, ferulic and p-coumaric acid) are widely distributed in the plant kingdom and exhibit broad spectrum of biological activities, including antimicrobial activity. OBJECTIVE The goal of this paper is the synthesis of some caffeic acid derivatives selected based on computer-aided predictions and evaluate their in vitro antimicrobial properties against Gram positive and Gram negative bacteria and also a series of fungi. METHODS In silico prediction of biological activity was used to identify the most promising structures for synthesis and biological testing, and the putative mechanisms of their antimicrobial action. The designed compounds were synthesized using classical organic synthesis methods. The antimicrobial activity was studied using microdilution method. RESULTS Twelve tested compounds have shown good antibacterial activity. Five out of twelve tested compounds appeared to be more active than the reference drugs ampicillin and streptomycin. Despite that all compounds exhibited good activity against all bacteria tested, the sensitivity of bacteria towards compounds in general was different. The evaluation of antifungal activity revealed that all compounds were more active than ketoconazole, while seven compounds (2, 3, 4, 5, 7, 8 and 12) appeared to be more active than bifonazole. Docking results indicate that gyrase inhibition is the putative mechanism of antibacterial action while the inhibition of 14α-demethylase may be responsible for antifungal action. Prediction of cytotoxicity by PROTOX showed that compounds are not toxic (LD50 1000-2000 mg/kg). CONCLUSION Thirteen compounds, from which six are new ones, were synthesized, and twelve compounds were tested for antimicrobial activity. The studied compounds appeared to be promising potent and non-toxic antimicrobials, which could be considered as leads for new pharmaceutical agents.",
journal = "Current Topics in Medicinal Chemistry",
title = "New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking.",
number = "4",
volume = "19",
doi = "10.2174/1568026619666190122152957",
pages = "292-304"
}
Merlani, M., Barbakadze, V., Amiranashvili, L., Gogilashvili, L., Poroikov, V., Petrou, A., Geronikaki, A., Ćirić, A., Glamočlija, J.,& Soković, M.. (2019). New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking.. in Current Topics in Medicinal Chemistry, 19(4), 292-304.
https://doi.org/10.2174/1568026619666190122152957
Merlani M, Barbakadze V, Amiranashvili L, Gogilashvili L, Poroikov V, Petrou A, Geronikaki A, Ćirić A, Glamočlija J, Soković M. New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking.. in Current Topics in Medicinal Chemistry. 2019;19(4):292-304.
doi:10.2174/1568026619666190122152957 .
Merlani, Maia, Barbakadze, Vakhtang, Amiranashvili, Lela, Gogilashvili, Lali, Poroikov, Vladimir, Petrou, Anthi, Geronikaki, Athina, Ćirić, Ana, Glamočlija, Jasmina, Soković, Marina, "New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking." in Current Topics in Medicinal Chemistry, 19, no. 4 (2019):292-304,
https://doi.org/10.2174/1568026619666190122152957 . .
1
19
5
19

New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking.

Merlani, Maia; Barbakadze, Vakhtang; Amiranashvili, Lela; Gogilashvili, Lali; Poroikov, Vladimir; Petrou, Anthi; Geronikaki, Athina; Ćirić, Ana; Glamočlija, Jasmina; Soković, Marina

(2019)

TY  - JOUR
AU  - Merlani, Maia
AU  - Barbakadze, Vakhtang
AU  - Amiranashvili, Lela
AU  - Gogilashvili, Lali
AU  - Poroikov, Vladimir
AU  - Petrou, Anthi
AU  - Geronikaki, Athina
AU  - Ćirić, Ana
AU  - Glamočlija, Jasmina
AU  - Soković, Marina
PY  - 2019
UR  - http://www.eurekaselect.com/169251/article
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3346
AB  - BACKGROUND Phenolic acids (caffeic-, ferulic and p-coumaric acid) are widely distributed in the plant kingdom and exhibit broad spectrum of biological activities, including antimicrobial activity. OBJECTIVE The goal of this paper is the synthesis of some caffeic acid derivatives selected based on computer-aided predictions and evaluate their in vitro antimicrobial properties against Gram positive and Gram negative bacteria and also a series of fungi. METHODS In silico prediction of biological activity was used to identify the most promising structures for synthesis and biological testing, and the putative mechanisms of their antimicrobial action. The designed compounds were synthesized using classical organic synthesis methods. The antimicrobial activity was studied using microdilution method. RESULTS Twelve tested compounds have shown good antibacterial activity. Five out of twelve tested compounds appeared to be more active than the reference drugs ampicillin and streptomycin. Despite that all compounds exhibited good activity against all bacteria tested, the sensitivity of bacteria towards compounds in general was different. The evaluation of antifungal activity revealed that all compounds were more active than ketoconazole, while seven compounds (2, 3, 4, 5, 7, 8 and 12) appeared to be more active than bifonazole. Docking results indicate that gyrase inhibition is the putative mechanism of antibacterial action while the inhibition of 14α-demethylase may be responsible for antifungal action. Prediction of cytotoxicity by PROTOX showed that compounds are not toxic (LD50 1000-2000 mg/kg). CONCLUSION Thirteen compounds, from which six are new ones, were synthesized, and twelve compounds were tested for antimicrobial activity. The studied compounds appeared to be promising potent and non-toxic antimicrobials, which could be considered as leads for new pharmaceutical agents.
T2  - Current Topics in Medicinal Chemistry
T1  - New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking.
IS  - 4
VL  - 19
DO  - 10.2174/1568026619666190122152957
SP  - 292
EP  - 304
ER  - 
@article{
author = "Merlani, Maia and Barbakadze, Vakhtang and Amiranashvili, Lela and Gogilashvili, Lali and Poroikov, Vladimir and Petrou, Anthi and Geronikaki, Athina and Ćirić, Ana and Glamočlija, Jasmina and Soković, Marina",
year = "2019",
abstract = "BACKGROUND Phenolic acids (caffeic-, ferulic and p-coumaric acid) are widely distributed in the plant kingdom and exhibit broad spectrum of biological activities, including antimicrobial activity. OBJECTIVE The goal of this paper is the synthesis of some caffeic acid derivatives selected based on computer-aided predictions and evaluate their in vitro antimicrobial properties against Gram positive and Gram negative bacteria and also a series of fungi. METHODS In silico prediction of biological activity was used to identify the most promising structures for synthesis and biological testing, and the putative mechanisms of their antimicrobial action. The designed compounds were synthesized using classical organic synthesis methods. The antimicrobial activity was studied using microdilution method. RESULTS Twelve tested compounds have shown good antibacterial activity. Five out of twelve tested compounds appeared to be more active than the reference drugs ampicillin and streptomycin. Despite that all compounds exhibited good activity against all bacteria tested, the sensitivity of bacteria towards compounds in general was different. The evaluation of antifungal activity revealed that all compounds were more active than ketoconazole, while seven compounds (2, 3, 4, 5, 7, 8 and 12) appeared to be more active than bifonazole. Docking results indicate that gyrase inhibition is the putative mechanism of antibacterial action while the inhibition of 14α-demethylase may be responsible for antifungal action. Prediction of cytotoxicity by PROTOX showed that compounds are not toxic (LD50 1000-2000 mg/kg). CONCLUSION Thirteen compounds, from which six are new ones, were synthesized, and twelve compounds were tested for antimicrobial activity. The studied compounds appeared to be promising potent and non-toxic antimicrobials, which could be considered as leads for new pharmaceutical agents.",
journal = "Current Topics in Medicinal Chemistry",
title = "New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking.",
number = "4",
volume = "19",
doi = "10.2174/1568026619666190122152957",
pages = "292-304"
}
Merlani, M., Barbakadze, V., Amiranashvili, L., Gogilashvili, L., Poroikov, V., Petrou, A., Geronikaki, A., Ćirić, A., Glamočlija, J.,& Soković, M.. (2019). New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking.. in Current Topics in Medicinal Chemistry, 19(4), 292-304.
https://doi.org/10.2174/1568026619666190122152957
Merlani M, Barbakadze V, Amiranashvili L, Gogilashvili L, Poroikov V, Petrou A, Geronikaki A, Ćirić A, Glamočlija J, Soković M. New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking.. in Current Topics in Medicinal Chemistry. 2019;19(4):292-304.
doi:10.2174/1568026619666190122152957 .
Merlani, Maia, Barbakadze, Vakhtang, Amiranashvili, Lela, Gogilashvili, Lali, Poroikov, Vladimir, Petrou, Anthi, Geronikaki, Athina, Ćirić, Ana, Glamočlija, Jasmina, Soković, Marina, "New Caffeic Acid Derivatives as Antimicrobial Agents: Design, Synthesis, Evaluation and Docking." in Current Topics in Medicinal Chemistry, 19, no. 4 (2019):292-304,
https://doi.org/10.2174/1568026619666190122152957 . .
1
19
5
19