Slovenian Research Agency (ARRS), project number P3-0171

Link to this page

Slovenian Research Agency (ARRS), project number P3-0171

Authors

Publications

Relationship Between Regional Distributions of Cytochrome C Oxidase and Copper-Delivering Chaperones in Sclerotic Hippocampi of Epilepsy Patients

Opačić, Miloš; Zorović, Maja; Savić, Danijela; Živin, Marko; Raičević, Savo; Baščarević, Vladimir; Ristić, Aleksandar; Sokić, Dragoslav; Spasojević, Ivan

(Belgrade: Serbian Neuroscience Society, 2019)

TY  - CONF
AU  - Opačić, Miloš
AU  - Zorović, Maja
AU  - Savić, Danijela
AU  - Živin, Marko
AU  - Raičević, Savo
AU  - Baščarević, Vladimir
AU  - Ristić, Aleksandar
AU  - Sokić, Dragoslav
AU  - Spasojević, Ivan
PY  - 2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5986
AB  - Aims: A drop in copper level and the loss of energy homeostasis are both portrayed in mesial temporal lobe epilepsy (mTLE) with hippocampal sclerosis (HS) patients. Cytochrome c oxidase (COX) represents a crossroad of energy and copper metabolism; it is a key component of mitochondrial machinery and contains two copper centers. Our aim here was to examine the link between COX activity and the copper transporting system in HS. COX activity and the levels of mRNA of selected chaperones - COX11, COX17, Sco1 and Sco2 were determined in 13 anatomically distinct hippocampal regions. Methods: Study was performed on seven hippocampal samples, four of which had been acquired during the course of amygdalohippocampectomy treatment of medically intractable epilepsy and three control postmortem samples. Adjacent slices were used for Nissl staining, COX activity assay and mRNA in situ hybridization with autoradiography. Densitometry was performed using ImageJ. Results: Overall COX activity was decreased in HS compared to controls (P = 0.0003). However, 5 regions showed significantly lower COX activity in HS and 8 did not. Subiculum showed slightly higher activity in HS. The levels of mRNA levels were lowered in HS in 6 regions for COX11, 10 regions for COX17, two regions for Sco1 and 11 regions for Sco2. Conclusions: Our findings suggest the loss of energy homeostasis in HS may be related to pathological changes in specific components of copper delivery to COX, and that the impact may vary between different hippocampal regions.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
T1  - Relationship Between Regional Distributions of Cytochrome C Oxidase and Copper-Delivering Chaperones in Sclerotic Hippocampi of Epilepsy Patients
SP  - 296
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5986
ER  - 
@conference{
author = "Opačić, Miloš and Zorović, Maja and Savić, Danijela and Živin, Marko and Raičević, Savo and Baščarević, Vladimir and Ristić, Aleksandar and Sokić, Dragoslav and Spasojević, Ivan",
year = "2019",
abstract = "Aims: A drop in copper level and the loss of energy homeostasis are both portrayed in mesial temporal lobe epilepsy (mTLE) with hippocampal sclerosis (HS) patients. Cytochrome c oxidase (COX) represents a crossroad of energy and copper metabolism; it is a key component of mitochondrial machinery and contains two copper centers. Our aim here was to examine the link between COX activity and the copper transporting system in HS. COX activity and the levels of mRNA of selected chaperones - COX11, COX17, Sco1 and Sco2 were determined in 13 anatomically distinct hippocampal regions. Methods: Study was performed on seven hippocampal samples, four of which had been acquired during the course of amygdalohippocampectomy treatment of medically intractable epilepsy and three control postmortem samples. Adjacent slices were used for Nissl staining, COX activity assay and mRNA in situ hybridization with autoradiography. Densitometry was performed using ImageJ. Results: Overall COX activity was decreased in HS compared to controls (P = 0.0003). However, 5 regions showed significantly lower COX activity in HS and 8 did not. Subiculum showed slightly higher activity in HS. The levels of mRNA levels were lowered in HS in 6 regions for COX11, 10 regions for COX17, two regions for Sco1 and 11 regions for Sco2. Conclusions: Our findings suggest the loss of energy homeostasis in HS may be related to pathological changes in specific components of copper delivery to COX, and that the impact may vary between different hippocampal regions.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia",
title = "Relationship Between Regional Distributions of Cytochrome C Oxidase and Copper-Delivering Chaperones in Sclerotic Hippocampi of Epilepsy Patients",
pages = "296",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5986"
}
Opačić, M., Zorović, M., Savić, D., Živin, M., Raičević, S., Baščarević, V., Ristić, A., Sokić, D.,& Spasojević, I.. (2019). Relationship Between Regional Distributions of Cytochrome C Oxidase and Copper-Delivering Chaperones in Sclerotic Hippocampi of Epilepsy Patients. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 296.
https://hdl.handle.net/21.15107/rcub_ibiss_5986
Opačić M, Zorović M, Savić D, Živin M, Raičević S, Baščarević V, Ristić A, Sokić D, Spasojević I. Relationship Between Regional Distributions of Cytochrome C Oxidase and Copper-Delivering Chaperones in Sclerotic Hippocampi of Epilepsy Patients. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia. 2019;:296.
https://hdl.handle.net/21.15107/rcub_ibiss_5986 .
Opačić, Miloš, Zorović, Maja, Savić, Danijela, Živin, Marko, Raičević, Savo, Baščarević, Vladimir, Ristić, Aleksandar, Sokić, Dragoslav, Spasojević, Ivan, "Relationship Between Regional Distributions of Cytochrome C Oxidase and Copper-Delivering Chaperones in Sclerotic Hippocampi of Epilepsy Patients" in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia (2019):296,
https://hdl.handle.net/21.15107/rcub_ibiss_5986 .