NIH grant No R03AG046216

Link to this page

NIH grant No R03AG046216

Authors

Publications

Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer's disease.

Lazić, Divna; Tešić, Vesna; Jovanović, Mirna; Brkić, Marjana; Milanović, Desanka; Zloković, Berislav V.; Kanazir, Selma; Perović, Milka

(2020)

TY  - JOUR
AU  - Lazić, Divna
AU  - Tešić, Vesna
AU  - Jovanović, Mirna
AU  - Brkić, Marjana
AU  - Milanović, Desanka
AU  - Zloković, Berislav V.
AU  - Kanazir, Selma
AU  - Perović, Milka
PY  - 2020
UR  - http://www.ncbi.nlm.nih.gov/pubmed/31931140
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3596
AB  - Food restriction has been widely associated with beneficial effects on brain aging and age-related neurodegenerative diseases such as Alzheimer's disease. However, previous studies on the effects of food restriction on aging- or pathology-related cognitive decline are controversial, emphasizing the importance of the type, onset and duration of food restriction. In the present study, we assessed the effects of preventive every-other-day (EOD) feeding regimen on neurodegenerative phenotype in 5XFAD transgenic mice, a commonly used mouse model of Alzheimer's disease. EOD feeding regimen was introduced to transgenic female mice at the age of 2 months and the effects on amyloid-β (Aβ) accumulation, gliosis, synaptic plasticity, and blood-brain barrier breakdown were analyzed in cortical tissue of 6-month-old animals. Surprisingly, significant increase of inflammation in the cortex of 5XFAD fed EOD mice was observed, reflected by the expression of microglial and astrocytic markers. This increase in reactivity and/or proliferation of glial cells was accompanied by an increase in proinflammatory cytokine TNF-α, p38 MAPK and EAAT2, and a decrease in GAD67. NMDA receptor subunit 2B, related to glutamate excitotoxicity, was increased in the cortex of 5XFAD-EOD mice indicating additional alterations in glutamatergic signaling. Furthermore, 4 months of EOD feeding regimen had led to synaptic plasticity proteins reduction and neuronal injury in 5XFAD mice. However, EOD feeding regimen did not affect Aβ load and blood-brain barrier permeability in the cortex of 5XFAD mice. Our results demonstrate that EOD feeding regimen exacerbates Alzheimer's disease-like neurodegenerative and neuroinflammatory changes irrespective of Aβ pathology in 5XFAD mice, suggesting that caution should be paid when using food restrictions in the prodromal phase of this neurodegenerative disease.
T2  - Neurobiology of Disease
T1  - Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer's disease.
VL  - 136
DO  - 10.1016/j.nbd.2020.104745
SP  - 104745
ER  - 
@article{
author = "Lazić, Divna and Tešić, Vesna and Jovanović, Mirna and Brkić, Marjana and Milanović, Desanka and Zloković, Berislav V. and Kanazir, Selma and Perović, Milka",
year = "2020",
abstract = "Food restriction has been widely associated with beneficial effects on brain aging and age-related neurodegenerative diseases such as Alzheimer's disease. However, previous studies on the effects of food restriction on aging- or pathology-related cognitive decline are controversial, emphasizing the importance of the type, onset and duration of food restriction. In the present study, we assessed the effects of preventive every-other-day (EOD) feeding regimen on neurodegenerative phenotype in 5XFAD transgenic mice, a commonly used mouse model of Alzheimer's disease. EOD feeding regimen was introduced to transgenic female mice at the age of 2 months and the effects on amyloid-β (Aβ) accumulation, gliosis, synaptic plasticity, and blood-brain barrier breakdown were analyzed in cortical tissue of 6-month-old animals. Surprisingly, significant increase of inflammation in the cortex of 5XFAD fed EOD mice was observed, reflected by the expression of microglial and astrocytic markers. This increase in reactivity and/or proliferation of glial cells was accompanied by an increase in proinflammatory cytokine TNF-α, p38 MAPK and EAAT2, and a decrease in GAD67. NMDA receptor subunit 2B, related to glutamate excitotoxicity, was increased in the cortex of 5XFAD-EOD mice indicating additional alterations in glutamatergic signaling. Furthermore, 4 months of EOD feeding regimen had led to synaptic plasticity proteins reduction and neuronal injury in 5XFAD mice. However, EOD feeding regimen did not affect Aβ load and blood-brain barrier permeability in the cortex of 5XFAD mice. Our results demonstrate that EOD feeding regimen exacerbates Alzheimer's disease-like neurodegenerative and neuroinflammatory changes irrespective of Aβ pathology in 5XFAD mice, suggesting that caution should be paid when using food restrictions in the prodromal phase of this neurodegenerative disease.",
journal = "Neurobiology of Disease",
title = "Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer's disease.",
volume = "136",
doi = "10.1016/j.nbd.2020.104745",
pages = "104745"
}
Lazić, D., Tešić, V., Jovanović, M., Brkić, M., Milanović, D., Zloković, B. V., Kanazir, S.,& Perović, M.. (2020). Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer's disease.. in Neurobiology of Disease, 136, 104745.
https://doi.org/10.1016/j.nbd.2020.104745
Lazić D, Tešić V, Jovanović M, Brkić M, Milanović D, Zloković BV, Kanazir S, Perović M. Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer's disease.. in Neurobiology of Disease. 2020;136:104745.
doi:10.1016/j.nbd.2020.104745 .
Lazić, Divna, Tešić, Vesna, Jovanović, Mirna, Brkić, Marjana, Milanović, Desanka, Zloković, Berislav V., Kanazir, Selma, Perović, Milka, "Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer's disease." in Neurobiology of Disease, 136 (2020):104745,
https://doi.org/10.1016/j.nbd.2020.104745 . .
15
21
9
22