Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN-2016–05867)

Link to this page

Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN-2016–05867)

Authors

Publications

Antenatal Dexamethasone Treatment Induces Sex-dependent Upregulation of NTPDase1/CD39 and Ecto-5ʹ-nucleotidase/CD73 in the Rat Fetal Brain

Manojlović-Stojanoski, Milica; Lavrnja, Irena; Stevanović, Ivana; Trifunović, Svetlana; Ristić, Nataša; Nestorović, Nataša; Sévigny, Jean; Nedeljković, Nadežda; Laketa, Danijela

(Springer, 2022)

TY  - JOUR
AU  - Manojlović-Stojanoski, Milica
AU  - Lavrnja, Irena
AU  - Stevanović, Ivana
AU  - Trifunović, Svetlana
AU  - Ristić, Nataša
AU  - Nestorović, Nataša
AU  - Sévigny, Jean
AU  - Nedeljković, Nadežda
AU  - Laketa, Danijela
PY  - 2022
UR  - https://doi.org/10.1007/s10571-021-01081-8
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4187
AB  - Dexamethasone (DEX) is frequently used to treat women at risk of preterm delivery, but although indispensable for the completion of organ maturation in the fetus, antenatal DEX treatment may exert adverse sex-dimorphic neurodevelopmental effects. Literature findings implicated oxidative stress in adverse effects of DEX treatment. Purinergic signaling is involved in neurodevelopment and controlled by ectonucleotidases, among which in the brain the most abundant are ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1/CD39) and ecto-5ʹ-nucleotidase (e5ʹNT/CD73), which jointly dephosphorylate ATP to adenosine. They are also involved in cell adhesion and migration, processes integral to brain development. Upregulation of CD39 and CD73 after DEX treatment was reported in adult rat hippocampus. We investigated the effects of maternal DEX treatment on CD39 and CD73 expression and enzymatic activity in the rat fetal brain of both sexes, in the context of oxidative status of the brain tissue. Fetuses were obtained at embryonic day (ED) 21, from Wistar rat dams treated with 0.5 mg DEX/kg/day, at ED 16, 17, and 18, and brains were processed and used for further analysis. Sex-specific increase in CD39 and CD73 expression and in the corresponding enzyme activities was induced in the brain of antenatally DEX-treated fetuses, more prominently in males. The oxidative stress induction after antenatal DEX treatment was confirmed in both sexes, although showing a slight bias in males. Due to the involvement of purinergic system in crucial neurodevelopmental processes, future investigations are needed to determine the role of these observed changes in the adverse effects of antenatal DEX treatment.
PB  - Springer
T2  - Cellular and Molecular Neurobiology
T1  - Antenatal Dexamethasone Treatment Induces Sex-dependent Upregulation of NTPDase1/CD39 and Ecto-5ʹ-nucleotidase/CD73 in the Rat Fetal Brain
VL  - 42
DO  - 10.1007/s10571-021-01081-8
SP  - 1965
EP  - 1981
ER  - 
@article{
author = "Manojlović-Stojanoski, Milica and Lavrnja, Irena and Stevanović, Ivana and Trifunović, Svetlana and Ristić, Nataša and Nestorović, Nataša and Sévigny, Jean and Nedeljković, Nadežda and Laketa, Danijela",
year = "2022",
abstract = "Dexamethasone (DEX) is frequently used to treat women at risk of preterm delivery, but although indispensable for the completion of organ maturation in the fetus, antenatal DEX treatment may exert adverse sex-dimorphic neurodevelopmental effects. Literature findings implicated oxidative stress in adverse effects of DEX treatment. Purinergic signaling is involved in neurodevelopment and controlled by ectonucleotidases, among which in the brain the most abundant are ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1/CD39) and ecto-5ʹ-nucleotidase (e5ʹNT/CD73), which jointly dephosphorylate ATP to adenosine. They are also involved in cell adhesion and migration, processes integral to brain development. Upregulation of CD39 and CD73 after DEX treatment was reported in adult rat hippocampus. We investigated the effects of maternal DEX treatment on CD39 and CD73 expression and enzymatic activity in the rat fetal brain of both sexes, in the context of oxidative status of the brain tissue. Fetuses were obtained at embryonic day (ED) 21, from Wistar rat dams treated with 0.5 mg DEX/kg/day, at ED 16, 17, and 18, and brains were processed and used for further analysis. Sex-specific increase in CD39 and CD73 expression and in the corresponding enzyme activities was induced in the brain of antenatally DEX-treated fetuses, more prominently in males. The oxidative stress induction after antenatal DEX treatment was confirmed in both sexes, although showing a slight bias in males. Due to the involvement of purinergic system in crucial neurodevelopmental processes, future investigations are needed to determine the role of these observed changes in the adverse effects of antenatal DEX treatment.",
publisher = "Springer",
journal = "Cellular and Molecular Neurobiology",
title = "Antenatal Dexamethasone Treatment Induces Sex-dependent Upregulation of NTPDase1/CD39 and Ecto-5ʹ-nucleotidase/CD73 in the Rat Fetal Brain",
volume = "42",
doi = "10.1007/s10571-021-01081-8",
pages = "1965-1981"
}
Manojlović-Stojanoski, M., Lavrnja, I., Stevanović, I., Trifunović, S., Ristić, N., Nestorović, N., Sévigny, J., Nedeljković, N.,& Laketa, D.. (2022). Antenatal Dexamethasone Treatment Induces Sex-dependent Upregulation of NTPDase1/CD39 and Ecto-5ʹ-nucleotidase/CD73 in the Rat Fetal Brain. in Cellular and Molecular Neurobiology
Springer., 42, 1965-1981.
https://doi.org/10.1007/s10571-021-01081-8
Manojlović-Stojanoski M, Lavrnja I, Stevanović I, Trifunović S, Ristić N, Nestorović N, Sévigny J, Nedeljković N, Laketa D. Antenatal Dexamethasone Treatment Induces Sex-dependent Upregulation of NTPDase1/CD39 and Ecto-5ʹ-nucleotidase/CD73 in the Rat Fetal Brain. in Cellular and Molecular Neurobiology. 2022;42:1965-1981.
doi:10.1007/s10571-021-01081-8 .
Manojlović-Stojanoski, Milica, Lavrnja, Irena, Stevanović, Ivana, Trifunović, Svetlana, Ristić, Nataša, Nestorović, Nataša, Sévigny, Jean, Nedeljković, Nadežda, Laketa, Danijela, "Antenatal Dexamethasone Treatment Induces Sex-dependent Upregulation of NTPDase1/CD39 and Ecto-5ʹ-nucleotidase/CD73 in the Rat Fetal Brain" in Cellular and Molecular Neurobiology, 42 (2022):1965-1981,
https://doi.org/10.1007/s10571-021-01081-8 . .
1
3
3