

Genome / Génome

INBREEDING AND THERMAL ADAPTATION IN DROSOPHILA SUBOBSCURA

Journal:	Genome
Manuscript ID:	gen-2014-0149.R1
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Zivanovic, Goran; University of Belgrade, Genetics Arenas, Conxita; Universitat de Barcelona, Estadística Mestres, Francisco; Universitat de Barcelona, Spain, Genètica
Keyword:	Drosophila subobscura, inbreeding, chromosomal inversions, thermal adaptation, fertility

1	INBREEDING AND THERMAL ADAPTATION IN DROSOPHILA
2	SUBOBSCURA
3	
4	Goran Zivanovic ¹ , Conxita Arenas ² and Francesc Mestres ³
5	
6	¹ Department of Genetics, Institute for Biological Research "Sinisa Stankovic".
7	University of Belgrade, Serbia.
8	² Departament d'Estadística, Universitat de Barcelona, Barcelona, Spain.
9	³ Departament de Genètica, Universitat de Barcelona, Barcelona, Spain.
10	
11	Corresponding author:
12	Goran Zivanovic
13	Department of Genetics, Institute for Biological Research "Sinisa Stankovic",
14	University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
15	
16	Phone: (38111) 2764422
17	FAX: (38111) 2761433
18	E-mail: goranziv@ibiss.bg.ac.rs
19	
20	Running title: Inbreeding and thermal adaptation
21	

22	Abstract: Using a well-adapted Drosophila subobscura population (Avala, Serbia), a
23	drastic experiment of inbreeding was carried out to assess whether the expected level of
24	homozygosity could be reached, or other evolutionary forces affected also the process.
25	In general, no significant changes of inversion (or arrangement) frequencies were
26	detected after twelve brother-sister mating generations. Furthermore, no significant
27	differences were obtained between observed and expected (under the inbreeding model)
28	karyotypic frequencies. Thus, these results seemed to indicate that the main
29	evolutionary factor in the experiment was inbreeding. However, in G ₁₂ generation
30	complete chromosomal fixation was reached only in two out of the eight final inbred
31	lines. In these lines, the chromosomal compositions were difficult to interpret, but could
32	be likely a consequence of adaptation to particular laboratory conditions (constant 18°C,
33	food, light period, etc.). Finally in a second experiment, the inbred lines presented
34	higher fertility at 18°C than at 13°C. Also, there was a significant line effect on fertility:
35	inbred line number 6 (A ₁ , J ₁ , U ₁₊₂ ; U ₁₊₂₊₆ , E ₈ and O ₃₊₄₊₇) presented the higher values
36	and maybe it was the result of an adaptation to laboratory environment. Thus, the results
37	obtained in our experiments reflect the adaptive potential of <i>D. subobscura</i> inversions.
38	
39	Key words: Drosophila subobscura, inbreeding, chromosomal inversions, thermal
40	adaptation, fertility.
41	
42	
43	
44	
45	
46	

Introduction

47

Genome

48	Drosophila subobscura is a model species with a rich chromosomal
49	polymorphism in most of its chromosomes: A (= X, the sex chromosome), E, J, O and
50	U (Krimbas 1992, 1993; Powell 1997). It is generally accepted that this polymorphism
51	is adaptive due to its geographic distribution pattern, although other explanations as
52	historic factors could be also important (Krimbas and Loukas 1980; Sperlich and Pfriem
53	1986). The latitudinal clinal distribution of chromosomal inversions, both in North and
54	South America, presenting the same pattern found in the Palearctic region was key
55	evidence supporting their adaptive role (Prevosti et al. 1988, 1990; Menozzi and
56	Krimbas 1992; Balanyà et al. 2003). Also, there are other observations supporting the
57	adaptive role of inversions, for instance, their seasonal variation (Fontdevila et al. 1983;
58	Rodriguez-Trelles et al. 1996; Zivanovic and Mestres 2010b) and long-term changes
59	(Orengo and Prevosti 1996; Rodríguez-Trelles and Rodríguez 1998; Solé et al. 2002;
60	Balanyà et al. 2004, 2006, 2009; Zivanovic and Mestres 2010a, 2011; Zivanovic et al.
61	2012), suggesting a response to climatic changes. Furthermore, in American populations
62	of D. subobscura, the effect of selection has been measured in two chromosomal
63	arrangements, O_5 and $O_{\underline{3+4+7}}$ (Mestres et al. 2001). Although strong gene flow has been
64	observed between natural populations of <i>D. subobscura</i> (Latorre et al. 1992; Pascual et
65	al. 2001; Zivanovic et al. 2007; Araúz et al. 2009; Pegueroles et al. 2013), natural
66	selection acting on inversions is able to maintain their geographical differentiation.
67	This system of overlapped and non-overlapped inversions is a cornerstone of the
68	adaptive and evolutionary potential of <i>D. subobscura</i> . One way to analyze this genomic
69	architecture based on inversion is to disturb it, for example, by means of inbreeding
70	experiments. In this species, the effect of inbreeding have been used to study the rate of
71	development and fertility (Hollingsworth and Maynard Smith 1955), the pattern of

puffing activity in relation to chromosomal inversions (De Frutos et al. 1984), the
genetic system of inversions present in American colonizing populations (Pegueroles et
al. 1996) and to reveal interpopulation differences in inversion polymorphism (Rasic et
al. 2008).
In the present study, our main aim is to assess whether the genetic architecture
for inversions of a well-adapted population, in its optimum climatic conditions, could

reach the expected homozygosity under a drastic inbreeding, or other evolutionary

79 forces (as selection to laboratory conditions) could modify the expectations. For this

80 purpose, we have chosen the Balkan population of Avala, a large and well established

81 population, and collected the *D. subobscura* sample during the expansion peak of the

82 species abundance. The inbreeding conditions have been a drastic 12 generations of

brother-sister mating. A second objective is to use the resulting inbred lines (obtained in

84 the previous inbreeding experiment) to study the adaptation of different chromosomal

85 combinations to two different temperature conditions (13°C and 18°C).

86

87 Material and Methods

88 **Population and samples**

89 In this study, we analyzed a natural population of *Drosophila subobscura* 90 collected from Avala Mountain (44°48'N 20°30'E), approximately 18 km south of 91 Belgrade, Serbia. A detailed description of this locality can be found in Zivanovic and 92 Mestres (2010a, b). D. subobscura individuals were sampled from a forest with 93 polydominant communities of Fagetum submontanum mixtum, which is about 450 m a.s.l. Flies were collected exactly at the same site of previous sampling (Zivanovic and 94 Mestres 2010a, b) from 30th of May to 5th of June 2011. These days were chosen to 95 96 compare chromosomal polymorphism data with that from June 2004 (collected from the

97	2 nd to 9 th of June). The 2011 collection was sampled about 2 days at average earlier,
98	because spring/summer has advanced an average of 2.5 days per decade in Europe
99	(Menzel et al. 2006). Furthermore, D. subobscura presents the highest peak of
100	expansion during spring (Krimbas 1993; Argemí et al. 1999; Araúz et al. 2009).
101	Meteorological data for Avala Mountain (maximum, minimum and mean temperatures,
102	and rainfall) were recorded from Republic Hydrometeorological Service (Serbia). The
103	average values of these meteorological parameters during trapping days were:
104	maximum T = 27.9 C°, minimum T = 17.0 C°, mean T = 22.6 C° and rainfall = 0.98
105	mm. Detailed weather information for all collecting days is shown in Table S1.
106	
107	Inbreeding crosses and chromosomal preparation
108	We started the experiment with 28 isofemale lines from females sampled in
109	Avala Mountain. Each one was put in an individual vial with 25ml standard corn-meal-
110	sugar-agar-yeast medium, at 18°C, 60% relative humidity under a 12h/12h light/dark
111	cycle. A detailed description of inbreeding procedure can be found in Pegueroles et al.
112	(1996). Couples (using virgin females) of offspring from the wild females were chosen
113	as parents of the first generation of sib mating. For each line and in every generation,
114	three or four (but in many cases even more) brother-sister pairs were mated in
115	individual vials. Among those that produce offspring, one of them was chosen to
116	continue the experiment. However, after 12 generations of a long systematic inbreeding
117	process, many consequences were evident: delay of development time, reduction in
118	viability and even many lines were lost. The number of surviving lines (in brackets) per
119	generation was the following: $G_4(15)$, $G_6(11)$, $G_8(11)$, $G_{10}(8)$ and $G_{12}(8)$.
120	For studying the effect of inbreeding on chromosomal inversion polymorphism,
121	third instar larvae were analyzed in the initial sample (G ₀) and also in G ₄ , G ₆ , G ₈ , G ₁₀

122	and G_{12} generations. For the initial sample, only one son of each wild female was
123	crossed with virgin females of the Küsnacht strain, which is homokaryotypic for
124	standard chromosomal inversions in all five chromosomes. The polytene chromosomes
125	were stained and squashed in aceto-orcein solution. At least eight larvae from the
126	progeny of each cross were examined. For the cytological analysis of chromosomal
127	arrangements, the Kunze-Mühl and Müller (1958) chromosome map was used. The
128	designation of inversions and chromosomal arrangements followed that of Kunze-Mühl
129	and Sperlich (1955) and Krimbas (1993). The same procedure (only one male per line
130	was used) was repeated for the chromosomal studies in G_4 , G_6 , G_8 , G_{10} and G_{12}
131	generations. Finally, the degree of chromosomal inversion polymorphism in the initial
132	and inbred lines was assessed using the index of free recombination (IFR) computed
133	according to Carson (1955).
134	
135	Development time and fertility of inbred lines at different temperatures
136	After 12 concretions of inbroading presses we selected the surviving lines (a
	After 12 generations of more dung process we selected the surviving lines (a
137	total of 8) to carry out a study of fertility. For each line, three replicates were founded
137 138	total of 8) to carry out a study of fertility. For each line, three replicates were founded using 3 males and 3 virgin females and putting them in individual vials. These vials
137 138 139	total of 8) to carry out a study of fertility. For each line, three replicates were founded using 3 males and 3 virgin females and putting them in individual vials. These vials were left, at the same time, in a chamber with an optimal temperature (18°C). The
137 138 139 140	After 12 generations of inbreeding process we selected the surviving lines (a total of 8) to carry out a study of fertility. For each line, three replicates were founded using 3 males and 3 virgin females and putting them in individual vials. These vials were left, at the same time, in a chamber with an optimal temperature (18°C). The temperature was not changed, and after 7 days the parents were eliminated. Then, each
137 138 139 140 141	After 12 generations of inbreeding process we selected the surviving lines (a total of 8) to carry out a study of fertility. For each line, three replicates were founded using 3 males and 3 virgin females and putting them in individual vials. These vials were left, at the same time, in a chamber with an optimal temperature (18°C). The temperature was not changed, and after 7 days the parents were eliminated. Then, each day at the same hour, the number of arising males and females was counted for each
 137 138 139 140 141 142 	After 12 generations of inbreeding process we selected the surviving lines (a total of 8) to carry out a study of fertility. For each line, three replicates were founded using 3 males and 3 virgin females and putting them in individual vials. These vials were left, at the same time, in a chamber with an optimal temperature (18°C). The temperature was not changed, and after 7 days the parents were eliminated. Then, each day at the same hour, the number of arising males and females was counted for each vial. This procedure was repeated each day until the medium was exhausted. A similar
 137 138 139 140 141 142 143 	total of 8) to carry out a study of fertility. For each line, three replicates were founded using 3 males and 3 virgin females and putting them in individual vials. These vials were left, at the same time, in a chamber with an optimal temperature (18°C). The temperature was not changed, and after 7 days the parents were eliminated. Then, each day at the same hour, the number of arising males and females was counted for each vial. This procedure was repeated each day until the medium was exhausted. A similar procedure was simultaneously carried out at rather cold temperature (13°C), but in this
 137 138 139 140 141 142 143 144 	After 12 generations of inbreeding process we selected the surviving files (a total of 8) to carry out a study of fertility. For each line, three replicates were founded using 3 males and 3 virgin females and putting them in individual vials. These vials were left, at the same time, in a chamber with an optimal temperature (18°C). The temperature was not changed, and after 7 days the parents were eliminated. Then, each day at the same hour, the number of arising males and females was counted for each vial. This procedure was repeated each day until the medium was exhausted. A similar procedure was simultaneously carried out at rather cold temperature (13°C), but in this case the parents were eliminated after 10 days of crossings.

146

147 Mathematical and statistical methods

148	The theoretical value of the inbreeding coefficient F was calculated according to
149	Wright (1921, 1969), and it follows the nonhomogeneous second order difference

- 150 equation $F_t = \frac{1}{4}(1 + 2F_{t-1} + F_{t-2})$, where F_t represents the inbreeding coefficient in the t^{th}
- 151 generation. In a given generation *t*, the expected karyotypic frequencies for the different
- 152 combinations of inversions (or arrangements) per chromosome were obtained using
- 153 inversion (or arrangements) frequencies (p, q, r, s, etc.), considering each one as a single
- allele, and using the corresponding F value of the given generation (Wright 1931; Hartl

and Clark 1989; Hedrick 2000). Thus, for a homozygote the mathematic expression

156 would be:
$$P = p^2(1-F) + pF$$
, and for a heterozygote $H = 2pq(1-F)$

157 For each chromosome, the differences between the observed and expected genotypic 158 frequencies in the G₄, G₈ and G₁₂ generations of inbreeding were determined by two-159 sided Fisher's exact test (statistically significant *p*-value < 0.05). The same statistical 160 procedure was also carried out to compare the observed chromosomal frequencies 161 between G₀ and G₁₂. This test has been utilized because it is more accurate than chi-162 squared test when the expected frequencies are small. Using the bootstrap procedure 163 (100000 runs) the corresponding *p*-values were obtained. These computations were 164 carried out with R package (http://CRAN.R-project.org).

To compare the beginning of fly emergence and the period of emergence (in days) at the two development temperatures (13°C and 18°), a Mann-Whitney test was computed. Also, to study fertility a factorial ANOVA, with fixed factors being temperature, chromosomal line and replicates was computed. For a fixed 18 °C of temperature, a factorial ANOVA with fixed factors being chromosomal line and replicates was applied. When significances were detected, a pairwise Tukey analysis was carried out. In the case of 13°C, as very few individuals were born, a non-

- 172 parametric one-way ANOVA (Kruskal-Wallis) was computed to ascertain the effect of
- 173 chromosomal line factor. All these analyses were carried out with R package
- 174 (http://CRAN.R-project.org).
- 175

176 **Results**

177 Variation of inversion polymorphism during inbreeding

178 The chromosomal polymorphism frequencies in the first generation (G_0) and in 179 the inbred after four (G_4) , six (G_6) , eight (G_8) , ten (G_{10}) and twelve (G_{12}) generations are 180 presented in Table 1. During the sib-mating process a reduction of viability in some 181 strains and a loss of lines were observed. In Fig. 1, variations in the inversions and 182 chromosomal arrangements frequencies during inbreeding generations are shown. For 183 most common inversions and arrangements, frequencies stabilization seems to begin in 184 G_8 and confirm in G_{10} . Likely, it is due to inbreeding coefficients values, which present 185 few changes from G_8 (0.826) to G_{12} (0.926). In the chromosomal polymorphism 186 comparison between G_0 and G_{12} , there are no significant differences for any of the 187 chromosomes: A (Fisher's exact test, p-value = 0.8784), J (p-value = 1), U (p-value = 188 0.4059), E (*p*-value = 0.8297) and O (*p*-value = 0.2245). 189 With regard to karyotypic frequencies, the observed and expected (under 190 inbreeding model) values are presented in Table 2. For J chromosome there were not 191 significant differences in these frequencies for G_4 (*p*-value = 1), G_8 (*p*-value = 1) and 192 G_{12} (*p-value* = 1) generations. In the case of U chromosome, only G_8 was significant: G_4 193 $(p-value = 0.3104), G_8 (p-value = 0.0240) \text{ and } G_{12} (p-value = 0.0534).$ Differences in E 194 chromosome were not significant: G_4 (*p*-value = 0.7872), G_8 (*p*-value = 1) and G_{12} (*p*-value = 1) 195 *value* = 1). Finally, for the O chromosome, differences were neither significant: G_4 (*p*-196 value = 0.9213), G_8 (p-value = 0.9066) and G_{12} (p-value = 1). During the inbreeding

197	process an increment in IFR values can be observed (Table 2). This result is expected
198	because a consequence of inbreeding is an increase of homozygotes. Finally, it is worth
199	to study the chromosomal composition of the remaining inbred lines in G_{12} (Table 3). In
200	six of them (lines 1, 2, 5, 6, 7 and 8), one chromosome of the karyotype still segregated.
201	For the O chromosome, lines 1 and 2 presented the inversion or arrangements O_{3+4+1} ;
202	O_{3+4+22} and O_{st} ; O_{3+4+6} , respectively, whereas the other lines (5, 6, 7 and 8) segregated
203	for the U chromosome, all with the combination $U_{\underline{1+2}}$; $U_{\underline{1+2+6}}$. For the A, J and E
204	chromosomes all lines were homokaryotypic. Thus, the percentages of fixation were
205	100% for the A, J and E chromosomes, but 75% and 50% for the O and U
206	chromosomes, respectively. According to Schäfer (1937), after 12 generations of
207	brother-sister mating the expected percentage of fixation would be 85.9%, if all initial
208	crosses were due to heterologous heterozygotes ($A_1A_2 \ge A_3A_4$). This percentage could
209	be even larger if initially there were less different alleles (Haldane 1955).
210	
211	Development time and fertility
212	The number of flies emerged at both temperatures are presented in Table S2
213	(13°C) and Table S3 (18°C). For development time, the difference in the beginning of
214	fly emergence was significant between 13°C and 18°C (Mann-Whitney test, W = 40.0;
215	
	p-value = 0.004), whereas the period of emergence (in days) was no significant (W =
216	p-value = 0.004), whereas the period of emergence (in days) was no significant (W = 20.0; p -value = 0.941).
216 217	 <i>p-value</i> = 0.004), whereas the period of emergence (in days) was no significant (W = 20.0; <i>p-value</i> = 0.941). When comparing 13°C and 18°C, significant differences in the number of flies
216 217 218	<i>p-value</i> = 0.004), whereas the period of emergence (in days) was no significant (W = 20.0; <i>p-value</i> = 0.941). When comparing 13°C and 18°C, significant differences in the number of flies were obtained for temperature and chromosomal lines, but replicates were no significant
216217218219	 <i>p-value</i> = 0.004), whereas the period of emergence (in days) was no significant (W = 20.0; <i>p-value</i> = 0.941). When comparing 13°C and 18°C, significant differences in the number of flies were obtained for temperature and chromosomal lines, but replicates were no significant (Table 4). In all pairwise comparisons, differences between chromosomal lines were

221 significant, but replicates factor was no significant (Table 5). As in the previous

222 analysis, pairwise comparisons were significant for all cases where chromosomal line 6 223 was involved, with the exception of the comparison between lines 3 and 6. For the 13°C, 224 chromosomal lines factor was no significant (Kruskal-Wallis = 2.965; *p-value* = 0.564). 225 Finally, a malformation resembling *club* mutation of *D. melanogaster* (Lindsley 226 and Zimm 1992) was observed in different lines, mainly those reared at 13°C. It has 227 been observed that many Drosophila genus mutants tend to slightly increase their 228 viability at lower temperatures (Dobzhansky 1982; Lindsley and Zimm 1992; 229 Ashburner et al. 2005). However, flies which emerged with their wings drastically 230 reduced died soon.

231

232 **Discussion**

233 In the G₀, the inversions (or chromosomal arrangements) and karyotypes found 234 are characteristic of Avala mountain population (Zivanovic and Mestres 2010a) and also 235 of the Balkan region (Zivanovic et al. 1995, 2002; Zivanovic 2007; Rasic et al. 2008; 236 Stamenkovic-Radak et al. 2008; Kenig et al. 2010; Zivanovic and Mestres 2011; Jelic et 237 al. 2012). No significant changes between G_0 and G_{12} were observed for the inversion 238 and arrangement frequencies. In inbreeding experiments using D. subobscura, other 239 authors (although analyzing fewer inbreeding generations) found similar results 240 (Pegueroles et al. 1996; Rasic et al. 2008). Furthermore, most inversions (or 241 arrangements) seem to reach stabilization around G_8 (Fig. 1). In general, no significant 242 differences were neither detected when comparing the observed and expected (under 243 inbreeding model) karyotypes. For all these reasons, it seems that inbreeding is the 244 leading factor acting on inversions (or arrangements) and karyotypes, whereas the 245 effects other evolutionary forces appear to be secondary. Also, values of IFR along 246 generations changed accordingly with the increasing levels of inbreeding.

https://mc06.manuscriptcentral.com/genome-pubs

247	However, there were many exceptions: for instance, significant differences for
248	the U chromosome were found in G ₈ . Likely, these are due to an increase of $U_{\underline{1+2}}/U_{\underline{1+2+6}}$
249	and a decrease of U_{1+2+6}/U_{1+2+6} karyotypes (Table 2). It is worth to point out that U_{1+2} ;
250	$U_{\underline{1+2+6}}$ arrangements were found still segregating in four lines at the end of the
251	inbreeding experiment (G_{12}) (Table 3). In this last generation, this was not the only case
252	of segregating arrangemets: two lines had no fixation for the O chromosome, presenting
253	the O_{3+4+1} ; O_{3+4+22} and O_{st} ; O_{3+4+6} constitution (Table 3). Thus, considering all lines
254	together, six out eight lines presented segregation for at least one chromosome. $U_{\underline{1}+\underline{2}}$
255	seems to be an ancient arrangement (Krimbas 1993) and "warm" adapted (Menozzi and
256	Krimbas 1999; Solé et al. 2002) and it was fixed in four of the final inbred lines and still
257	segregated with $U_{\underline{1+2+6}}$ in the remaining four. This latter arrangement presents a typical
258	Balkan distribution, and in this region it could confer an adaptive advantage to its
259	carriers. The inbreeding experiment was carried out at constant 18°C, and in general, it
260	is considered a good temperature for the species (Buzzati-Traverso 1942; Rocha-Pité
261	1980; Krimbas 1993; Santos et al. 2004, 2005). With regard to O chromosome, the
262	segregating arrangements O_{3+4+1} ; O_{3+4+22} (Line 1) was a surprising combination (Table
263	3), because they are not the most frequent O chromosome arrangements in Avala
264	population (Table 1). The first arrangement presents rather high frequencies in Balkan
265	populations (Krimbas 1993), depending on the population and date of the sample
266	(ranging from 5.0 to 27.0%) (Zivanovic et al. 1995, 2002; Zivanovic 2007; Zivanovic
267	and Mestres 2010a, 2011; Zivanovic et al. 2012). The second one (O_{3+4+22}) is also
268	common in the Balkans (Krimbas 1993), and can be found in frequencies ranging from
269	6.5 to 16.7% (Zivanovic et al. 2002; Zivanovic 2007; Zivanovic and Mestres 2010a,
270	2011; Zivanovic et al. 2012). Maybe despite the inbreeding, they were segregating due
271	to lethal genes trapped inside the O_1 and O_{22} inversions, because they are small and

272	recombination inside them is dramatically reduced (Albornoz and Dominguez 1994;
273	Chang and Lin 1995; Chang et al. 1996; Yang et al. 2002; Mestres et al. 2009).
274	However, this possibility is only speculative. The O arrangements segregating in Line 2,
275	O_{st} and O_{3+4+6} , (Table 3) is also surprising, because the latter is infrequent in the
276	Balkans (Krimbas 1993), where it has been seldom detected and presenting very low
277	frequencies (Zivanovic et al. 2002; Zivanovic and Mestres 2010a; Zivanovic et al.
278	2012). However, under laboratory conditions $O_{\underline{3+4+6}}$ had a higher segregation than
279	expected in the heterokaryotypes (Pegueroles et al. 2010).
280	If we focus in the inversions (or arrangements) fixed, there was variability for
281	the A chromosome, because A_1 , A_2 and A_{st} were in homozygous condition in three, one
282	and four lines, respectively (Table 3). It is an expected result due to the initial
283	composition of the sample (Table 1). For the J chromosome, two and six lines were
284	fixed for the J_{st} and J_1 inversions, respectively. This result is also compatible with the
285	initial sample composition (Table 1). However, U chromosome presented interesting
286	results, because four lines had the $U_{\underline{1}+\underline{2}}$ arrangement fixed, whereas in the remaining
287	lines the $U_{\underline{1}+\underline{2}}$; $U_{\underline{1+2+6}}$ combination was segregating. This situation has been previously
288	commented, but it is worth noting that no inbred line showed the $U_{\underline{1+2+6}}$ arrangement
289	fixed at the end of the process. This arrangement is not lethal per se, because
290	homozygotes for it were recorded in the initial sample of flies. With regard to the E
291	chromosome, all inbred lines reached a fixation status: E_{st} , E_8 and $E_{\underline{1+2+9}}$ were fixed in
292	three, two and three lines, respectively. This result could be considered as expected,
293	because they presented the highest frequencies at the beginning of the inbreeding
294	process. However, E_{st}/E_{st} was recorded at a higher frequency than expected (Table 2),
295	although it is considered a "cold" adapted inversion and the inbreeding experiment was
296	developed at constant 18°C. This is not the case for the other two arrangements: for the

297	E_{1+2+9}/E_{1+2+9} the opposite tendency was detected and for the E_8/E_8 karyotypes, observed
298	and expected values were very similar. Finally the O chromosome, as previously
299	commented, presented two inbred lines where arrangements are still segregating, but six
300	were fixed for the same arrangements: O_{st} (two lines), O_{3+4} (three lines) and O_{3+4+7}
301	(only one line). Although O_{st} is considered a "cold" adapted arrangement and
302	inbreeding conditions seem a priori not favor it, its frequency was increasing along the
303	inbreeding experiment (Table 1) until reaching a plateau (Fig. 1). The result observed
304	for the O_{3+4} could be considered as expected, but its frequency had a tendency to
305	decrease. However, the inbred line with the fixed arrangement O_{3+4+7} was really
306	surprising. This arrangement is very uncommon in the Balkan region (Krimbas 1993;
307	Zivanovic et al. 1995, 2002; Zivanovic 2007; Zivanovic and Mestres 2010a, 2011;
308	Zivanovic et al. 2012), but it is frequent in the Western Mediterranean (Prevosti et al.
309	1984; Krimbas 1993; Orengo and Prevosti 1996; Solé et al. 2002; Araúz et al. 2009) and
310	American colonizing populations (Prevosti et al. 1988, 1990; Balanyà et al. 2003;
311	Mestres et al. 2009; Castañeda et al. 2013). It was also described in Asia Minor and
312	Israel, but data available from these regions are not recent (Goldschmidt 1956; Götz
313	1967; Malogolowkin-Cohen and Sperlich 1981). In the present study, its initial
314	frequency was so small that it was undetected in G_0 (Table 1). In G_4 , $O_{3+4+\underline{7}}/O_{3+4+\underline{7}}$
315	homozygotes were detected for the first time and their frequency was increasing until
316	G_{12} (Table 2). It could be interpreted that this combination was adaptive for the
317	particular laboratory rearing conditions. Furthermore, this adaptation to laboratory
318	conditions seems to be supported by an experiment of Pegueroles et al. (2010): in
319	O_{3+4}/O_{3+4+7} individuals, a significant deviation of random segregation was observed,
320	being the $O_{\underline{3+4+7}}$ gametes in higher proportion than expected.

321	Although the inbreeding process until G_{12} was very drastic for <i>D. subobscura</i>
322	individuals, valuable information on development time and fertility was gathered using
323	the inbred lines. It is well know that species of Drosophila genus develop faster at
324	higher temperatures (for a review see Kuntz and Eisen 2014) and D. subobscura is not
325	an exception (Krimbas 1993). It seems that developing time is adaptive to climate, but
326	the relative timing of main events in Drosophila embryogenesis seem to be constant
327	(Kuntz and Eisen 2014). In the present research, we have found significant differences
328	in the beginning time of fly emergence, but not in the period of emergence. When
329	comparing the inbred lines reared at 13°C and 18°C, significant differences were
330	observed in the number of flies obtained. According to this result, Santos (2007) found
331	also lower fitness at 13°C than at 22°C. With regard to the number of flies, we also
332	found significant differences between chromosomal lines. This effect is mainly due to
333	inbred line number 6, in which the infrequent arrangement in the Balkans O_{3+4+7} was
334	fixed. However, as previously commented, this arrangement could be adaptive to
335	laboratory rearing conditions. Analyzing the whole karyotype of this inbred line and
336	using the classification of inversions and arrangements in "cold" and "warm" according
337	to Rego et al. (2010), based on Menozzi and Krimbas (1992), then inbred line 6 is: A_1
338	(cold), J_1 (warm), $U_{\underline{1+2}}$ (warm); $U_{\underline{1+2+6}}$, E_8 and $O_{\underline{3+4+7}}$. Thus, not a clear pattern of
339	'thermal adaptation' is observed in this inbred line.
340	In summary, we hypothesize that the main evolutionary force in the present
341	research was inbreeding, but during the experimental process flies seem also to adapt in
342	some way to laboratory conditions. Inversions seem to adapt not only to temperature,
343	but to other environmental factors. Thus, results obtained in laboratory experiments
344	reflect the adaptive potential of D. subobscura inversions, even after a severe
345	disturbance produced by inbreeding.

Page 15 of 52

Genome

346	Acknowledgements
347	This study was supported by grant number 173025 from the Ministry of
348	Education, Science and Technological Development of the Republic of Serbia, grant
349	CTM2013-48163-C2-2-R from the Ministerio de Economía y Competitividad (Spain)
350	and grants 2014 SGR 336 and 2014 SGR 464 from the Generalitat de Catalunya
351	(Spain). FM is member of the IRBio (Institut de Recerca de la Biodiversitat, Universitat
352	de Barcelona).
353	
354	References
355	Albornoz, J., and Dominguez, A. 1994. Inversion polymorphism and accumulation of
356	lethals in selected lines of Drosophila melanogaster. Heredity 73: 92–97.
357	
358	Argemí, M., Monclús, M., Mestres, F., and Serra, L. 1999. Comparative analysis of a
359	community of Drosophilids (Drosophilidae; Diptera) sampled in two periods widely
360	separated in time. J. Zool. Syst. Evol. Res. 37: 203–210.
361	
362	Araúz, P.A., Mestres, F., Pegueroles, C., Arenas, C., Tzannidakis, G., Krimbas, C.B., et
363	al. 2009. Tracking the origin of the American colonization by <i>Drosophila subobscura</i> :
364	genetic comparison between Eastern and Western Mediterranean populations. J. Zool.
365	Syst. Evol. Res. 47: 25–34.
366	
367	Ashburner, M., Golic, K.G., and Hawley, R.S. 2005. Drosophila. A laboratory
368	handbook. 2 nd ed. Cold Spring Harbor Lab. Press. N.Y.
369	

- 370 Balanyà, J., Serra, L., Gilchrist, G.W., Huey, R.B., Pascual, M., Mestres, F., et al. 2003.
- 371 Evolutionary pace of chromosomal polymorphism in colonizing populations of
- 372 *Drosophila subobscura*: an evolutionary time series. Evolution **57**: 1837–1845.
- 373
- 374 Balanyà, J., Solé, E., Oller, J.M., Sperlich, D., and Serra, L. 2004. Long-term changes in
- 375 the chromosomal inversion polymorphism of *Drosophila subobscura*. II. European
- 376 populations. J. Zool. Syst. Evol. Res. 42: 191–201.
- 377
- 378 Balanyà, J., Oller, J.M., Huey, R.B., Gilchrist, G.W., and Serra, L. 2006. Global genetic
- 379 change tracks global climate warming in *Drosophila subobscura*. Science 313:
- 380 1773–1775.
- 381
- 382 Balanyà, J., Huey, R.B., Gilchrist, G.W., and Serra, L. 2009. The chromosomal
- 383 polymorphism of Drosophila subobscura: a micro evolutionary weapon to monitor
- 384 global change. Heredity **103**: 364–367.
- 385
- 386 Buzzati-Traverso, A.A. 1942. Genetica di popolazioni in Drosophila. I. Eterozigosi in
- 387 Drosophila subobscura Collin. Scientia Genet. 2: 190–223.
- 388
- 389 Carson, H.L. 1955. The genetic characteristics of marginal populations of *Drosophila*.
- 390 Cold Spring Harbor Symp. Quant. Biol. 20: 276–287.
- 391
- 392 Castañeda, L.E., Balanyà, J., Rezende, E.L., and Santos, M. 2013. Vanishing
- 393 chromosomal inversion clines in *Drosophila subobscura* from Chile: Is behavioral
- thermoregulation to blame? Am. Nat. **182**: 249–259.

395	
396	Chang, H., and Lin, FJ. 1995. The interaction between chromosomal inversion and
397	recessive lethals in Drosophila albomicans. Zool. Stud. 34: 47-54.
398	
399	Chang, H., Lan, SF., and Lin, FJ. 1996. Population significance of high frequency
400	recessive lethals in Drosophila albomicans. Zool. Stud. 35: 138-145.
401	
402	De Frutos, R., Latorre, A., and Pascual, L. 1984. Patterns of puffing activity and
403	chromosomal polymorphism in Drosophila subobscura. 3. Puffing activity depression
404	by inbreeding. Theor. Appl. Genet. 69: 101–110.
405	
406	Dobzhansky, Th. 1982. Genetics and the origin of species. Columbia University Press.
407	N.Y.
408	
409	Fontdevila, A., Zapata, C., Alvarez, G., Sanchez, L., Méndez, J., and Enriquez, I. 1983.
410	Genetic coadaptation in the chromosomal polymorphism of Drosophila subobscura. I.
411	Seasonal changes of gametic disequilibrium in a natural population. Genetics 105: 935–
412	955.
413	
414	Goldschmidt, E. 1956. Chromosomal polymorphism in a population of Drosophila
415	subobscura from Israel. J. Genet. 54: 474–496.
416	
417	Götz ,W. 1967. Untersuchungen über den chromosomalen Strukturpolymorphismus in
418	kleinasiatischen und persischen Populationen von Drosophila subobscura Coll. Mol.
419	Gen. Genet. 100: 1–38.

420	
421	Haldane, J.B.S. 1955. The complete matrices for brother-sister and alternate parent-
422	offspring mating involving one locus. J. Genet. 53: 315–324.
423	
424	Hartl, D.L., and Clark, A.G. 1989. Principles of population genetics. 2 nd ed., Sinauer
425	Associates, Inc. Pub., Sunderland (MA).
426	
427	Hedrick, P.W. 2000. Genetics of populations. 2 nd ed., Jones and Bartlett Pub., Sudbury
428	(MA).
429	
430	Hollingsworth, M.J., and Maynard Smith, J. 1955. The effects of inbreeding on rate of
431	development and on fertility in Drosophila subobscura. J. of Genet. 53: 295-314.
432	
433	Jelic, M., Castro, J.A., Kurbalija-Novicic, Z., Kenig, B., Dimitrijevic, D., Savic-
434	Veselinovic, M. et al. 2012. Absence of linkage disequilibria between chromosomal
435	arrangements and mtDNA haplotypes in natural populations of Drosophila subobscura
436	from the Balkan Peninsula. Genome 55: 214–221.
437	
438	Kenig, B., Jelic, M., Kurbalija, Z., Stamenkovic-Radak, M., and Andjelkovic, M. 2010.
439	Inversion polymorphism in populations of <i>Drosophila subobscura</i> from urban and non-
440	urban environments. Arch. Biol. Sci. Belgrade 62: 565-574.
441	
442	Krimbas, C.B. 1992. The inversion polymorphism of Drosophila subobscura. In
443	Drosophila inversion polymorphism. Edited by C.B. Krimbas and J.R. Powell. CRC
444	Press, Inc. Boca Raton (FL). pp. 127–220.

445	
446	Krimbas, C.B. 1993. Drosophila subobscura: Biology, Genetics and Inversion
447	polymorphism. Verlag Dr. Kovac, Hamburg.
448	
449	Krimbas, C.B., and Loukas, M. 1980. The inversion polymorphism of Drosophila
450	subobscura. Evol. Biol. 12: 163–234.
451	
452	Kuntz, S.G., and Eisen, M.B. 2014. Drosophila embryogenesis scales uniformly across
453	temperature in developmentally diverse species. PloS Genetics 10: e1004293.
454	
455	Kunze-Mühl, E., und Müller, E. 1958. Weitere Untersuchungen uber die chromosomale
456	Struktur und die naturlichen Strukturtypen von Drosophila subobscura. Chromosoma 9:
457	559–570.
457 458	559-570.
457 458 459	559–570. Kunze-Mühl, E., und Sperlich, D. 1955. Inversionen und chromosomale Strukturtypen
457 458 459 460	559–570. Kunze-Mühl, E., und Sperlich, D. 1955. Inversionen und chromosomale Strukturtypen bei <i>Drosophila subobscura</i> . Z. Indukt. Abstamm u. VererbLehre 87: 65–84.
457 458 459 460 461	559–570. Kunze-Mühl, E., und Sperlich, D. 1955. Inversionen und chromosomale Strukturtypen bei <i>Drosophila subobscura</i> . Z. Indukt. Abstamm u. VererbLehre 87: 65–84.
457 458 459 460 461 462	 559–570. Kunze-Mühl, E., und Sperlich, D. 1955. Inversionen und chromosomale Strukturtypen bei <i>Drosophila subobscura</i>. Z. Indukt. Abstamm u. VererbLehre 87: 65–84. Latorre, A., Hernández, C., Martínez, D., Castro, J.A., Ramón, M., and Moya, A. 1992.
457 458 459 460 461 462 463	 559–570. Kunze-Mühl, E., und Sperlich, D. 1955. Inversionen und chromosomale Strukturtypen bei <i>Drosophila subobscura</i>. Z. Indukt. Abstamm u. VererbLehre 87: 65–84. Latorre, A., Hernández, C., Martínez, D., Castro, J.A., Ramón, M., and Moya, A. 1992. Population structure and mitochondrial DNA gene flow in Old World populations of
457 458 459 460 461 462 463 464	 559–570. Kunze-Mühl, E., und Sperlich, D. 1955. Inversionen und chromosomale Strukturtypen bei <i>Drosophila subobscura</i>. Z. Indukt. Abstamm u. VererbLehre 87: 65–84. Latorre, A., Hernández, C., Martínez, D., Castro, J.A., Ramón, M., and Moya, A. 1992. Population structure and mitochondrial DNA gene flow in Old World populations of <i>Drosophila subobscura</i>. Heredity 68: 15–24.
457 458 459 460 461 462 463 464 465	 559–570. Kunze-Mühl, E., und Sperlich, D. 1955. Inversionen und chromosomale Strukturtypen bei <i>Drosophila subobscura</i>. Z. Indukt. Abstamm u. VererbLehre 87: 65–84. Latorre, A., Hernández, C., Martínez, D., Castro, J.A., Ramón, M., and Moya, A. 1992. Population structure and mitochondrial DNA gene flow in Old World populations of <i>Drosophila subobscura</i>. Heredity 68: 15–24.
457 458 459 460 461 462 463 464 465 466	 559–570. Kunze-Mühl, E., und Sperlich, D. 1955. Inversionen und chromosomale Strukturtypen bei <i>Drosophila subobscura</i>. Z. Indukt. Abstamm u. VererbLehre 87: 65–84. Latorre, A., Hernández, C., Martínez, D., Castro, J.A., Ramón, M., and Moya, A. 1992. Population structure and mitochondrial DNA gene flow in Old World populations of <i>Drosophila subobscura</i>. Heredity 68: 15–24. Lindsley, D.L., and Zimm, G.G. 1992. The genome of <i>Drosophila melanogaster</i>.
457 458 459 460 461 462 463 464 465 466 467	 559–570. Kunze-Mühl, E., und Sperlich, D. 1955. Inversionen und chromosomale Strukturtypen bei <i>Drosophila subobscura</i>. Z. Indukt. Abstamm u. VererbLehre 87: 65–84. Latorre, A., Hernández, C., Martínez, D., Castro, J.A., Ramón, M., and Moya, A. 1992. Population structure and mitochondrial DNA gene flow in Old World populations of <i>Drosophila subobscura</i>. Heredity 68: 15–24. Lindsley, D.L., and Zimm, G.G. 1992. The genome of <i>Drosophila melanogaster</i>. Academic Press, San Diego (CA).

469	Malogolowkin-Cohen, Ch., and Sperlich, D. 1981. The effect of isolation and
470	marginality on the inversion polymorphism of Drosophila subobscura in Israel. Rev.
471	Bras. Genet. 2: 213–230.
472	
473	Menozzi, P., and Krimbas, C.B. 1992. The inversion polymorphism of Drosophila
474	subobscura revisited: synthetic maps of gene arrangement frequencies and their
475	interpretation. J. Evol. Biol. 5: 625–641.
476	
477	Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R., et al. 2006.
478	European phenological response to climate change matches the warming pattern. Global
479	Change Biol. 12: 1969–1976.
480	
481	Mestres, F., Balanyà, J., Arenas, C., Solé, E., and Serra, L. 2001. Colonization of
482	America by Drosophila subobscura: heterotic effect of chromosomal arrangements
483	revealed by the persistence of lethal genes. Proc. Natl. Acad. Sci. USA 98: 9167–9170.
484	
485	Mestres, F., Balanyà, J., Pascual, M., Arenas, C., Gilchrist, G.W., Huey, R.B., et al.
486	2009. Evolution of Chilean colonizing populations of Drosophila subobscura: lethal
487	genes and chromosomal arrangements. Genetica 136: 37-48.
488	
489	Orengo, D.J., and Prevosti, A. 1996. Temporal changes in chromosomal polymorphism

490 of *Drosophila subobscura* related to climatic changes. Evolution **50:** 1346–1350.

491

492	Pascual, M., Aquadro, C.F., Soto, V., and Serra, L. 2001. Microsatellite variation in
493	colonizing and Palearctic populations of Drosophila subobscura. Mol. Biol. Evol. 18:
494	731–740.
495	
496	Pegueroles, C., Ordoñez, V., Mestres, F., and Pascual, M. 2010. Recombination and
497	selection in the maintenance of the adaptive value of inversions. J. Evol. Biol. 23:
498	2709–2717.
499	
500	Pegueroles, C., Aquadro, C.F., Mestres, F., and Pascual, M. 2013. Gene flow and gene
501	flux shape evolutionary patterns of variation in <i>Drosophila subobscura</i> . Heredity 110 :
502	502–529.
503	
504	Pegueroles, G., Mestres, F., and Serra L. 1996. Analysis of inbreeding in a colonizing
505	population of Drosophila subobscura. Genetica 98: 289–296.
506	
507	Powell, J.R. 1997. Progress and Prospects in Evolutionary Biology: The Drosophila
508	Model. Oxford University Press, Oxford, UK.
509	
510	Prevosti, A., Frutos, R. de, Alonso, G., Latorre, A., Monclus, M., Martinez, M.J. 1984.
511	Genetic differentiation between natural populations of Drosophila subobscura in the
512	Western Mediterranean area with respect to chromosomal variation. Génét. Sél. Evol.
513	16: 143–156.
514	
515	Prevosti, A., Ribo, G., Serra, L., Aguade, M., Balaña, J., Monclus, M., et al. 1988.
516	Colonization of America by Drosophila subobscura: Experiment in natural populations

- 517 that supports the adaptive role of chromosomal–inversion polymorphism. Proc. Natl.
- 518 Acad. Sci. USA **85:** 5597–5600.
- 519
- 520 Prevosti, A., Serra, L., Segarra, C., Aguade, M., Ribo, G., and Monclus, M. 1990.
- 521 Clines of chromosomal arrangements of Drosophila subobscura in South America
- 522 evolve closer to Old World patterns. Evolution **44**: 218–221.
- 523
- 524 Rasic, G., Stamenkovic-Radak, M., Savic, T., and Andjelkovic, M. 2008. Inbreeding
- 525 reveals interpopulation differences in inversion polymorphism of Drosophila
- 526 subobscura. J. Zool. Syst. Evol. Res. 46: 31–37.
- 527
- 528 Rego, C., Balanyà, J., Fragata, I., Matos, M., Rezende, E.L., and Santos, M. 2010.
- 529 Clinal patterns of chromosomal inversion polymorphism in *Drosophila subobscura* are
- 530 partly associated with thermal preferences and heat stress resistance. Evolution 64: 385–
- 531 397.
- 532
- 533 Rocha-Pité, M.T. 1980. Stratégies adaptatives et Biologie des populations de
- 534 Drosophilides de quelques habitats typiques de Portugal. Thèse de Doctorat d'Etat.
- 535 Université de Paris VI. France.
- 536
- 537 Rodríguez-Trelles, F., and Rodríguez, M.A. 1998. Rapid micro-evolution and loss of
- chromosomal diversity in *Drosophila* in response to climate warming. Evol. Ecol. 12:
- 539
 829–838.

541	Rodríguez-Trelles, F., Alvarez, G., and Zapata, C. 1996. Time-series analysis of
542	seasonal changes of the O inversion polymorphism of Drosophila subobscura. Genetics
543	142: 179–187.
544	
545	Santos, M. 2007. Evolution of total net fitness in thermal lines: Drosophila
546	subobscura likes it 'warm'. J. Evol. Biol. 20: 2361–2370.
547	
548	Santos, M., Fernández-Iriarte, P., Céspedes, W., Balanyà, J., Fontdevila, A., and Serra,
549	L. 2004. Swift laboratory thermal evolution of wing shape (but not size) in Drosophila
550	subobscura and its relationship with chromosomal inversion polymorphism. J. Evol.
551	Biol. 17: 841–855.
552	
553	Santos, M., Céspedes, W., Balanyà, J., Trotta, V., Calboli, F.C.F., Fontdevila, A., et al.
554	2005. Temperature-related genetic changes in laboratory populations of Drosophila
555	subobscura: evidence against simple climatic-based explanations for latitudinal clines.
556	Am. Nat. 165: 258–273.
557	
558	Schäfer, W. 1937 Über die Zunahme der Isozygotie (Gleicherbigkeit) bei fortgesetzter
559	Bruder-Schwester-Inzucht. Z. Indukt. Abstammu. Vererbungslehre 72: 50-79.
560	
561	Solé, E., Balanyà, J., Sperlich, D., and Serra, L. 2002. Long-term changes in the
562	chromosomal inversion polymorphism of Drosophila subobscura. I. Mediterranean
563	populations from southwestern Europe. Evolution 56: 830-835.
564	

565	Sperlich,	D., and Pfriem,	P. 1986.	Chromosomal	l polymorp	ohism in	natural	and
-----	-----------	-----------------	----------	-------------	------------	----------	---------	-----

- 566 experimental populations. In The Genetics and Biology of Drosophila. Edited by M.
- 567 Ashburner, H.L. Carson and J.N. Thompson Jr. Vol. 3e. Academic Press, London, UK,
- 568 pp. 257–309.
- 569
- 570 Stamenkovic-Radak, M., Rasic, G., Savic, T., Kalajdzic, P., Kurbalija, Z., Kenig, B., et
- al. 2008. Monitoring of the genetic structure of natural populations: change of the
- 572 effective population size and inversion polymorphism in *Drosophila subobscura*.
- 573 Genetica **133**: 57–63.
- 574
- 575 Wright, S. 1921. Systems of mating. II. The effects of inbreeding on the genetic

576 composition of a population. Genetics 6: 124–143.

- 577
- 578 Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.
- 579
- 580 Wright, S. 1969. Evolution and the Genetics of populations. Vol. 2. The theory of gene
- 581 frequencies. The University of Chicago Press, Chicago (IL).
- 582
- 583 Yang, Y.-Y., Lin, F.-J., and Chang, H.-Y. 2002. Comparison of recessive lethal
- accumulation in inversion-bearing and inversion-free chromosomes in *Drosophila*.
- 585 Zool. Stud. **41:** 271–282.
- 586
- 587 Zivanovic, G. 2007. Seasonal changes in chromosomal inversion polymorphism in a
- 588 *Drosophila subobscura* natural population from a Southeastern European continental
- refugium of the last glaciation period. Russ. J. Genet. **43**: 1344–1349.

590	
591	Zivanovic, G., and Mestres, F. 2010a. Viabilities of Drosophila subobscura homo- and
592	heterokaryotypes at optimal and stress temperatures. I. Analysis over several years.
593	Hereditas 147: 70–81.
594	
595	Zivanovic, G., and Mestres, F. 2010b. Viabilities of Drosophila subobscura homo- and
596	heterokaryotypes at optimal and stress temperatures. II. Seasonal component analysis.
597	Hereditas 147: 82–89.
598	
599	Zivanovic, G., and Mestres, F. 2011. Changes in chromosomal polymorphism and
600	global warming: the case of <i>Drosophila subobscura</i> from Apatin (Serbia). Genet. Mol.
601	Biol. 34: 489–495.
602	
603 604	Zivanovic G. Andielkovic M. and Marinkovic D. 2002. Chromosomal inversion
605	
605	polymorphism of <i>Drosophila subobscura</i> from south-eastern part of Europe. J. Zool.
606	Syst. Evol. Res. 40: 201–204.
607	
608	Zivanovic, G., Arenas, C., and Mestres, F. 2007. The genetic structure of Balkan
609	populations of Drosophila subobscura. Hereditas 144: 120-128.
610	
611	Zivanovic, G., Arenas, C., and Mestres, F. 2012. Short- and long-term changes in
612	chromosomal inversion polymorphism and global warming: Drosophila subobscura
613	from the Balkans. Isr. J. Ecol. Evol. 58: 289–311.
614	

- 615 Zivanovic, G., Milanovic, M., and Andjelkovic, M. 1995. Chromosomal inversion
- 616 polymorphism of *Drosophila subobscura* populations from Jastrebac Mountain shows
- 617 temporal and habitat-related changes. J. Zool. Syst. Evol. Res. **33**: 81–83.
- 618
- 619

620 FIGURE LEGENDS

- 621 Fig 1. Variations of inversions and chromosomal arrangements frequencies (in
- 622 percentage) during the inbreeding experiment (from G_0 to G_{12}). (A) Chromosome A,
- 623 (B) Chromosome J, (C) Chromosome U, (D) Chromosome E and (E) Chromosome O.

Table 1. Frequencies of *D. subobscura* chromosomal inversions and arrangements from the initial generation (G_0) and in the inbreed lines after four (G_4), six (G_6), eight (G_8), ten (G_{10}) and twelve (G_{12}) generations. We have used the nomenclature of Kunze-Mühl and Sperlich (1955) and Krimbas (1993).

	Inbreeding generation											
	(G ₀		G ₄		G ₆		G ₈	(G ₁₀	(G ₁₂
Chrom. arrangements	n	%	n	%	n	%	n	%	n	%	n	%
A _{st}	13	46.4	5	33.3	5	45.5	6	54.5	4	50.0	4	50.0
A ₁	8	28.6	5	33.3	5	45.5	4	36.4	3	37.5	3	37.5
A_2	7	25.0	5	33.3	1	9.0	1	9.1	1	12.5	1	12.5
Total	28		15		11		11		8		8	
J _{st}	15	26.8	9	30.0	7	31.8	7	31.8	4	25.0	4	25.0
J_1	41	73.2	21	70.0	15	68.2	15	68.2	12	75.0	12	75.0
Total	56		30		22		22		16		16	
U _{st}	6	10.7	/	/	/	/	/	/	/	/	/	/
$U_{\underline{1+2}}$	33	58.9	18	60.0	15	68.2	17	77.3	12	75.0	12	75.0
U <u>1+2+6</u>	12	21.4	10	33.3	7	31.8	5	22.7	4	25.0	4	25.0
$U_{\underline{1+8}+\underline{2}}$	5	8.9	2	6.7	/	/	/	/	/	/	/	/
Total	56		30		22		22		16		16	
E _{st}	15	26.8	7	23.3	7	31.8	5	22.7	6	37.5	6	37.5
E <u>1+2</u>	1	1.8	/	/	/	/	/	/	/	/	/	/
E <u>1+2+9</u>	25	44.6	15	50.0	6	27.3	9	40.9	6	37.5	6	37.5

https://mc06.manuscriptcentral.com/genome-pubs

E ₁₊₂₊₉₊₁₂	1	1.8	1	3.3	/	/	/	/	/	/	/	/
E_8	14	25.0	7	23.3	9	40.9	8	36.4	4	25.0	4	25.0
Total	56		30		22		22		16		16	
O _{st}	12	21.4	7	23.3	6	27.3	7	31.8	5	31.2	5	31.2
O <u>3+4</u>	26	46.4	11	36.7	7	31.8	8	36.4	6	37.5	6	37.5
O <u>3+4</u> + <u>1</u>	8	14.3	4	13.3	2	9.1	1	4.5	1	6.3	1	6.3
O <u>3+4</u> + <u>5</u>	1	1.8	/	/	/	/	/	/	/	/	/	/
O <u>3+4+6</u>	1	1.8	2	6.7	1	4.5	/	/	1	6.3	1	6.3
O <u>3+4</u> + <u>7</u>	/	/	2	6.7	2	9.1	2	9.1	2	12.5	2	12.5
O <u>3+4+8</u>	2	3.6	1	3.3	2	9.1	1	4.5	/	/	/	/
O <u>3+4</u> +22	6	10.7	3	10.0	2	9.1	3	13.6	1	6.3	1	6.3
Total	56		30		22		22		16		16	
						7						

Table 2. Observed and expected frequencies of chromosomal karyotypes in the first generation (G_0), and in G_4 , G_8 and G_{12} generations of inbreeding. IFR values for each inbreeding generation are also presented. OBS. and EXP. mean observed and expected, respectively.

			Generations							
G_0		G ₄		G	j 8	G ₁₂				
Karyotypes	OBS.	OBS.	EXP.	OBS.	EXP.	OBS.	EXP.			
			95							
J_{st}/J_{st}	0.036	0.267	0.189	0.273	0.234	0.250	0.253			
J_{st}/J_1	0.464	0.067	0.159	0.091	0.068	/	0.029			
J_1/J_1	0.500	0.666	0.652	0.636	0.698	0.750	0.717			
$U_{\text{st}}\!/U_{\text{st}}$	0.036	/	0.068	/	0.090	/	0.100			
$U_{\text{st}}\!/U_{\underline{1}+\underline{2}}$	0.072	/	0.051	/	0.022	/	0.009			
$U_{\text{st}}/U_{\underline{1+2+6}}$	0.036	/	0.019	/	0.008	/	0.003			

$U_{\text{st}}\!/U_{\underline{1+8}+\underline{2}}$	0.036	/	0.008	/	0.003	/	0.001
$U_{\underline{1}+\underline{2}}/U_{\underline{1}+\underline{2}}$	0.357	0.333	0.491	0.545	0.547	0.500	0.571
$U_{\underline{1}+\underline{2}}/U_{\underline{1+2+6}}$	0.321	0.466	0.102	0.455	0.044	0.500	0.019
$U_{\underline{1}+\underline{2}}/U_{\underline{1+8}+\underline{2}}$	0.072	0.067	0.043	/	0.018	/	0.008
$U_{\underline{1+2+6}}/U_{\underline{1+2+6}}$	0.036	0.067	0.146	/	0.188	/	0.201
$U_{\underline{1+2+6}}/U_{\underline{1+8}+\underline{2}}$	/	0.067	0.015	/	0.018	/	0.003
$U_{\underline{1+8}+\underline{2}}/U_{\underline{1+8}+\underline{2}}$	0.036	1	0.056	/	0.075	/	0.083
			2.				
$E_{\text{st}}\!/E_{\text{st}}$	/	0.133	0.188	0.182	0.234	0.375	0.253
$E_{\text{st}}/E_{\underline{1+2+9}}$	0.321	0.067	0.101	/	0.043	/	0.019
E_{st}/E_8	0.214	0.133	0.054	0.091	0.023	/	0.010
$E_{\underline{1+2}}/E_8$	0.036	/	0,003	/	0.002	/	< 0.001
E_{1+2+9}/E_{1+2+9}							
$\frac{1+2+j}{2}$ $\frac{1+2+j}{2}$	0.214	0.333	0.363	0.363	0.421	0.375	0.445
$E_{1+2+9}/E_{1+2+9+12}$	0.214	0.333 0.067	0.363 0.007	0.363	0.421 0.003	0.375	0.445 0.001

$E_{1+2+9+12}/E_8$	0.036	/	0.004	/	0.002	/	< 0.001
E_8/E_8	0.036	0.067	0.174	0.273	0.217	0.250	0.236
O_{st} / O_{st}	/	0.067	0.146	0.273	0.185	0.250	0.201
$O_{st}/O_{\underline{3+4}}$	0.214	0.200	0.081	0.091	0.036	/	0.015
$O_{st}/O_{\underline{3+4}+\underline{1}}$	0.071	0.067	0.025	/	0.011	/	0.005
$O_{st}/O_{\underline{3+4}+\underline{6}}$	0.036	0.067	0.003	/	0.001	0.125	< 0.001
$O_{st}/O_{\underline{3+4}+\underline{22}}$	0.107	1	0.019	/	0.008	/	0.003
$O_{\underline{3+4}}/O_{\underline{3+4}}$	0.214	0.200	0.363	0.273	0.421	0.375	0.445
$O_{\underline{3+4}}/O_{\underline{3+4}+\underline{1}}$	0.214	0.067	0.054	/	0.023	/	0.010
$O_{\underline{3+4}}/O_{\underline{3+4+8}}$	/	0.067	0.014	0.091	0.006	/	0.003
$O_{\underline{3+4}}/O_{\underline{3+4}+\underline{22}}$	0.071	/	0.040	/	0.017	/	0.007
$O_{\underline{3+4}+\underline{1}}/O_{\underline{3+4}+\underline{6}}$	/	0.067	0.002	/	< 0.001	/	< 0.001
$O_{\underline{3+4}+\underline{1}}/O_{\underline{3+4}+\underline{22}}$	/	0.067	0.012	0.091	0.005	0.125	0.002
$O_{\underline{3+4}+\underline{5}}/O_{\underline{3+4+8}}$	0.036	/	< 0.001	/	< 0.001	/	< 0.001

$O_{\underline{3+4}+\underline{7}}/O_{\underline{3+4}+\underline{7}}$	/	0.067	< 0.001	0.091	< 0.001	0.125	< 0.001	
$O_{\underline{3+4+8}}/O_{\underline{3+4+8}}$	/	/	0.023	/	0.032	/	0.035	
$O_{\underline{3+4+8}}/O_{\underline{3+4+22}}$	0.036	/	0.003	/	< 0.001	/	< 0.001	
$O_{\underline{3+4+22}}/O_{\underline{3+4+22}}$	/	0.067	0.068	0.091	0.090	/	0.100	
IFR	80.36±1.62	86.36±1.78		93.55±2.35		94.15±1.58		

Page 33 of 52

Genome

Table 3. Chromosomal inversions and arrangements observed in the remaining lines of inbreeding process (G_{12}) .

	C h r o m o s o m e s							
Inbred chromosomal lines	А	J	U	Е	0			
1	A_1	J _{st}	$U_{\underline{1}+\underline{2}}$	E <u>1+2+9</u>	$O_{3+4+1}; O_{3+4+22}$			
2	\mathbf{A}_1	J _{st}	$U_{\underline{1}+\underline{2}}$	E _{st}	$O_{st}; O_{\underline{3+4}+\underline{6}}$			
3	A _{st}	J_1	$U_{\underline{1}+\underline{2}}$	E _{st}	O _{st}			
4	\mathbf{A}_{st}	J_1	$U_{\underline{1}+\underline{2}}$	E_8	O <u>3+4</u>			
5	A_2	J ₁	$U_{\underline{1}+\underline{2}}; U_{\underline{1+2+6}}$	E ₁₊₂₊₉	O <u>3+4</u>			
6	\mathbf{A}_1	J ₁	U <u>1+2;</u> U <u>1+2+6</u>	E_8	$O_{\underline{3+4}+\underline{7}}$			
7	\mathbf{A}_{st}	J_1	U <u>1+2;</u> U <u>1+2+6</u>	E ₁₊₂₊₉	O _{st}			
8	A _{st}	\mathbf{J}_1	$U_{\underline{1+2}}; U_{\underline{1+2+6}}$	E _{st}	O <u>3+4</u>			

Segregating arrangements are denoted by ";" symbol.

Table 4. ANOVA analysis for fertility (number of arisen flies). Fixed factors are:

temperature, chromosomal line and replicates. Bold *p-values* are significant.

Source of variation	d.f.	MS	F	P-value
Temperature	1	258.133	29.900	0.000
Chrom. Line	4	51.283	5.940	0.002
Replicates	2	10.133	1.170	0.328
Error	22	8.633		

Table 5. ANOVA analysis for fertility (number of arisen flies) at 18°C. Fixed factorsare: chromosomal line and replicates. Bold *p-values* are significant.

Source of variation	d.f.	MS	F	<i>P</i> -value
Chrom. Line	7	47.333	5.890	0.002
Replicates	2	10.792	1.340	0.293
Error	14	8.030		

С

Ε

Days	Max. T (°C)	Min. T (°C)	Mean T (°C)	Rainfall (mm)
30. 05. 2011	26.1	14.0	21.7	0.3
31. 05. 2011	29.0	18.3	23.0	/
01. 06. 2011	28.3	17.0	22.2	/
02. 06. 2011	26.7	16.7	19.8	/
03. 06. 2011	26.3	17.3	22.3	6.6
04. 06. 2011	29.1	17.0	23.9	/
05.06.2011	29.8	19.0	25.5	/

Supplementary Table S1. Meteorological data for the Avala Mountain for days 30th of May to 5th of June 2011.

Max. T and Min. T stand for maximum and minimum temperatures, respectively.

Supplementary Table S2. Numbers of arising males and females from the different inbred line (using three replicates) reared at 13°C.

	LIN	JE 1	LIN	JE 1	LIN	IE 1
	Repli	cate 1	Repli	icate 2	Repli	cate 3
Days after	number	number	number	number	number	number
initial crosses	of	of	of	of	of	of
	arising	arising	arising	arising	arising	arising
	males	females	males	females	males	females
39	1	/	/	/	/	/
40	/	/	1	/	/	/
41	/	/		/	/	/
42	/	/	1	/	/	/
43	/	/	/	/	/	/
44	/	/	/	/	/	1
45	/	/	/	/	/	/
46	/	/	2	/	/	/
47	/	1	/	/	/	/
48	1	1	/	/	/	/
49	/	/	1	/	/	/
Total	2	2	3	0	0	1

https://mc06.manuscriptcentral.com/genome-pubs

	LIN	JE 3	LIN	NE 3	LIN	VE 3
	Repl	icate 1	Repli	icate 2	Repli	cate 3
Days after	number	number	number	number	number	number
initial crosses	of	of	of	of	of	of
	arising	arising	arising	arising	arising	arising
	males	females	males	females	males	females
42	/	1	/	/	/	/
43	/	/	/	1	/	/
44	/	/	/	/	/	/
45	/	/	/	/	/	/
46	/	/	1	/	/	/
47	/	/		/	/	/
48	/	/	1	/	/	/
49	/	/	/	/	/	/
50	/	/	/	/	1	/
51-53	/	/	/	/	/	/
54	/	/	/	/	/	1
Total	0	1	0	1	1	1

	LIN	JE 4	LIN	IE 4	LIN	IE 4
	Repli	icate 1	Repl	icate 2	Repli	icate 3
Days after	number	number	number	number	number	number
initial crosses	of	of	of	of	of	of
	arising	arising	arising	arising	arising	arising
	males	females	males	females	males	females
45	1	1	/	/	/	/
46	/	/	/	/	/	/
47	1	/	/	/	/	/
48	/	1	/	/	/	/
49	/	/	1	/	/	/
50	/	/	/	/	/	/
51	/	/	/	/	/	/
52	/	/	/	1	/	/
53	/	/	/	/	/	1
Total	2	2	0	1	0	1

	LIN	NE 5	LIN	IE 5	LIN	IE 5
	Repli	icate 1	Repli	cate 2	Repli	cate 3
Days after	number	number	number	number	number	number
initial crosses	of	of	of	of	of	of
	arising	arising	arising	arising	arising	arising
	males	females	males	females	males	females
42	1	/	/	/	/	/
43	/	/	/	1	/	/
44	/	/	/	/	/	/
45	/	/	/	/	/	/
46	/	/	1	/	/	/
47	1	/	1	/	/	/
Total	2	0	0	1	0	0

	LIN	JE 6	LIN	IE 6	LIN	NE 6
	Repli	icate 1	Repli	cate 2	Repli	icate 3
Days after	number	number	number	number	number	number
initial crosses	of	of	of	of	of	of
	arising	arising	arising	arising	arising	arising
	males	females	males	females	males	females
47	3	/	/	/	/	/
48	1	1	/	/	/	/
49	1	/	1	/	/	/
50	1	1	/	/	/	1
51	1	3	1	/	/	/
52	1	/		/	/	/
53	/	1	1	/	/	/
54	/	/	/	1	/	/
55	/	/	/	/	/	/
56	/	1	/	/	/	/
Total	8	7	1	1	0	1

Supplementary Table S3. Numbers of arising males and females from the different inbred line (using three replicates) reared at 18°C.

	LINE 1		LIN	IE 1	LINE 1	
	Repli	icate 1	Repli	Replicate 2		cate 3
Days after	number	number	number	number	number	number
initial crosses	of	of	of	of	of	of
	arising	arising	arising	arising	arising	arising
	males	females	males	females	males	females
25	1	/	/	/	1	/
26	3	/	1	1	2	/
27	/	1	1	1	/	/
28	/	/	1	1	1	3
29	/	/	/	/	/	/
30	/	/	1	/	/	/
31	/	/	1	/	/	/
32	/	1	/	/	/	/
Total	4	2	5	3	4	3

	LINE 2		LIN	LINE 2		LINE 2	
	Replicate 1		Repli	cate 2	Replicate 3		
Days after	number	number	number	number	number	number	
initial crosses	of	of	of	of	of	of	
	arising	arising	arising	arising	arising	arising	
	males	females	males	females	males	females	
26	/	/	/	1	/	/	
27	/	/	3	2	1	/	
28	/	/	3	3	1	1	
29	/	1	/	/	1	/	
30	/	/	/	/	/	1	
31	/	/		/	/	1	
32	1	/	1	/	/	/	
33	/	1	/	/	/	/	
Total	1	1	6	6	3	3	

	LIN	LINE 3		JE 3	LIN	LINE 3		
	Repl	icate 1	Repli	cate 2	Repli	cate 3		
Days after	number	number	number	number	number	number		
initial crosses	of	of	of	of	of	of		
	arising	arising	arising	arising	arising	arising		
	males	females	males	females	males	females		
24	/	/	1	/	/	/		
25	/	/	/	/	/	/		
26	/	/	/	/	/	1		
27	1	/	1	/	1	/		
28	4	1	1	1	1	/		
29	/	2	1	1	1	1		
30	/	1	1	/	1	/		
31	/	/	/	/	/	/		
32	/	/	/	/	/	1		
33	/	/	/	/	/	/		
34	/	/	/	/	/	/		
35	/	/	/	/	/	/		
36	/	/	/	/	/	/		
37	/	/	/	/	/	/		
38	/	/	/	/	/	1		
Total	5	4	3	2	4	4		

LINE 4

LINE 4

LINE 4

	Replicate 1		Repli	Replicate 2		Replicate 3	
Days after	number	number	number	number	number	number	
initial crosses	of	of	of	of	of	of	
	arising	arising	arising	arising	arising	arising	
	males	females	males	females	males	females	
25	1	/	/	/	/	/	
26	/	/	1	/	/	/	
27	/	/	1	/	/	2	
28	/	1	1	2	1	/	
29	/	1	1	/	/	/	
30	2	3	1	1	1	/	
31	/	1	/	/	/	1	
32	/	/	/	/	/	/	
33	/	/	/	/	1	/	
34	/	/	/	/	/	/	
35	/	/	/	/	/	1	
Total	3	5	3	3	3	4	
	2	2	2	2	2	•	

	LINE 5 Replicate 1		LIN	NE 5	LINE 5 Replicate 3	
			Repli	cate 2		
Days after	number	number	number	number	number	number
initial crosses	of	of	of	of	of	of
	arising	arising	arising	arising	arising	arising
	males	females	males	females	males	females
26	/	/	1	/	/	/
27	1	1	3	1	/	/
28	1	/	/	/	2	/
29	/	1	/	/	1	2
30	1	/	1	/	/	/
31	/	/	6	1	/	/
Total	3	2	5	2	3	2

	LINE 6		LIN	IE 6	LINE 6	
	Replicate 1		Replicate 2		Replicate 3	
Days after	number	number	number	number	number	number
initial crosses	of	of	of	of	of	of
	arising	arising	arising	arising	arising	arising
	males	females	males	females	males	females
27	1	1	/	/	/	/
28	1	/	1	1	/	/
29	1	2	5	2	2	1
30	1	2	7	3	2	1
31	1	1	1	/	3	/
32	1	/	1	/	1	3
33	/	/	/	1	/	/
34 - 36	/	/	/	/	/	/
37	/	/	/	/	1	/
Total	6	6	12	7	0	5
Total	0	0	15	/)	5

Days after	LINE 7 Replicate 1		LIN	IE 7	LINE 7		
initial crosses			Repli	Replicate 1		cate 1	
Days after	number	number	number	number	number	number	
initial crosses	of	of	of	of	of	of	
	arising	arising	arising	arising	arising	arising	
	males	females	males	females	males	females	
25	/	/	/	1	/	/	
26	/	/	/	/	/	/	
27	/	/	/	/	/	/	
28	2	/	2	/	/	/	
29	2	/	1	/	/	/	
30	2	/	/	/	/	/	
31	/	/	/	/	/	/	
32	/	/	1	1	/	/	
33	/	/	/	1	/	/	
34 - 36	/	/	/	/	/	/	
37	/	1	/	/	/	/	
Total	6	1	3	3	0	0	

	LINE 8		LIN	LINE 8		LINE 8	
	Repli	icate 1 Replicate 2		cate 2	Replicate 3		
Days after	number	number	number	number	number	number	
initial crosses	of	of	of	of	of	of	
	arising	arising	arising	arising	arising	arising	
	males	females	males	females	males	females	
26	/	3	/	/	/	/	
27	/	/	/	/	/	/	
28	/	/	/	/	/	/	
29	/	1	/	/	/	/	
30	/	/	1	/	/	/	
31	/	/		/	/	/	
32	/	/	/	1	/	/	
Total	0	3	0	1	0	0	