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Abstract - The effects of different temperatures (23°C and 8°C) on activity of corpora allata (CA) and dorsolateral (L1,
L2) protocerebral neurosecretory neurons were investigated in Morimus funereus Mulsant (1863) larvae collected from
a natural population during March. Activity of CA was revealed by monitoring of CA volume and cell number. Increase
of CA volume after two day exposure to both temperatures was shown to be the result of increase in cell number. Activ-
ity of CA was higher at 23°C than 8°C. Activity of L1 and L2 neurosecretory neurons was inhibited at both temperatures.
Neurosecretory neurons were more sensitive to temperature of 23°C than 8°C. It can be supposed that dorsolateral neu-
rosecretory neurons synthesize neurohormones that affect CA activity, depending on environmental temperature.
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INTRODUCTION

Insects are permanently exposed to the action of abiotic
and biotic environmental factors. Among abiotic factors,
temperature plays a significant role in survival, develop-
ment, metamorphosis, reproduction, and population
dynamics of insects.

Temperature influences all levels of biological
organization in insects. Through changes in the cell mem-
branes, it differentially changes the activity of neurose-
cretory neurons in the central nervous system, thus dis-
turbing hormonal equilibrium. The neuroendocrine sys-
tem quickly reacts to environmental changes
(C h e r n y s h , 1991). Its activity determines the content
and interrelation of hormones in hemolymph, which fur-
ther leads to changes in insect metabolism and metamor-
phosis (B o r k o v e c and G e l m a n , 1986).

The CA synthesize and release juvenile hormones
(JHs), which play a prominent role in insect development
and reproduction (N i j h o u t , 1994). Besides their mul-
tiple physiological roles, the JHs have a protective role in
response to environmental changes. In some species, JHs

play a role in regulation of cryoprotectants, ice nucleating
agents, and thermal hysteresis proteins (H o r w a t h and
D u m a n , 1983; B a u s t et al. 1985). 

R a u s c h e n b a c h et al. (1983) have demonstrated
the important role of JHs in resistance of insects to high
temperature. Both low and high temperatures cause an in-
crease in the level of JHs and prolongation of their secre-
tion from CA, enabling insects to survive under stressful
conditions.

It has been proposed that CA activity may be regu-
lated in two ways (T o b e and P r a t t , 1976; F e y e r e i -
s e n , 1985). First, levels of JH biosynthesis may be reg-
ulated through modulation of rate-limiting steps in the JH
biosynthetic pathway. Second, the capacity of CA to syn-
thesize JH may be regulated by slow developmental
changes in the amount of cellular machinery involved in
hormone production (T o b e and S t a y , 1985). Work on
brain-produced allatostatins in cockroaches supports the
former mechanism: the neuropeptides exert fast and
reversible inhibition of JH synthesis in vitro (S t a y et al.
1994).
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Allatostatins are synthesized in the dorsolateral neu-
rosecretory neurons of the insect protocerebrum (Ve e -
l a e r t et al. 1995), as in the large form of the prothoraci-
cotropic neurohormone (PTTH) (D a i et al. 1994). They
are regulators of the metabolic and morphogenetic
process in insects (R a a b e , 1982; G i l b e r t et al.
1996). The large form of the PTTH exerts a tropic effect
on the prothoracic gland by inducing the synthesis of
ecdysone (F e s c e m e y e r et al. 1995). Allatostatins
inhibit CA activity (O k u d a and T a n a k a , 1997). The
absence of allatostatins and/or presence of allatotropins
in the median part of the protocerebrum stimulates the
CA (M e n g - P i n g et al. 2001). The aim of the present
work was to compare changes in the activity of CA and
protocerebral dorsolateral neurosecretory neurons in lar-
vae subjected to temperature stress (23°C and 8°C). We
expected differences of CA and dorsolateral neuron activ-
ity between larvae exposed to different constant temper-
atures and the control group of larvae.

MATERIAL AND METHODS

The effects of different temperatures (23°C and 8°C)
on activities of CA and dorsolateral neurosecretory neu-
rons were investigated in M. funereus larvae (500-700
mg) collected from the nature on the mountain Fruška
Gora, during March (average daily temperature was 3°-
5°C). The control larvae were killed immediately (natural
control group - NC). Other larvae were divided into four
experimental groups. They were placed in separate test
tubes with crumbled oak bark, and exposed to 23°C and
8°C. Larvae were killed after short-term (2 days) and
long-term (30 days) exposure to different constant tem-
peratures.

The larvae were killed and head capsules were fixed
in Bouin's fixative. The brain complexes were dissected
out and after rinsing and dehydration they were embed-
ded in paraffin wax (Merck 59°C). Serial cross sections
(5μm thick) were cut and stained by the Alcian Blue
Phloxine and Paraldehyde Thionine Phloxine techniques
(P a n o v , 1980). Neurosecretory material in neurons
stained dark purple were paraldehyde fuchsin positive
(PAF+).

Four pairs of CA per experimental group were ana-
lyzed using a light microscope. Activity of CA was esti-
mated by monitoring the volume of CA and the number
of their cells. Volumes of the CA were calculated using
the formula V=1/6×π×a×b2, where "a" represents the

larger diameter and "b" the smaller diameter of CA
(H u a n g et al. 1991). The total number of cells was
determined on the same preparation.

Based on their morphological characteristics, we
divided the protocerebral dorsolateral neurosecretory
neurons (for ease of monitoring the results) into two
groups L1 and L2. The activity of the neurons was esti-
mated using the following cytological parameters:

- the number of L1 and L2 neurosecretory neurons as
noted for each animal (each neuron was observed in all of
the serial section in which it appeared);

- the size of the neurosecretory neurons and their
nuclei, expressed using the formula V=1/6×π×a×b2 ( "a"
representing the larger diameter and "b" the smaller
diameter of each neuron or its nucleus);

- the amount of the paraldehyde stained (PAF+) neu-
rosecretory material in the perikaryon, which was arbi-
trarily estimated as well-expressed, expressed, poorly
expressed, and empty (represented as % of the analyzed
neurosecretory neurons); 

- the quality of the neurosecretory material, which
was described as powdery, fine, medium, or large
grained.

The CA volume and size of the neurons and nuclei
were determined using the Leica QWIN program, and the
results were expressed in μm3.

Statistical analysis of results was performed using
the STATISTICA program, version 5.0. One-way
ANOVA and the multiple range test were applied for esti-
mation of significant differences among the five groups
for CA volume, the number of CA cells, and the number
and size of neurosecretory neurons and their nuclei.

The significance of temperature, exposure duration,
and interaction effects was estimated using two-way
ANOVA.

RESULTS

The cytological parameters indicate that there were
differences in CA activity and activity of the dorsolateral
neurosecretory neurons in M. funereus larvae under the
influence of different constant temperatures. 
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Fig. 1. Quantity and size of PAF+ neurosecretory material in neurosecretory neu-
rons (L1, L2) of Morimus funereus larvae.

L2 neurosecretory neurons

Different constant temperatures provoked increase
of CA volume. It was significant after 2 days of exposure
to 23°C and 8°C (Table 1; Fig. 3). The number of CA
cells was significantly higher regardless of the tempera-
ture and exposure time (Table 1). These parameters were
higher at 23°C than 8°C. Mitotic divisions were notice-
able in the CA during short-term exposure to both tem-
peratures (Fig. 3). Highly significant temperature and
exposure duration effects were recorded for CA volume
and the number of CA cells (Table 2). The size of L1 neu-
rons decreased in larvae exposed to constant tempera-
tures of 23°C and 8°C. It was significant in groups
exposed to 23°C and 8°C for 30 days (Table 1). The size
of the nuclei was also smaller in all groups than in NC,

and the difference was significant in the group exposed to
23°C for 2 days, as well as in groups exposed to both
temperatures for 30 days (Table 1).

The L1 neurons of the larvae exposed to different
temperatures for 2 days and 30 days contained a poorly
expressed amount of powdery PAF+ neurosecretion.
Empty cells were recorded in all groups (Figs. 1 and 4).

The number of L1 neurons in larvae exposed to 23°C
and 8°C for 2 days and 30 days was lower than in NC
(Table 1). The reduction in number was significant in the
group exposed to 8°C for 30 days (Table 1). This is indi-
cated by significant "temperature × time" interaction in

L1 neurosecretory neurons



CA-V (�m3)

CA-N

L1-N

L1-SN 
(�m3)

L1-Sn 
(�m3)

L2-N

L2-SN 
(�m3)

L2-Sn 
(�m3)

NC

50128.48
±10321.2a

96.87
±10.31a

7.50
±0.45a

280.78
±27.35a

73.83
±8.82a

12.83
±0.2a

1137.99
±65.63ac

199.96
±11.97ab

23�C-2d.

318164.86
±53394.7b

360.89
±48.99bc

5.80
±0.22ab

172.17
±11.62ab

34.89
±3.69b

11.20
±0.2b

912.54
±39.60abc

160.45
±11.01bc

8�C-2d.

181071.95
±36967.1b

216
±15.58b

6.25
±0.29ab

174.97
±12.62ab

37.6
±4.38ab

11.75
±0.9ab

855.27
±54.40bd

141.04
±8.07c

23�C-30d.

81236.22
±11896.2a

187.75
±15.26c

7.00
±0.47ab

156.95
±13.34b

36.85
±4.34b

11.50
±0.8ab

768.78
±45.54b

143.34
±10.53c

8�C-30d.

52048.75
±12812.5a

180
±13.24c

5.80
±0.65b

163.53
±15.20b

39.98
±5.83b

11.20
±0.2b

972.07
±44.74cd

174.60
±9.77bc

F

25.79

20.40

3.82

5.41

5.18

4.26

9.08

5.52

Pr>F

0.0000

0.0000

0.0193

0.0004

0.0006

0.0125

0.0000

0.0003

Table 1. Means and standard errors of CA volume (CA-V), number of CA cells (CA-N), number of neurosecretory neurons (N), and size of neurosecretory neurons (SN)
and their nuclei (Sn) in M. funereus larvae. NC-natural conditions.

Table 2. Two-way ANOVA of cytological parameters of M. funereus larvae. Temperatures (T) and times (t) are fixed factors.
The mean squares (MS) were multiplied by 1000.

Trait

CA-V

L1-N

L1-VN

L1-Vn

L2-N

L2-VN

L2-Vn

Source of variation

df
MS
F

df
MS
F

df
MS
F

df
MS
F

df
MS
F

df
MS
F

df
MS
F

T

1
32.85
8.13**

1
3.32
0.97

1
1.24
0.27

1
0.68
0.09

1
0.12
0.22

1
7.55
3.69

1
6.32
1.50

t

1
235.42

58.26***

1
1.89
0.55

1
11.90
2.63

1
0.32
0.04

1
012
0.22

1
0.59
0.29

1
4.49
1.06

T X t

1
0.13
0.03

1
15.95
4.64*

1
0.19
0.042

1
0.06
0.007

1
1.09
2.10

1
26.37

12.90***

1
23.22
5.51*

Error

24
4.04

14
3.44

107
4.53

107
7.35

14
0.52

201
2.04

201
4.22
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two-way ANOVA (Table 2).

In comparison with the NC group, the size of L2 neu-
rons decreased under the influence of both temperatures.
The differences were significant in the group exposed to
8°C for 2 days and the group exposed to 23°C for 30
days. Significant differences were also observed between
the groups exposed to 23°C and 8°C for 30 days (Table
1). The size of the nucleus was smaller in all groups than
in NC. The decrease of nucleus size was significant in
larvae exposed to 8°C for 2 days and larvae exposed to
23°C for 30 days (Table 1). A significant "temperature ×
time" interaction was recorded for both L2 neurosecreto-
ry neurons and their nuclei (Table 2).

The cytoplasm of L2 neurons in larvae exposed to
23°C and 8°C for 2 days mostly contained fine-grained
PAF+ neurosecretion. The L2 cells of larvae exposed to
different temperatures for 30 days contained powdery
neurosecretion, and empty cells were present in both
groups (Figs. 1 and 4).

The number of L2 neurons was significantly lower in
the groups exposed to 23°C for 2 days and 8°C for 30
days (Table 1).

DISCUSSION

The cerambycid beetle M. funereus inhabits decidu-
ous and coniferous trees in the forests of Southeastern
Europe. Temperature is a limiting factor for their spread-
ing to the north (S t a n i æ et al. 1989). In the course of
evolution, M. funereus larvae have become specialized
for seasonal changes of temperature. Their development
is long, and the number of larval instars is unknown and

dependent upon environmental conditions. Changes in
the duration of larval development under stress condi-
tions are in correlation with neuroendocrine activity
(I v a n o v i æ et al. 1991) and with changes in protein
and carbohydrate metabolism of M. funereus larvae
(I v a n o v i æ et al. 1982, 1992).

Previous studies have demonstrated that there are
seasonal differences in the response of M. funereus larvae
to the effect of different temperatures. The temperature of
8°C was stressful to larvae collected in June (inhibition
of neurosecretory neurons), but not to those collected in
November. In contrast, the temperature of 23°C provoked
stress in November, but not in June (I v a n o v i æ et al.
1975, 1980).

The M. funereus larvae used in our experiment live
in their natural habitat under the influence of low temper-
atures. Constant temperatures of 8°C and especially 23°C
were higher than the temperature in the larval environ-
ment (3°-5°C). Our results confirm the expected differ-
ences in CA activity and the activity of dorsolateral neu-
rons in larvae exposed to both temperatures and the con-
trol group.

Volume of the CA increased after short-term expo-
sure to different temperatures and was higher at 23°C
than 8°C (Table 1; Fig. 3). The increase of CA volume
seems to result from increase of cell number, since mitot-
ic divisions were observed (Fig. 3). Investigations on var-
ious species suggest that there is a correlation between
secretory activity of the CA and their volume. It has also
been shown that changes in CA volume result from mitot-
ic activity within the gland, before increase of gland vol-
ume and JH synthesis (P s z c z o l k o w s k i and C h i -
a n g , 2000; P s z c z o l k o w s k i and B r o w n , 2003).
Since the biosynthesis and release of JHs are highly cor-
related, and there are no data suggesting the possibility
for JH accumulation in the CA, our results suggest that
the level of JHs in hemolymph and other tissues might be
increased after short-term exposure to both temperatures.

The effects of both temperatures resulted in inhibi-
tion of L1 neurons (Tables 1 and 2; Figs. 1 and 4), such
inhibition being markedly expressed at 23°C. A similar
result was obtained in Lymantria dispar larvae (CA were
active, but L1 neurons inhibited) under nutritional stress
(P e r i æ - M a t a r u g a et al. 2001). Concomitant
increase in CA volume and inhibition of L1 neurons indi-
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Fig. 2. Frontal cross-section of the brain at the level of the protocerebrum in
Morimus funereus larvae. The arrows indicate L1 and L2 neurons.



Fig. 3. The CA of Morimus funereus larvae exposed to different temperatures (23°C and 8°C) and larvae of the control group (NC); m - mitot-
ic division of CA cells.
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Fig. 4. Protocerebral L1 and L2 neurosecretory neurons of Morimus funereus larvae exposed to different temperatures (23°C and 8°C) and
larvae of the control group (NC).
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cates that L1 neurosecretory neurons may synthesize
allatostatins. This has been found in other insects by
immunocytochemical methods (Ve e l a e r t et al. 1995).
Increase in CA activity and JH titer is common in insects
under stressful conditions (C h e r n y s h , 1991; G r u n -
t e n k o et al. 2000).

Compared to the NC group, the activity of L2 neu-
rosecretory neurons was depressed regardless of the tem-
perature and exposure time (Tables 1 and 2; Figs. 1 and
4). It is probable that these cells synthesize neurohor-
mones involved in morphogenesis. By using monoclonal
antibodies, it has been shown that the large neurosecreto-
ry neurons of the dorsolateral region of the brain synthe-
size the large form of the PTTH (K a w a k a m i et al.
1990; G r a y et al. 1994), which stimulates synthesis and
release of ecdysone. It has also been shown that PTTH
secretion is usually inhibited by the presence of high JH
concentration in the hemolymph (C h e r n y s h , 1991)
and occurs only after decrease in JH titer (N i j h o u t and
W i l l i a m s , 1974; R o u n t r e e and B o l l e n b a -
c h e r , 1986). We speculate that increased CA activity
after short-term exposure to 23°C and 8°C inhibited
PTTH secretion in large L2 neurons in M. funereus lar-
vae. The response to temperature changes depends not
only on temperatures and time of exposure, but also on
the developmental stage (I v a n o v i æ et al. 1975), phase
of the annual cycle (I v a n o v i æ et al. 1982), and nutri-
tion (I v a n o v i æ et al. 1989).

Exogenous and endogenous factors that change the
activity and number of neurosecretory neurons also
change the neurohormonal balance (I v a n o v i æ and
J a n k o v i æ - H l a d n i , 1991). Stress-induced changes
in the activity of protocerebral neurosecretory neurons
exert a considerable influence on different regulatory and
effector systems directly involved in the process of adap-
tation (C h e r n y s h , 1991).
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CORPORA ALLATA AND DORSOLATERAL NEUROSECRETORY NEURONS IN MORIMUS FUNEREUS LARVAE
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Ispitivan je uticaj razli~itih temperatura (23°C i
8°C) na aktivnost corpora allata (CA) i dorzolateral-
nih (L1 i L2) protocerebralnih neurosekretnih neu-
rona kod larvi Morimus funereus Muls. (1863),
sakupqenih iz prirode tokom meseca marta.

Aktivnost CA je procewivana pra}ewem prome-
na veli~ine CA i broja }elija CA. Pokazano je da je
pove}awe veli~ine CA, nakon 2 dana izlagawa larvi
obema temperaturama, rezultuje u pove}awu broja
}elija. Aktivnost CA je ve}a na temperaturi od 230C,

nego na 80C. Aktivnost L1 i L2 neurosekretnih neu-
rona je bila inhibirana delovawem obeju temperatu-
ra. Neuro-sekretni neuroni su osetqiviji na delovawe
temperature od 23

0
C, nego na 80C.

Moglo bi se pretpostaviti da dorzolateralni neu-
rosekretni neuroni sinteti{u neurohormone koji uti~u
na aktivnost CA, u zavisnosti od temperature
spoqa{we sredine.
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