Swedish Research Council. Grant Number: 621-2014-4523

Link to this page

Swedish Research Council. Grant Number: 621-2014-4523

Authors

Publications

Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles

Đorđević, Mirko; Stojković, Biljana; Savković, Uroš; Immonen, Elina; Tucić, Nikola; Lazarević, Jelica; Arnqvist, Göran

(2017)

TY  - JOUR
AU  - Đorđević, Mirko
AU  - Stojković, Biljana
AU  - Savković, Uroš
AU  - Immonen, Elina
AU  - Tucić, Nikola
AU  - Lazarević, Jelica
AU  - Arnqvist, Göran
PY  - 2017
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/2600
AB  - The role of mitochondrial DNA for the evolution of life-history traits remains debated. We examined mitonuclear effects on the activity of the multisubunit complex of the electron transport chain (ETC) involved in oxidative phosphorylation (OXPHOS) across lines of the seed beetle Acanthoscelides obtectus selected for a short (E) or a long (L) life for more than >160 generations. We constructed and phenotyped mitonuclear introgression lines, which allowed us to assess the independent effects of the evolutionary history of the nuclear and the mitochondrial genome. The nuclear genome was responsible for the largest share of divergence seen in ageing. However, the mitochondrial genome also had sizeable effects, which were sex-specific and expressed primarily as epistatic interactions with the nuclear genome. The effects of mitonuclear disruption were largely consistent with mitonuclear coadaptation. Variation in ETC activity explained a large proportion of variance in ageing and life-history traits and this multivariate relationship differed somewhat between the sexes. In conclusion, mitonuclear epistasis has played an important role in the laboratory evolution of ETC complex activity, ageing, and life histories and these are closely associated. The mitonuclear architecture of evolved differences in life-history traits and mitochondrial bioenergetics was sex-specific.
T2  - Evolution
T1  - Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles
IS  - 2
VL  - 71
DO  - 10.1111/evo.13109
SP  - 274
EP  - 288
ER  - 
@article{
author = "Đorđević, Mirko and Stojković, Biljana and Savković, Uroš and Immonen, Elina and Tucić, Nikola and Lazarević, Jelica and Arnqvist, Göran",
year = "2017",
abstract = "The role of mitochondrial DNA for the evolution of life-history traits remains debated. We examined mitonuclear effects on the activity of the multisubunit complex of the electron transport chain (ETC) involved in oxidative phosphorylation (OXPHOS) across lines of the seed beetle Acanthoscelides obtectus selected for a short (E) or a long (L) life for more than >160 generations. We constructed and phenotyped mitonuclear introgression lines, which allowed us to assess the independent effects of the evolutionary history of the nuclear and the mitochondrial genome. The nuclear genome was responsible for the largest share of divergence seen in ageing. However, the mitochondrial genome also had sizeable effects, which were sex-specific and expressed primarily as epistatic interactions with the nuclear genome. The effects of mitonuclear disruption were largely consistent with mitonuclear coadaptation. Variation in ETC activity explained a large proportion of variance in ageing and life-history traits and this multivariate relationship differed somewhat between the sexes. In conclusion, mitonuclear epistasis has played an important role in the laboratory evolution of ETC complex activity, ageing, and life histories and these are closely associated. The mitonuclear architecture of evolved differences in life-history traits and mitochondrial bioenergetics was sex-specific.",
journal = "Evolution",
title = "Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles",
number = "2",
volume = "71",
doi = "10.1111/evo.13109",
pages = "274-288"
}
Đorđević, M., Stojković, B., Savković, U., Immonen, E., Tucić, N., Lazarević, J.,& Arnqvist, G.. (2017). Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles. in Evolution, 71(2), 274-288.
https://doi.org/10.1111/evo.13109
Đorđević M, Stojković B, Savković U, Immonen E, Tucić N, Lazarević J, Arnqvist G. Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles. in Evolution. 2017;71(2):274-288.
doi:10.1111/evo.13109 .
Đorđević, Mirko, Stojković, Biljana, Savković, Uroš, Immonen, Elina, Tucić, Nikola, Lazarević, Jelica, Arnqvist, Göran, "Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles" in Evolution, 71, no. 2 (2017):274-288,
https://doi.org/10.1111/evo.13109 . .
2
33
20
24

Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles

Đorđević, Mirko; Stojković, Biljana; Savković, Uroš; Immonen, Elina; Tucić, Nikola; Lazarević, Jelica; Arnqvist, Göran

(2016)

TY  - JOUR
AU  - Đorđević, Mirko
AU  - Stojković, Biljana
AU  - Savković, Uroš
AU  - Immonen, Elina
AU  - Tucić, Nikola
AU  - Lazarević, Jelica
AU  - Arnqvist, Göran
PY  - 2016
UR  - http://doi.wiley.com/10.1111/evo.13109
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/2549
AB  - The role of mitochondrial DNA for the evolution of life-history traits remains debated. We examined mitonuclear effects on the activity of the multisubunit complex of the electron transport chain (ETC) involved in oxidative phosphorylation (OXPHOS) across lines of the seed beetle Acanthoscelides obtectus selected for a short (E) or a long (L) life for more than >160 generations. We constructed and phenotyped mitonuclear introgression lines, which allowed us to assess the independent effects of the evolutionary history of the nuclear and the mitochondrial genome. The nuclear genome was responsible for the largest share of divergence seen in ageing. However, the mitochondrial genome also had sizeable effects, which were sex-specific and expressed primarily as epistatic interactions with the nuclear genome. The effects of mitonuclear disruption were largely consistent with mitonuclear coadaptation. Variation in ETC activity explained a large proportion of variance in ageing and life-history traits and this multivariate relationship differed somewhat between the sexes. In conclusion, mitonuclear epistasis has played an important role in the laboratory evolution of ETC complex activity, ageing, and life histories and these are closely associated. The mitonuclear architecture of evolved differences in life-history traits and mitochondrial bioenergetics was sex-specific.
T2  - Evolution
T1  - Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles
DO  - 10.1111/evo.13109
ER  - 
@article{
author = "Đorđević, Mirko and Stojković, Biljana and Savković, Uroš and Immonen, Elina and Tucić, Nikola and Lazarević, Jelica and Arnqvist, Göran",
year = "2016",
abstract = "The role of mitochondrial DNA for the evolution of life-history traits remains debated. We examined mitonuclear effects on the activity of the multisubunit complex of the electron transport chain (ETC) involved in oxidative phosphorylation (OXPHOS) across lines of the seed beetle Acanthoscelides obtectus selected for a short (E) or a long (L) life for more than >160 generations. We constructed and phenotyped mitonuclear introgression lines, which allowed us to assess the independent effects of the evolutionary history of the nuclear and the mitochondrial genome. The nuclear genome was responsible for the largest share of divergence seen in ageing. However, the mitochondrial genome also had sizeable effects, which were sex-specific and expressed primarily as epistatic interactions with the nuclear genome. The effects of mitonuclear disruption were largely consistent with mitonuclear coadaptation. Variation in ETC activity explained a large proportion of variance in ageing and life-history traits and this multivariate relationship differed somewhat between the sexes. In conclusion, mitonuclear epistasis has played an important role in the laboratory evolution of ETC complex activity, ageing, and life histories and these are closely associated. The mitonuclear architecture of evolved differences in life-history traits and mitochondrial bioenergetics was sex-specific.",
journal = "Evolution",
title = "Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles",
doi = "10.1111/evo.13109"
}
Đorđević, M., Stojković, B., Savković, U., Immonen, E., Tucić, N., Lazarević, J.,& Arnqvist, G.. (2016). Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles. in Evolution.
https://doi.org/10.1111/evo.13109
Đorđević M, Stojković B, Savković U, Immonen E, Tucić N, Lazarević J, Arnqvist G. Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles. in Evolution. 2016;.
doi:10.1111/evo.13109 .
Đorđević, Mirko, Stojković, Biljana, Savković, Uroš, Immonen, Elina, Tucić, Nikola, Lazarević, Jelica, Arnqvist, Göran, "Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles" in Evolution (2016),
https://doi.org/10.1111/evo.13109 . .
2
33
20
24