Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200129 (University of Belgrade, Faculty of Dental Medicine)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200129/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200129 (University of Belgrade, Faculty of Dental Medicine) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200129 (Univerzitet u Beogradu, Stomatološki fakultet) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200129 (Универзитет у Београду, Стоматолошки факултет) (sr)
Authors

Publications

Surface morphology, compressive strength and biocompatibility of calcium aluminate dental cement

Dožić, Aleksandra; Ćetković, Dejan; Despotović, Ana; Janjetović, Kristina; Zogović, Nevena; Antonijević, Đorđe

(Belgrade: Society of Physical Chemists of Serbia, 2022)

TY  - CONF
AU  - Dožić, Aleksandra
AU  - Ćetković, Dejan
AU  - Despotović, Ana
AU  - Janjetović, Kristina
AU  - Zogović, Nevena
AU  - Antonijević, Đorđe
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5739
AB  - The aim of this study was to investigate the properties of experimental calcium aluminate (CA) dental cement, synthesized from CaO×Al2O3 and CaCO3. Calcium silicate (Portland cement, PC) served as a control. The elastic modulus and maximum stress obtained using the universal testing machine showed that CA has greater mechanical resistance than the control PC. Scanning electron microscopy (SEM) analysis of cements specimens before and after soaking in phosphate buffer saline showed that hydrated cements exposed crystal particles of calcite and new aluminum containing phases on their surfaces, suggesting their bioactive potential. Biocompatibility of the CA dental cement was evaluated by observing L929 cells morphology using phase-contrast microscopy. Cells treated with CA extract preserved their structural integrity without any changes in cell morphology, but with a slightly inhibited proliferation rate after 24h treatment, while PC induced changes typical for cell death.
PB  - Belgrade: Society of Physical Chemists of Serbia
C3  - Proceedings: 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry: Physical Chemistry 2022, Vol. 2; 2022 Sep 26-30; Belgrade, Serbia
T1  - Surface morphology, compressive strength and biocompatibility of calcium aluminate dental cement
SP  - 327
EP  - 330
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5739
ER  - 
@conference{
author = "Dožić, Aleksandra and Ćetković, Dejan and Despotović, Ana and Janjetović, Kristina and Zogović, Nevena and Antonijević, Đorđe",
year = "2022",
abstract = "The aim of this study was to investigate the properties of experimental calcium aluminate (CA) dental cement, synthesized from CaO×Al2O3 and CaCO3. Calcium silicate (Portland cement, PC) served as a control. The elastic modulus and maximum stress obtained using the universal testing machine showed that CA has greater mechanical resistance than the control PC. Scanning electron microscopy (SEM) analysis of cements specimens before and after soaking in phosphate buffer saline showed that hydrated cements exposed crystal particles of calcite and new aluminum containing phases on their surfaces, suggesting their bioactive potential. Biocompatibility of the CA dental cement was evaluated by observing L929 cells morphology using phase-contrast microscopy. Cells treated with CA extract preserved their structural integrity without any changes in cell morphology, but with a slightly inhibited proliferation rate after 24h treatment, while PC induced changes typical for cell death.",
publisher = "Belgrade: Society of Physical Chemists of Serbia",
journal = "Proceedings: 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry: Physical Chemistry 2022, Vol. 2; 2022 Sep 26-30; Belgrade, Serbia",
title = "Surface morphology, compressive strength and biocompatibility of calcium aluminate dental cement",
pages = "327-330",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5739"
}
Dožić, A., Ćetković, D., Despotović, A., Janjetović, K., Zogović, N.,& Antonijević, Đ.. (2022). Surface morphology, compressive strength and biocompatibility of calcium aluminate dental cement. in Proceedings: 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry: Physical Chemistry 2022, Vol. 2; 2022 Sep 26-30; Belgrade, Serbia
Belgrade: Society of Physical Chemists of Serbia., 327-330.
https://hdl.handle.net/21.15107/rcub_ibiss_5739
Dožić A, Ćetković D, Despotović A, Janjetović K, Zogović N, Antonijević Đ. Surface morphology, compressive strength and biocompatibility of calcium aluminate dental cement. in Proceedings: 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry: Physical Chemistry 2022, Vol. 2; 2022 Sep 26-30; Belgrade, Serbia. 2022;:327-330.
https://hdl.handle.net/21.15107/rcub_ibiss_5739 .
Dožić, Aleksandra, Ćetković, Dejan, Despotović, Ana, Janjetović, Kristina, Zogović, Nevena, Antonijević, Đorđe, "Surface morphology, compressive strength and biocompatibility of calcium aluminate dental cement" in Proceedings: 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry: Physical Chemistry 2022, Vol. 2; 2022 Sep 26-30; Belgrade, Serbia (2022):327-330,
https://hdl.handle.net/21.15107/rcub_ibiss_5739 .

Effect of various radiopacifiers on selected physical properties and cytotoxicity of calcium silicate based dental cement enriched with hydroxyapatite

Ćetković, Dejan; Dožić, Aleksandra; Despotović, Ana; Janjetović, Kristina; Zogović, Nevena; Antonijević, Đorđe

(Belgrade: Society of Physical Chemists of Serbia, 2022)

TY  - CONF
AU  - Ćetković, Dejan
AU  - Dožić, Aleksandra
AU  - Despotović, Ana
AU  - Janjetović, Kristina
AU  - Zogović, Nevena
AU  - Antonijević, Đorđe
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5738
AB  - This study aimed to investigate the influence of ZrO2, Bi2O3 and SrF2 added as radiopacifying agents (30wt.%) into calcium silicate/hydroxyapatite-based dental cement on its physical and biological properties. Among investigated cements, the mixture containing Bi2O3 had the highest values of elastic modules and toughness, similarly to control – mineral trioxide aggregate (MTA). SEM analysis of all hydrated cements has shown that bioactive calcite and tobermorite phases were formed. Crystal violet assay showed that pure (undiluted) extracts of experimental cements did not affect cell viability, while MTA exhibited an extremely cytotoxic effect on L929 cells. In 1:4 dilutions all experimental mixtures significantly increased cell proliferation potential after 72h in comparison to untreated cells and MTA, which cytotoxic effect diminished with dilutions. Further studies are needed to determine which radiopacifyer has the most desirable properties for adequate dental cement fabrication.
PB  - Belgrade: Society of Physical Chemists of Serbia
C3  - Proceedings: 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry: Physical Chemistry 2022, Vol. 2; 2022 Sep 26-30; Belgrade, Serbia
T1  - Effect of various radiopacifiers on selected physical properties and cytotoxicity of calcium silicate based dental cement enriched with hydroxyapatite
SP  - 323
EP  - 326
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5738
ER  - 
@conference{
author = "Ćetković, Dejan and Dožić, Aleksandra and Despotović, Ana and Janjetović, Kristina and Zogović, Nevena and Antonijević, Đorđe",
year = "2022",
abstract = "This study aimed to investigate the influence of ZrO2, Bi2O3 and SrF2 added as radiopacifying agents (30wt.%) into calcium silicate/hydroxyapatite-based dental cement on its physical and biological properties. Among investigated cements, the mixture containing Bi2O3 had the highest values of elastic modules and toughness, similarly to control – mineral trioxide aggregate (MTA). SEM analysis of all hydrated cements has shown that bioactive calcite and tobermorite phases were formed. Crystal violet assay showed that pure (undiluted) extracts of experimental cements did not affect cell viability, while MTA exhibited an extremely cytotoxic effect on L929 cells. In 1:4 dilutions all experimental mixtures significantly increased cell proliferation potential after 72h in comparison to untreated cells and MTA, which cytotoxic effect diminished with dilutions. Further studies are needed to determine which radiopacifyer has the most desirable properties for adequate dental cement fabrication.",
publisher = "Belgrade: Society of Physical Chemists of Serbia",
journal = "Proceedings: 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry: Physical Chemistry 2022, Vol. 2; 2022 Sep 26-30; Belgrade, Serbia",
title = "Effect of various radiopacifiers on selected physical properties and cytotoxicity of calcium silicate based dental cement enriched with hydroxyapatite",
pages = "323-326",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5738"
}
Ćetković, D., Dožić, A., Despotović, A., Janjetović, K., Zogović, N.,& Antonijević, Đ.. (2022). Effect of various radiopacifiers on selected physical properties and cytotoxicity of calcium silicate based dental cement enriched with hydroxyapatite. in Proceedings: 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry: Physical Chemistry 2022, Vol. 2; 2022 Sep 26-30; Belgrade, Serbia
Belgrade: Society of Physical Chemists of Serbia., 323-326.
https://hdl.handle.net/21.15107/rcub_ibiss_5738
Ćetković D, Dožić A, Despotović A, Janjetović K, Zogović N, Antonijević Đ. Effect of various radiopacifiers on selected physical properties and cytotoxicity of calcium silicate based dental cement enriched with hydroxyapatite. in Proceedings: 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry: Physical Chemistry 2022, Vol. 2; 2022 Sep 26-30; Belgrade, Serbia. 2022;:323-326.
https://hdl.handle.net/21.15107/rcub_ibiss_5738 .
Ćetković, Dejan, Dožić, Aleksandra, Despotović, Ana, Janjetović, Kristina, Zogović, Nevena, Antonijević, Đorđe, "Effect of various radiopacifiers on selected physical properties and cytotoxicity of calcium silicate based dental cement enriched with hydroxyapatite" in Proceedings: 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry: Physical Chemistry 2022, Vol. 2; 2022 Sep 26-30; Belgrade, Serbia (2022):323-326,
https://hdl.handle.net/21.15107/rcub_ibiss_5738 .

Acetylsalicylic-acid (ASA) regulation of osteo/odontogenic differentiation and proliferation of human dental pulp stem cells (DPSCs) in vitro.

Vuković, Mladen; Lazarević, Miloš; Mitić, Dijana; Jakšić Karišik, Milica; Ilić, Branislav; Andrić, Miroslav; Jevtić, Bojan; Roganović, Jelena; Milašin, Jelena

(Oxford: Pergamon-Elsevier Science Ltd, 2022)

TY  - JOUR
AU  - Vuković, Mladen
AU  - Lazarević, Miloš
AU  - Mitić, Dijana
AU  - Jakšić Karišik, Milica
AU  - Ilić, Branislav
AU  - Andrić, Miroslav
AU  - Jevtić, Bojan
AU  - Roganović, Jelena
AU  - Milašin, Jelena
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5164
AB  - OBJECTIVE The study aimed to investigate acetylsalicylic acid (ASA) effects on osteo/odontogenic differentiation and proliferation of dental pulp stem cells (DPSCs) in vitro and the potential involvement of adenosine monophosphate-activated protein kinase (AMPK) pathway in these processes. DESIGN DPSCs were isolated from third molars pulp tissues of five patients and grown in osteogenic medium alone or supplemented with ASA. Expression of DPSCs markers was tested by flow-cytometry. Cytotoxicity of ASA at concentrations of 10, 50 and 100 µg/ml was tested by MTT and NR assays. Osteo/odontogenic differentiation was analyzed via alizarin red staining and ALP activity. Quantitative PCR (qPCR) was used for osteo/odontogenic markers' (DSPP, BMP2, BMP4, BSP, OCN and RUNX2) and c-Myc expression analysis. AMPK inhibition of ASA-induced osteo/odontogenesis was tested by qPCR of selected markers (DSPP, OCN and RUNX2). RESULTS Cytotoxicity assays showed that only the highest ASA dose decreased cell viability (89.1 %). The smallest concentration of ASA applied on DPSCs resulted in a remarkable enhancement of osteo/odontogenic differentiation, as judged by increased mineralized nodules' formation, ALP activity and gene expression of analyzed markers (increase between 2 and 30 folds), compared to untreated cells. ASA also increased DPSCs proliferation. Interestingly, AMPK inhibition per se upregulated DSPP, OCN and RUNX2; the gene upregulation was higher when ASA treatment was also included. c-Myc expression level decreased in cultures treated with ASA, indicating undergoing differentiation processes. CONCLUSIONS Low concentrations of ASA (corresponding to the standard use in cardiovascular patients), were shown to stimulate osteo/odontogenic differentiation of dental pulp stem cells.
PB  - Oxford: Pergamon-Elsevier Science Ltd
T2  - Archives of Oral Biology
T1  - Acetylsalicylic-acid (ASA) regulation of osteo/odontogenic differentiation and proliferation of human dental pulp stem cells (DPSCs) in vitro.
VL  - 144
DO  - 10.1016/j.archoralbio.2022.105564
SP  - 105564
ER  - 
@article{
author = "Vuković, Mladen and Lazarević, Miloš and Mitić, Dijana and Jakšić Karišik, Milica and Ilić, Branislav and Andrić, Miroslav and Jevtić, Bojan and Roganović, Jelena and Milašin, Jelena",
year = "2022",
abstract = "OBJECTIVE The study aimed to investigate acetylsalicylic acid (ASA) effects on osteo/odontogenic differentiation and proliferation of dental pulp stem cells (DPSCs) in vitro and the potential involvement of adenosine monophosphate-activated protein kinase (AMPK) pathway in these processes. DESIGN DPSCs were isolated from third molars pulp tissues of five patients and grown in osteogenic medium alone or supplemented with ASA. Expression of DPSCs markers was tested by flow-cytometry. Cytotoxicity of ASA at concentrations of 10, 50 and 100 µg/ml was tested by MTT and NR assays. Osteo/odontogenic differentiation was analyzed via alizarin red staining and ALP activity. Quantitative PCR (qPCR) was used for osteo/odontogenic markers' (DSPP, BMP2, BMP4, BSP, OCN and RUNX2) and c-Myc expression analysis. AMPK inhibition of ASA-induced osteo/odontogenesis was tested by qPCR of selected markers (DSPP, OCN and RUNX2). RESULTS Cytotoxicity assays showed that only the highest ASA dose decreased cell viability (89.1 %). The smallest concentration of ASA applied on DPSCs resulted in a remarkable enhancement of osteo/odontogenic differentiation, as judged by increased mineralized nodules' formation, ALP activity and gene expression of analyzed markers (increase between 2 and 30 folds), compared to untreated cells. ASA also increased DPSCs proliferation. Interestingly, AMPK inhibition per se upregulated DSPP, OCN and RUNX2; the gene upregulation was higher when ASA treatment was also included. c-Myc expression level decreased in cultures treated with ASA, indicating undergoing differentiation processes. CONCLUSIONS Low concentrations of ASA (corresponding to the standard use in cardiovascular patients), were shown to stimulate osteo/odontogenic differentiation of dental pulp stem cells.",
publisher = "Oxford: Pergamon-Elsevier Science Ltd",
journal = "Archives of Oral Biology",
title = "Acetylsalicylic-acid (ASA) regulation of osteo/odontogenic differentiation and proliferation of human dental pulp stem cells (DPSCs) in vitro.",
volume = "144",
doi = "10.1016/j.archoralbio.2022.105564",
pages = "105564"
}
Vuković, M., Lazarević, M., Mitić, D., Jakšić Karišik, M., Ilić, B., Andrić, M., Jevtić, B., Roganović, J.,& Milašin, J.. (2022). Acetylsalicylic-acid (ASA) regulation of osteo/odontogenic differentiation and proliferation of human dental pulp stem cells (DPSCs) in vitro.. in Archives of Oral Biology
Oxford: Pergamon-Elsevier Science Ltd., 144, 105564.
https://doi.org/10.1016/j.archoralbio.2022.105564
Vuković M, Lazarević M, Mitić D, Jakšić Karišik M, Ilić B, Andrić M, Jevtić B, Roganović J, Milašin J. Acetylsalicylic-acid (ASA) regulation of osteo/odontogenic differentiation and proliferation of human dental pulp stem cells (DPSCs) in vitro.. in Archives of Oral Biology. 2022;144:105564.
doi:10.1016/j.archoralbio.2022.105564 .
Vuković, Mladen, Lazarević, Miloš, Mitić, Dijana, Jakšić Karišik, Milica, Ilić, Branislav, Andrić, Miroslav, Jevtić, Bojan, Roganović, Jelena, Milašin, Jelena, "Acetylsalicylic-acid (ASA) regulation of osteo/odontogenic differentiation and proliferation of human dental pulp stem cells (DPSCs) in vitro." in Archives of Oral Biology, 144 (2022):105564,
https://doi.org/10.1016/j.archoralbio.2022.105564 . .
3
4