Biotechnology and Biological Sciences Research Council (grant number BB/J005452/1)

Link to this page

Biotechnology and Biological Sciences Research Council (grant number BB/J005452/1)

Authors

Publications

Effects of salt and stress on blood pressure parameters and antioxidant enzyme function in the heart and aorta of borderline hypertensive rats

Savić, Bojana; Brkljačić, Jelena; Glumac, Sofija; Šarenac, Olivera; Murphy, David; Blagojević, Duško; Japundžić-Žigon, Nina; Oreščanin-Dušić, Zorana

(Hoboken: Wiley, 2023)

TY  - JOUR
AU  - Savić, Bojana
AU  - Brkljačić, Jelena
AU  - Glumac, Sofija
AU  - Šarenac, Olivera
AU  - Murphy, David
AU  - Blagojević, Duško
AU  - Japundžić-Žigon, Nina
AU  - Oreščanin-Dušić, Zorana
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5759
AB  - Hypertension and its complications are a leading cause of death in the human
population. Several factors can contribute to development of hypertension, such
as genetic predisposition, high salt intake and environmental stressors, underlying
oxidative stress as one of its key trademarks. We studied the effects of increased salt
intake and chronic stress on blood pressure parameters and the activity and protein
levels of antioxidant enzymes in the heart and aorta of borderline hypertensive rats
(BHRs) with genetic susceptibility to hypertension. All animals were randomized into
four groups: (1) Wistar rats kept in baseline conditions; (2) BHRs kept in baseline
conditions; (3) BHRs drinking 0.9% saline solution; and (4) BHRs drinking 0.9% saline
solution and exposed to repeated heterotypic stress. The BHRs exhibited significantly
higher blood pressure, mitochondrial superoxide dismutase (SOD2) and catalase (CAT)
protein levels and lower glutathione peroxidase (GPx) and glutathione reductase (GR)
activities in the aorta, followed by lower CAT and GPx protein levels and higher CAT
and GR activities in the heart, compared with normotensive Wistar rats. In the BHR
aorta, high salt intake elevated CAT and GPx activities, and when combined with stress
it increased GPx and GR activities. In BHR hearts, high salt intake provoked lower CAT
activity. Adding repeated stress to salt treatment further decreased CAT activity, in
addition to Cu2+–Zn2+ superoxide dismutase (SOD1) and GR activities. The protein
level of CAT was lower, whereas SOD2 and GPx increased. Overall, our results suggest
that BHR hearts are better adapted to oxidative pressure, compared with the aorta,
when exposed to salt and stress.
PB  - Hoboken: Wiley
T2  - Experimental Physiology
T1  - Effects of salt and stress on blood pressure parameters and antioxidant enzyme function in the heart and aorta of borderline hypertensive rats
IS  - 7
VL  - 108
DO  - 10.1113/EP090714
SP  - 946
EP  - 960
ER  - 
@article{
author = "Savić, Bojana and Brkljačić, Jelena and Glumac, Sofija and Šarenac, Olivera and Murphy, David and Blagojević, Duško and Japundžić-Žigon, Nina and Oreščanin-Dušić, Zorana",
year = "2023",
abstract = "Hypertension and its complications are a leading cause of death in the human
population. Several factors can contribute to development of hypertension, such
as genetic predisposition, high salt intake and environmental stressors, underlying
oxidative stress as one of its key trademarks. We studied the effects of increased salt
intake and chronic stress on blood pressure parameters and the activity and protein
levels of antioxidant enzymes in the heart and aorta of borderline hypertensive rats
(BHRs) with genetic susceptibility to hypertension. All animals were randomized into
four groups: (1) Wistar rats kept in baseline conditions; (2) BHRs kept in baseline
conditions; (3) BHRs drinking 0.9% saline solution; and (4) BHRs drinking 0.9% saline
solution and exposed to repeated heterotypic stress. The BHRs exhibited significantly
higher blood pressure, mitochondrial superoxide dismutase (SOD2) and catalase (CAT)
protein levels and lower glutathione peroxidase (GPx) and glutathione reductase (GR)
activities in the aorta, followed by lower CAT and GPx protein levels and higher CAT
and GR activities in the heart, compared with normotensive Wistar rats. In the BHR
aorta, high salt intake elevated CAT and GPx activities, and when combined with stress
it increased GPx and GR activities. In BHR hearts, high salt intake provoked lower CAT
activity. Adding repeated stress to salt treatment further decreased CAT activity, in
addition to Cu2+–Zn2+ superoxide dismutase (SOD1) and GR activities. The protein
level of CAT was lower, whereas SOD2 and GPx increased. Overall, our results suggest
that BHR hearts are better adapted to oxidative pressure, compared with the aorta,
when exposed to salt and stress.",
publisher = "Hoboken: Wiley",
journal = "Experimental Physiology",
title = "Effects of salt and stress on blood pressure parameters and antioxidant enzyme function in the heart and aorta of borderline hypertensive rats",
number = "7",
volume = "108",
doi = "10.1113/EP090714",
pages = "946-960"
}
Savić, B., Brkljačić, J., Glumac, S., Šarenac, O., Murphy, D., Blagojević, D., Japundžić-Žigon, N.,& Oreščanin-Dušić, Z.. (2023). Effects of salt and stress on blood pressure parameters and antioxidant enzyme function in the heart and aorta of borderline hypertensive rats. in Experimental Physiology
Hoboken: Wiley., 108(7), 946-960.
https://doi.org/10.1113/EP090714
Savić B, Brkljačić J, Glumac S, Šarenac O, Murphy D, Blagojević D, Japundžić-Žigon N, Oreščanin-Dušić Z. Effects of salt and stress on blood pressure parameters and antioxidant enzyme function in the heart and aorta of borderline hypertensive rats. in Experimental Physiology. 2023;108(7):946-960.
doi:10.1113/EP090714 .
Savić, Bojana, Brkljačić, Jelena, Glumac, Sofija, Šarenac, Olivera, Murphy, David, Blagojević, Duško, Japundžić-Žigon, Nina, Oreščanin-Dušić, Zorana, "Effects of salt and stress on blood pressure parameters and antioxidant enzyme function in the heart and aorta of borderline hypertensive rats" in Experimental Physiology, 108, no. 7 (2023):946-960,
https://doi.org/10.1113/EP090714 . .
2