6525651‚Program saradnje srpske nauke sa dijasporom: Vaučeri za razmenu znanja, Fond za nauku Republike Srbije

Link to this page

6525651‚Program saradnje srpske nauke sa dijasporom: Vaučeri za razmenu znanja, Fond za nauku Republike Srbije

Authors

Publications

Defining the ferroptotic phenotype of beta cells in type 1 diabetes and its inhibition as a potential antidiabetic strategy

Markelić, Milica; Stančić, Ana; Saksida, Tamara; Grigorov, Ilijana; Mićanović, Dragica; Veličković, Ksenija; Martinović, Vesna; Savić, Nevena; Gudelj, Anđelija; Otašević, Vesna

(Lausanne: Frontiers Media SA, 2023)

TY  - JOUR
AU  - Markelić, Milica
AU  - Stančić, Ana
AU  - Saksida, Tamara
AU  - Grigorov, Ilijana
AU  - Mićanović, Dragica
AU  - Veličković, Ksenija
AU  - Martinović, Vesna
AU  - Savić, Nevena
AU  - Gudelj, Anđelija
AU  - Otašević, Vesna
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6071
AB  - Introduction: Recently, the involvement of ferroptotic cell death in the reduction of β-cell mass in diabetes has been demonstrated. To elucidate the mechanisms of β-cell ferroptosis and potential antidiabetic effects of the ferroptosis inhibitor ferrostatin-1 (Fer-1) in vivo, a mouse model of type 1 diabetes (T1D) was used.

Methods: Animals were divided into three groups: control (vehicle-treated), diabetic (streptozotocin-treated, 40 mg/kg, from days 1-5), and diabetic treated with Fer-1 (1 mg/kg, from days 1-21). On day 22, glycemia and insulinemia were measured and pancreases were isolated for microscopic analyses.

Results: Diabetes disturbed general parameters of β-cell mass (islet size, β-cell abundance and distribution) and health (insulin and PDX-1 expression), increased lipid peroxidation in islet cells, and phagocytic removal of iron-containing material. It also downregulated the main players of the antiferroptotic pathway - Nrf2, GPX4, and xCT. In contrast, Fer-1 ameliorated the signs of deterioration of β-cell/islets, decreased lipid peroxidation, and reduced phagocytic activity, while upregulated expression of Nrf2 (and its nuclear translocation), GPX4, and xCT in β-cell/islets.

Discussion: Overall, our study confirms ferroptosis as an important mode of β-cell death in T1D and suggests antiferroptotic agents as a promising strategy for the prevention and treatment of diabetes
PB  - Lausanne: Frontiers Media SA
T2  - Frontiers in Endocrinology
T1  - Defining the ferroptotic phenotype of beta cells in type 1 diabetes and its inhibition as a potential antidiabetic strategy
VL  - 14
DO  - 10.3389/fendo.2023.1227498
SP  - 1227498
ER  - 
@article{
author = "Markelić, Milica and Stančić, Ana and Saksida, Tamara and Grigorov, Ilijana and Mićanović, Dragica and Veličković, Ksenija and Martinović, Vesna and Savić, Nevena and Gudelj, Anđelija and Otašević, Vesna",
year = "2023",
abstract = "Introduction: Recently, the involvement of ferroptotic cell death in the reduction of β-cell mass in diabetes has been demonstrated. To elucidate the mechanisms of β-cell ferroptosis and potential antidiabetic effects of the ferroptosis inhibitor ferrostatin-1 (Fer-1) in vivo, a mouse model of type 1 diabetes (T1D) was used.

Methods: Animals were divided into three groups: control (vehicle-treated), diabetic (streptozotocin-treated, 40 mg/kg, from days 1-5), and diabetic treated with Fer-1 (1 mg/kg, from days 1-21). On day 22, glycemia and insulinemia were measured and pancreases were isolated for microscopic analyses.

Results: Diabetes disturbed general parameters of β-cell mass (islet size, β-cell abundance and distribution) and health (insulin and PDX-1 expression), increased lipid peroxidation in islet cells, and phagocytic removal of iron-containing material. It also downregulated the main players of the antiferroptotic pathway - Nrf2, GPX4, and xCT. In contrast, Fer-1 ameliorated the signs of deterioration of β-cell/islets, decreased lipid peroxidation, and reduced phagocytic activity, while upregulated expression of Nrf2 (and its nuclear translocation), GPX4, and xCT in β-cell/islets.

Discussion: Overall, our study confirms ferroptosis as an important mode of β-cell death in T1D and suggests antiferroptotic agents as a promising strategy for the prevention and treatment of diabetes",
publisher = "Lausanne: Frontiers Media SA",
journal = "Frontiers in Endocrinology",
title = "Defining the ferroptotic phenotype of beta cells in type 1 diabetes and its inhibition as a potential antidiabetic strategy",
volume = "14",
doi = "10.3389/fendo.2023.1227498",
pages = "1227498"
}
Markelić, M., Stančić, A., Saksida, T., Grigorov, I., Mićanović, D., Veličković, K., Martinović, V., Savić, N., Gudelj, A.,& Otašević, V.. (2023). Defining the ferroptotic phenotype of beta cells in type 1 diabetes and its inhibition as a potential antidiabetic strategy. in Frontiers in Endocrinology
Lausanne: Frontiers Media SA., 14, 1227498.
https://doi.org/10.3389/fendo.2023.1227498
Markelić M, Stančić A, Saksida T, Grigorov I, Mićanović D, Veličković K, Martinović V, Savić N, Gudelj A, Otašević V. Defining the ferroptotic phenotype of beta cells in type 1 diabetes and its inhibition as a potential antidiabetic strategy. in Frontiers in Endocrinology. 2023;14:1227498.
doi:10.3389/fendo.2023.1227498 .
Markelić, Milica, Stančić, Ana, Saksida, Tamara, Grigorov, Ilijana, Mićanović, Dragica, Veličković, Ksenija, Martinović, Vesna, Savić, Nevena, Gudelj, Anđelija, Otašević, Vesna, "Defining the ferroptotic phenotype of beta cells in type 1 diabetes and its inhibition as a potential antidiabetic strategy" in Frontiers in Endocrinology, 14 (2023):1227498,
https://doi.org/10.3389/fendo.2023.1227498 . .
2
1
1

Antiferroptotic approach for the treatment of diabetes-induced liver pathology: the effects of ethyl pyruvate

Stančić, Ana; Otašević, Vesna; Markelić, Milica; Veličković, Ksenija; Gudelj, Anđelija; Savić, Nevena; Martinović, Vesna; Grigorov, Ilijana

(EMBO, 2023)

TY  - CONF
AU  - Stančić, Ana
AU  - Otašević, Vesna
AU  - Markelić, Milica
AU  - Veličković, Ksenija
AU  - Gudelj, Anđelija
AU  - Savić, Nevena
AU  - Martinović, Vesna
AU  - Grigorov, Ilijana
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6068
AB  - We showed recently that ferroptosis contributes to liver pathological changes in diabetes. So, targeting of ferroptosis-related pathways could be novel approach for treatment of diabetes- related liver diseases. Ethyl pyruvate (EP) showed antidiabetic action due to anti-oxidative, - inflammatory and -apoptotic properties. We aimed to examine its potential antiferroptotic action  in diabetes-related liver pathology.
Male Wistar rats were divided into four groups: control; diabetic (STZ, 65 mg/kg); diabetic pre- treated with EP (80 mg/kg/day, starting one week before STZ and continuing following 4  weeks) and diabetic treated with EP, starting with STZ and lasted 4   weeks.
Both modes of EP treatment induced attenuation of ferroptotic events in the liver of diabetic  rats: accumulation of lipid peroxides (4-HNE), disturbances in iron metabolism (decreased   FTH and increased TFR expression), decrease in expression level/activity of ferroptosis-  related antioxidative-defense molecules (GPX4, GCL, GSS, Nrf2, HO-1), and activation of ferroptosis-related pro-inflammatory events (HMGB1 nucleus-to-cytosol and NF-kB cytosol-to- nucleus translocation). Those changes reflected on the improvement of diabetes-related morphological alterations such as liver fibrosis and  binucleation.
Overall, EP interferes with ferroptosis signaling pathways and exerts antiferroptotic activity in the liver in diabetic state. This highlighting the significance of ferroptosis targeting in diabetes- related liver diseases and novel mechanisms/targets of EP beneficial   actions.
PB  - EMBO
C3  - EMBO Workshop: Ferroptosis: When metabolism meets cell death; 2023 Apr 23-27; Seeon, Germany
T1  - Antiferroptotic approach for the treatment of diabetes-induced liver pathology: the effects of ethyl pyruvate
SP  - 92
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6068
ER  - 
@conference{
author = "Stančić, Ana and Otašević, Vesna and Markelić, Milica and Veličković, Ksenija and Gudelj, Anđelija and Savić, Nevena and Martinović, Vesna and Grigorov, Ilijana",
year = "2023",
abstract = "We showed recently that ferroptosis contributes to liver pathological changes in diabetes. So, targeting of ferroptosis-related pathways could be novel approach for treatment of diabetes- related liver diseases. Ethyl pyruvate (EP) showed antidiabetic action due to anti-oxidative, - inflammatory and -apoptotic properties. We aimed to examine its potential antiferroptotic action  in diabetes-related liver pathology.
Male Wistar rats were divided into four groups: control; diabetic (STZ, 65 mg/kg); diabetic pre- treated with EP (80 mg/kg/day, starting one week before STZ and continuing following 4  weeks) and diabetic treated with EP, starting with STZ and lasted 4   weeks.
Both modes of EP treatment induced attenuation of ferroptotic events in the liver of diabetic  rats: accumulation of lipid peroxides (4-HNE), disturbances in iron metabolism (decreased   FTH and increased TFR expression), decrease in expression level/activity of ferroptosis-  related antioxidative-defense molecules (GPX4, GCL, GSS, Nrf2, HO-1), and activation of ferroptosis-related pro-inflammatory events (HMGB1 nucleus-to-cytosol and NF-kB cytosol-to- nucleus translocation). Those changes reflected on the improvement of diabetes-related morphological alterations such as liver fibrosis and  binucleation.
Overall, EP interferes with ferroptosis signaling pathways and exerts antiferroptotic activity in the liver in diabetic state. This highlighting the significance of ferroptosis targeting in diabetes- related liver diseases and novel mechanisms/targets of EP beneficial   actions.",
publisher = "EMBO",
journal = "EMBO Workshop: Ferroptosis: When metabolism meets cell death; 2023 Apr 23-27; Seeon, Germany",
title = "Antiferroptotic approach for the treatment of diabetes-induced liver pathology: the effects of ethyl pyruvate",
pages = "92",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6068"
}
Stančić, A., Otašević, V., Markelić, M., Veličković, K., Gudelj, A., Savić, N., Martinović, V.,& Grigorov, I.. (2023). Antiferroptotic approach for the treatment of diabetes-induced liver pathology: the effects of ethyl pyruvate. in EMBO Workshop: Ferroptosis: When metabolism meets cell death; 2023 Apr 23-27; Seeon, Germany
EMBO., 92.
https://hdl.handle.net/21.15107/rcub_ibiss_6068
Stančić A, Otašević V, Markelić M, Veličković K, Gudelj A, Savić N, Martinović V, Grigorov I. Antiferroptotic approach for the treatment of diabetes-induced liver pathology: the effects of ethyl pyruvate. in EMBO Workshop: Ferroptosis: When metabolism meets cell death; 2023 Apr 23-27; Seeon, Germany. 2023;:92.
https://hdl.handle.net/21.15107/rcub_ibiss_6068 .
Stančić, Ana, Otašević, Vesna, Markelić, Milica, Veličković, Ksenija, Gudelj, Anđelija, Savić, Nevena, Martinović, Vesna, Grigorov, Ilijana, "Antiferroptotic approach for the treatment of diabetes-induced liver pathology: the effects of ethyl pyruvate" in EMBO Workshop: Ferroptosis: When metabolism meets cell death; 2023 Apr 23-27; Seeon, Germany (2023):92,
https://hdl.handle.net/21.15107/rcub_ibiss_6068 .

Sulforaphane prevents diabetes-induced liver ferroptosis through activation of Nrf2 signaling axis

Otašević, Vesna; Grigorov, Ilijana; Savić, Nevena; Markelić, Milica; Veličković, Ksenija; Gudelj, Anđelija; Martinović, Vesna; Stančić, Ana

(EMBO, 2023)

TY  - CONF
AU  - Otašević, Vesna
AU  - Grigorov, Ilijana
AU  - Savić, Nevena
AU  - Markelić, Milica
AU  - Veličković, Ksenija
AU  - Gudelj, Anđelija
AU  - Martinović, Vesna
AU  - Stančić, Ana
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6067
AB  - Recently, we characterized the ferroptotic phenotype of the liver of diabetic mice and revealed the inactivation of Nrf2 as an integral part of diabetes-induced liver ferroptosis. We aim here to examine does sulforaphane, an Nrf2 activator and antioxidant, prevent diabetes-induced liver ferroptosis and the mechanisms  involved.
For that purpose, male C57BL/6 mice were divided into three groups: control, diabetic (streptozotocin-treated, 40 mg/kg/5 consecutive days), diabetic+sulforaphane treated (2.5 mg/kg, from day 1-42).
Results showed that diabetes-induced inactivation of Nrf2 and decreased expression of its downstream antiferroptotic parameters crucial for antioxidative defense (HO-1, catalase, SOD), iron metabolism (ferroportin, ferritin), glutathione synthesis (xCT, GCLC, CTH, CBS) and recycling (GR) were reversed/increased by sulforaphane treatment. Antiferroptotic effect of sulforaphane in the diabetic liver was further evidenced through the increased level of glutathione, decreased accumulation of liable iron and lipid peroxides (4-HNE) and decreased tissue damage (fibrosis and infiltration). Finally, diabetes-induced increase in serum glucose, ALT, AST and triglyceride level was significantly reduced by   sulforaphane.
These findings revealed for the first time that sulforaphane prevents in vivo diabetes-induced liver ferroptosis through activation of Nrf2 signaling axis. This suggests sulforaphane as a promising therapeutic tool for preventing ferroptosis at least in diabetes and diabetes-related pathologies.
PB  - EMBO
C3  - EMBO Workshop: Ferroptosis: When metabolism meets cell death; 2023 Apr 23-27; Seeon, Germany
T1  - Sulforaphane prevents diabetes-induced liver ferroptosis through activation of Nrf2 signaling axis
SP  - 91
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6067
ER  - 
@conference{
author = "Otašević, Vesna and Grigorov, Ilijana and Savić, Nevena and Markelić, Milica and Veličković, Ksenija and Gudelj, Anđelija and Martinović, Vesna and Stančić, Ana",
year = "2023",
abstract = "Recently, we characterized the ferroptotic phenotype of the liver of diabetic mice and revealed the inactivation of Nrf2 as an integral part of diabetes-induced liver ferroptosis. We aim here to examine does sulforaphane, an Nrf2 activator and antioxidant, prevent diabetes-induced liver ferroptosis and the mechanisms  involved.
For that purpose, male C57BL/6 mice were divided into three groups: control, diabetic (streptozotocin-treated, 40 mg/kg/5 consecutive days), diabetic+sulforaphane treated (2.5 mg/kg, from day 1-42).
Results showed that diabetes-induced inactivation of Nrf2 and decreased expression of its downstream antiferroptotic parameters crucial for antioxidative defense (HO-1, catalase, SOD), iron metabolism (ferroportin, ferritin), glutathione synthesis (xCT, GCLC, CTH, CBS) and recycling (GR) were reversed/increased by sulforaphane treatment. Antiferroptotic effect of sulforaphane in the diabetic liver was further evidenced through the increased level of glutathione, decreased accumulation of liable iron and lipid peroxides (4-HNE) and decreased tissue damage (fibrosis and infiltration). Finally, diabetes-induced increase in serum glucose, ALT, AST and triglyceride level was significantly reduced by   sulforaphane.
These findings revealed for the first time that sulforaphane prevents in vivo diabetes-induced liver ferroptosis through activation of Nrf2 signaling axis. This suggests sulforaphane as a promising therapeutic tool for preventing ferroptosis at least in diabetes and diabetes-related pathologies.",
publisher = "EMBO",
journal = "EMBO Workshop: Ferroptosis: When metabolism meets cell death; 2023 Apr 23-27; Seeon, Germany",
title = "Sulforaphane prevents diabetes-induced liver ferroptosis through activation of Nrf2 signaling axis",
pages = "91",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6067"
}
Otašević, V., Grigorov, I., Savić, N., Markelić, M., Veličković, K., Gudelj, A., Martinović, V.,& Stančić, A.. (2023). Sulforaphane prevents diabetes-induced liver ferroptosis through activation of Nrf2 signaling axis. in EMBO Workshop: Ferroptosis: When metabolism meets cell death; 2023 Apr 23-27; Seeon, Germany
EMBO., 91.
https://hdl.handle.net/21.15107/rcub_ibiss_6067
Otašević V, Grigorov I, Savić N, Markelić M, Veličković K, Gudelj A, Martinović V, Stančić A. Sulforaphane prevents diabetes-induced liver ferroptosis through activation of Nrf2 signaling axis. in EMBO Workshop: Ferroptosis: When metabolism meets cell death; 2023 Apr 23-27; Seeon, Germany. 2023;:91.
https://hdl.handle.net/21.15107/rcub_ibiss_6067 .
Otašević, Vesna, Grigorov, Ilijana, Savić, Nevena, Markelić, Milica, Veličković, Ksenija, Gudelj, Anđelija, Martinović, Vesna, Stančić, Ana, "Sulforaphane prevents diabetes-induced liver ferroptosis through activation of Nrf2 signaling axis" in EMBO Workshop: Ferroptosis: When metabolism meets cell death; 2023 Apr 23-27; Seeon, Germany (2023):91,
https://hdl.handle.net/21.15107/rcub_ibiss_6067 .