BetFeSis - Ferroptosis in the Β -Cells Death: Possible Strategy for Diabetes Treatment

Link to this page

info:eu-repo/grantAgreement/ScienceFundRS/Dijaspora/6525651/RS//

BetFeSis - Ferroptosis in the Β -Cells Death: Possible Strategy for Diabetes Treatment (en)
Authors

Publications

Sulforaphane prevents diabetes-induced hepatic ferroptosis by activating Nrf2 signaling axis

Savić, Nevena; Markelić, Milica; Stančić, Ana; Veličković, Ksenija; Grigorov, Ilijana; Vučetić, Milica; Martinović, Vesna; Gudelj, Anđelija; Otašević, Vesna

(Hoboken: Wiley, 2024)

TY  - JOUR
AU  - Savić, Nevena
AU  - Markelić, Milica
AU  - Stančić, Ana
AU  - Veličković, Ksenija
AU  - Grigorov, Ilijana
AU  - Vučetić, Milica
AU  - Martinović, Vesna
AU  - Gudelj, Anđelija
AU  - Otašević, Vesna
PY  - 2024
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6627
AB  - Recently, we characterized the ferroptotic phenotype in the liver of diabetic
mice and revealed nuclear factor (erythroid-derived-2)-related factor 2 (Nrf2)
inactivation as an integral part of hepatic injury. Here, we aim to investigate
whether sulforaphane, an Nrf2 activator and antioxidant, prevents diabetes induced hepatic ferroptosis and the mechanisms involved. Male C57BL/6 mice
were divided into four groups: control (vehicle-treated), diabetic (streptozoto cin-induced; 40 mg/kg, from Days 1 to 5), diabetic sulforaphane-treated
(2.5 mg/kg from Days 1 to 42) and non-diabetic sulforaphane-treated group
(2.5 mg/kg from Days 1 to 42). Results showed that diabetes-induced inactiva tion of Nrf2 and decreased expression of its downstream antiferroptotic mole cules critical for antioxidative defense (catalase, superoxide dismutases,
thioredoxin reductase), iron metabolism (ferritin heavy chain (FTH1), ferro portin 1), glutathione (GSH) synthesis (cystine-glutamate antiporter system,
cystathionase, glutamate-cysteine ligase catalitic subunit, glutamate-cysteine
ligase modifier subunit, glutathione synthetase), and GSH recycling - glutathi one reductase (GR) were reversed/increased by sulforaphane treatment. In
addition, we found that the ferroptotic phenotype in diabetic liver is associated
with increased ferritinophagy and decreased FTH1 immunopositivity. The antiferroptotic effect of sulforaphane was further evidenced through the
increased level of GSH, decreased accumulation of labile iron and lipid perox ides (4-hydroxy-2-nonenal, lipofuscin), decreased ferritinophagy and liver dam age (decreased fibrosis, alanine aminotransferase, and aspartate
aminotransferase). Finally, diabetes-induced increase in serum glucose and tri glyceride level was significantly reduced by sulforaphane. Regardless of the fact
that this study is limited by the use of one model of experimentally induced
diabetes, the results obtained demonstrate for the first time that sulforaphane
prevents diabetes-induced hepatic ferroptosis in vivo through the activation of
Nrf2 signaling pathways. This nominates sulforaphane as a promising phytopharmaceutical for the prevention/alleviation of ferroptosis in diabetes-related
pathologies.
PB  - Hoboken: Wiley
T2  - BioFactors
T1  - Sulforaphane prevents diabetes-induced hepatic ferroptosis by activating Nrf2 signaling axis
DO  - 10.1002/biof.2042
ER  - 
@article{
author = "Savić, Nevena and Markelić, Milica and Stančić, Ana and Veličković, Ksenija and Grigorov, Ilijana and Vučetić, Milica and Martinović, Vesna and Gudelj, Anđelija and Otašević, Vesna",
year = "2024",
abstract = "Recently, we characterized the ferroptotic phenotype in the liver of diabetic
mice and revealed nuclear factor (erythroid-derived-2)-related factor 2 (Nrf2)
inactivation as an integral part of hepatic injury. Here, we aim to investigate
whether sulforaphane, an Nrf2 activator and antioxidant, prevents diabetes induced hepatic ferroptosis and the mechanisms involved. Male C57BL/6 mice
were divided into four groups: control (vehicle-treated), diabetic (streptozoto cin-induced; 40 mg/kg, from Days 1 to 5), diabetic sulforaphane-treated
(2.5 mg/kg from Days 1 to 42) and non-diabetic sulforaphane-treated group
(2.5 mg/kg from Days 1 to 42). Results showed that diabetes-induced inactiva tion of Nrf2 and decreased expression of its downstream antiferroptotic mole cules critical for antioxidative defense (catalase, superoxide dismutases,
thioredoxin reductase), iron metabolism (ferritin heavy chain (FTH1), ferro portin 1), glutathione (GSH) synthesis (cystine-glutamate antiporter system,
cystathionase, glutamate-cysteine ligase catalitic subunit, glutamate-cysteine
ligase modifier subunit, glutathione synthetase), and GSH recycling - glutathi one reductase (GR) were reversed/increased by sulforaphane treatment. In
addition, we found that the ferroptotic phenotype in diabetic liver is associated
with increased ferritinophagy and decreased FTH1 immunopositivity. The antiferroptotic effect of sulforaphane was further evidenced through the
increased level of GSH, decreased accumulation of labile iron and lipid perox ides (4-hydroxy-2-nonenal, lipofuscin), decreased ferritinophagy and liver dam age (decreased fibrosis, alanine aminotransferase, and aspartate
aminotransferase). Finally, diabetes-induced increase in serum glucose and tri glyceride level was significantly reduced by sulforaphane. Regardless of the fact
that this study is limited by the use of one model of experimentally induced
diabetes, the results obtained demonstrate for the first time that sulforaphane
prevents diabetes-induced hepatic ferroptosis in vivo through the activation of
Nrf2 signaling pathways. This nominates sulforaphane as a promising phytopharmaceutical for the prevention/alleviation of ferroptosis in diabetes-related
pathologies.",
publisher = "Hoboken: Wiley",
journal = "BioFactors",
title = "Sulforaphane prevents diabetes-induced hepatic ferroptosis by activating Nrf2 signaling axis",
doi = "10.1002/biof.2042"
}
Savić, N., Markelić, M., Stančić, A., Veličković, K., Grigorov, I., Vučetić, M., Martinović, V., Gudelj, A.,& Otašević, V.. (2024). Sulforaphane prevents diabetes-induced hepatic ferroptosis by activating Nrf2 signaling axis. in BioFactors
Hoboken: Wiley..
https://doi.org/10.1002/biof.2042
Savić N, Markelić M, Stančić A, Veličković K, Grigorov I, Vučetić M, Martinović V, Gudelj A, Otašević V. Sulforaphane prevents diabetes-induced hepatic ferroptosis by activating Nrf2 signaling axis. in BioFactors. 2024;.
doi:10.1002/biof.2042 .
Savić, Nevena, Markelić, Milica, Stančić, Ana, Veličković, Ksenija, Grigorov, Ilijana, Vučetić, Milica, Martinović, Vesna, Gudelj, Anđelija, Otašević, Vesna, "Sulforaphane prevents diabetes-induced hepatic ferroptosis by activating Nrf2 signaling axis" in BioFactors (2024),
https://doi.org/10.1002/biof.2042 . .
1