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Ana Ivanović, ana@bio.bg.ac.rs

Academic editor
John Hutchinson

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.1397

Copyright
2015 Slijepčević et al.
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ABSTRACT
We explored intraspecific variation in vertebral formulae, more specifically the
variation in the number of thoracic vertebrae and frequencies of transitional
sacral vertebrae in Triturus newts (Caudata: Salamandridae). Within salamandrid
salamanders this monophyletic group shows the highest disparity in the number
of thoracic vertebrae and considerable intraspecific variation in the number of
thoracic vertebrae. Triturus species also differ in their ecological preferences, from
predominantly terrestrial to largely aquatic. Following Geoffroy St. Hilaire’s and
Darwin’s rule which states that structures with a large number of serially homologous
repetitive elements are more variable than structures with smaller numbers, we
hypothesized that the variation in vertebral formulae increases in more elongated
species with a larger number of thoracic vertebrae. We furthermore hypothesized
that the frequency of transitional vertebrae will be correlated with the variation in the
number of thoracic vertebrae within the species. We also investigated potential effects
of species hybridization on the vertebral formula. The proportion of individuals
with a number of thoracic vertebrae different from the modal number and the
range of variation in number of vertebrae significantly increased in species with a
larger number of thoracic vertebrae. Contrary to our expectation, the frequencies
of transitional vertebrae were not correlated with frequencies of change in the
complete vertebrae number. The frequency of transitional sacral vertebra in hybrids
did not significantly differ from that of the parental species. Such a pattern could
be a result of selection pressure against transitional vertebrae and/or a bias towards
the development of full vertebrae numbers. Although our data indicate relaxed
selection for vertebral count changes in more elongated, aquatic species, more data
on different selective pressures in species with different numbers of vertebrae in the
two contrasting, terrestrial and aquatic environments are needed to test for causality.

Subjects Evolutionary Studies, Zoology
Keywords Axial skeleton, Transitional vertebrae, Geoffroy St. Hilaire’s rule, Salamaders,
Amphibia

INTRODUCTION
The vertebral column consists of repetitive, serially homologous skeletal

elements–vertebrae. Along the anterior–posterior axis, vertebrae are classified into regions,
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with a conserved order and specific sizes and shapes (e.g., Starck, 1979). The strong re-

gionalization of the vertebral column is already present early in the evolution of tetrapods

(Ahlberg, Clack & Blom, 2005). In the early tetrapod Ichthyostega, five regions (cervical,

thoracic, lumbar, sacral and caudal) can be recognized as in many extant amniotes.

Vertebrae develop from embryonic segments (somites) that are generated from the

presomitic mesoderm in a sequential head-to tail order. This process involves a molecular

oscillator, the segmentation clock, that regulates the periodicity of segment formation

(Cooke & Zeeman, 1976; Palmeirim et al., 1997; Dequéant & Pourquié, 2008; Gomez &

Pourquié, 2009). The duration of segment formation (somitogenesis) and the speed of the

segmentation clock determine the total number of segments formed, and hence, the total

number of vertebrae (Gomez et al., 2008; Gomez & Pourquié, 2009). The determination

of the identity of the vertebrae (e.g., cervical or thoracic) occurs as part of the early

head-to-tail patterning of the presomitic mesoderm and early somites. This head-to-tail

patterning involves complex genetic mechanisms that include various signaling molecules,

with an essential mediating role for the well-known Hox genes (e.g., Dubrulle, McGrew

& Pourquié, 2001; Diezdel-Corral et al., 2003; Aulehla & Pourquié, 2010; Mallo, Wellik &

Deschamps, 2010; Woltering, 2012; Wong et al., 2015). It is thought that the segmentation

process and the head-to-tail patterning of the segments by the Hox genes can be dissociated

and that this dissociation has allowed for the spectacular evolutionary diversification of

vertebral formulae (Carapuço et al., 2005; Gomez & Pourquié, 2009; Schroeter & Oates,

2010; Harima et al., 2013; Wong et al., 2015). When there are shifts of vertebral boundaries,

e.g., the cervico-thoracic boundary, these shifts involve changes in the Hox patterning

of the somites along the head-to-tail axis. If indeed the segmentation process and the

head-to-tail patterning of the segments are dissociated, the shifts of vertebral boundaries

necessarily involve homeotic transformations of vertebrae. The involvement of homeotic

transformations is further supported by the observation that in humans, xenarthra and

afrotherians, intraspecific changes of the cervico-thoracic or thoraco-lumbar boundary

almost always involve transitional vertebrae, i.e., partial homeotic transformations,

also when the number of presacral or total vertebrae is changed (Galis et al., 2006;

Varela-Lasheras et al., 2011; Ten Broek et al., 2012). This also confirms that initial mutations

for homeotic transformations usually lead to incomplete homeotic transformations,

resulting in transitional vertebral identities.

In mammals, changes in the number of cervical vertebrae are associated with deleterious

pleiotropic effects that lead to selection against such homeotic transformations (Galis &

Metz, 2003; Varela-Lasheras et al., 2011). In two mammalian groups (sloths and manatees)

with low activity and metabolic rates, the exceptional numbers of cervical vertebrae most

likely resulted from the effective breaking of pleiotropic constraints due to a relaxation of

stabilizing selection against the pleiotropic effects (known as congenital abnormalities,

Varela-Lasheras et al., 2011). Furthermore, Galis et al. (2014) concluded that biomechanical

problems associated with initial homeotic transformations (transitional vertebrae) in fast

running mammals result in strong selection against changes of the presacral vertebral

counts in these species.
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In other tetrapods the number of vertebrae in different regions can be more variable.

Well-known examples are the variable number of cervical vertebrae in birds (Woolfenden,

1961) and the variable number of presacral vertebrae in squamates (Carroll, 1997; Müller et

al., 2010). In both cases, these regions have a large number of vertebrae. Geoffroy St. Hilaire

has postulated that as a rule—structures with a large number of serially homologous

repetitive elements are more variable than structures with smaller numbers (Geoffroy,

1832). This notion was supported by Darwin (1860). Along the same line, Bateson (1894)

concluded that series containing large numbers of undifferentiated parts are more variable

than series made up of a few, more differentiated parts.

In tailed amphibians, the presacral vertebrae vary in their number but only little in

shape. A single, sacral vertebra is morphologically very similar to the vertebrae from

the thoracic or trunk region, with more robust processes for attachment of the sacral

ribs which are also thicker than regular thoracic ribs. There is considerable intraspecific

variation in the number of thoracic vertebrae in many species of salamanders (Adolphi,

1898; Gerecht, 1929; Peabody & Brodie, 1975; Jockusch, 1997; Litvinchuk & Borkin,

2003). Intraspecific variation originally results from homeotic transformations that are

subsequently maintained in the population. In salamanders, transitional vertebrae at the

thoraco-sacral boundary have been frequently reported (Adolphi, 1898; Gerecht, 1929;

Highton, 1960; Worthington, 1971; Jockusch, 1997; Arntzen et al., 2015). Such transitional

vertebrae with partial thoracic and partial sacral identity result from incomplete homeotic

transformations. Therefore, the frequencies of transitional vertebrae could be related to the

amount of variation in the number of thoracic vertebrae within species. Data on changes in

axial pattering and homeotic transformations in amphibians are relatively scarce and more

data are necessary for understanding the evolution of axial pattering in amphibians and the

tetrapods.

In this study we explore the relationship between variation in the number of thoracic

vertebrae and transitional sacral vertebrae using eight species of the monophyletic genus

Triturus newts as a model system. Within the family Salamandridae, which is the second

most diverse group of tailed amphibians, Triturus newts are the most disparate in the

number of thoracic vertebrae (Arntzen et al., 2015). Triturus species form a morphocline

from the predominantly terrestrial T. marmoratus and T. pygmaeus with a short and stout

body and 12 thoracic vertebrae to the slender and elongated, largely aquatic T. cristatus and

T. dobrogicus with 15–17 thoracic vertebrae (Arntzen, 2003). Triturus species also display

considerable intraspecific variation in vertebral numbers (Gerecht, 1929; Crnobrnja et al.,

1997; Arntzen et al., 2015). Moreover, there is a well-documented, extensive hybridization

in the area of sympatry of T. marmoratus (12 thoracic vertebrae) and T. cristatus (15

thoracic vertebrae). The hybridization of these two species leads to sterile F1 hybrids

with intermediate morphologies and number of thoracic vertebrae (Vallée, 1959; Arntzen

et al., 2009). Interspecific hybridization at contact zones also occurs between other Triturus

species with parapatric distributions (Mikuĺıček et al., 2012; Arntzen, Wielstra & Wallis,

2014), providing the opportunity to investigate the relationship between vertebral number

and frequencies of transitional sacral vertebrae. Here, we compared variation in the
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number of thoracic vertebrae and transitional sacral vertebrae among Triturus species,

T. marmoratus × T. cristatus F1 hybrids with parental species, and populations from

contact zones with populations away from contact zones. More specifically, we explored

the intra- and interspecific variation in number of the thoracic vertebrae and frequencies

of transitional vertebrae at the thoraco-sacral boundary to test the following hypotheses:

(1) Species with more vertebrae in the thoracic region are more variable in the number of

thoracic vertebrae than those with fewer vertebrae in the thoracic region.

(2) The higher the variation in the number of thoracic vertebrae, the higher the

frequencies of transitional vertebrae are. In hybrids, we would expect that the range of

variation in the number of vertebrae overlaps the ranges of parental species’ variation.

Also, we would expect the higher frequencies of transitional vertebrae in comparison

with parental species. In species with parapatric distributions we would expect the

higher variation in the number of vertebrae and the higher frequencies of transitional

vertebrae in populations from contact zones in comparison with populations away

from contact zones.

MATERIALS AND METHODS
Triturus newts and their characteristics
The vertebral column in Triturus newts is differentiated in: the cervical region—consisting

of a single anterior vertebra, the atlas; the thoracic (trunk) region—consisting of a rib-

bearing vertebrae; the sacral region—usually a single vertebra with well-developed stout

transverse processes for the attachment of sacral ribs and pelvic girdle; the caudosacral

region—up to three vertebrae that continue from the caudal to the sacral vertebra

and are associated with the pelvic musculature and cloaca and the caudal region—the

remaining vertebrae in the tail (Fig. 1). The body elongation in Triturus species appears

to be correlated with the length of the aquatic phase—more terrestrial species have a

short and stout trunk with relatively longer legs compared to species with a more aquatic

life style which have a more elongated trunk and relatively shorter legs. Body elongation

involves a larger number of thoracic vertebrae. More specifically, the number of thoracic

vertebrae in the vertebral formulae varies from 12 in T. marmoratus and T. pygmaeus,

which have a short aquatic phase (T. marmoratus only two months), 13 in T. karelinii

and T. ivanbureschi, 14 in T. macedonicus and T. carnifex, 15 in T. cristatus to 16 or 17 in

T. dobrogicus, the most aquatic species which has six months long aquatic phase (Arntzen,

2003) (Fig. 2).

The distribution of the genus Triturus is well documented (Arntzen, Wielstra & Wallis,

2014). Triturus cristatus and T. marmoratus have an area of range overlap in France and

can often be found in syntopy (Arntzen & Wallis, 1991; Lescure & De Massary, 2012).

Other Triturus species contact zones are generally narrow and show a weak but significant

negative relationship between the level of hybridization and the genetic distance of species

pairs (Arntzen, Wielstra & Wallis, 2014).
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Figure 1 Schematic presentation of the vertebral column in Triturus newts and homeotic transforma-
tions scored. The regionalization of the vertebral column in Triturus newts and schematic presentation of
scored homeotic transformations (example of T. marmoratus). (A) Vertebral column without homeotic
transformation and regular number of vertebrae—the first three caudal vertebrae are shown; (B) incom-
plete homeotic transformations of cervical vertebra into thoracic; (C) complete homeotic transformation
of cervical into thoracic vertebra; (D) transitional sacral vertebra with thoracic rib at one side and sacral
rib at the other side followed by transitional vertebra with sacral rib at the one side and no rib at the
other; (E) transitional thoraco-sacral vertebra, with thoracic rib at one side and sacral rib at the other,
followed by regular sacral vertebra.

Material analysed
We analysed axial skeletons of 1,436 adult newts that originate from 126 populations of

all eight species of Triturus newts (Fig. 3). For this study we used X-ray images of good

quality and cleared and stained skeletons. The X-ray images were obtained on a Faxitron

43855C/D with an exposure of 20–40 s at 3 mA and 70 kV. Other material was cleared with

trypsin and KOH and stained with Alizarin Red S for bone deposition (Dingerkus & Uhler,

1977) and stored in glycerine. Analyzed specimens are from the batrachological collection

of the Institute for Biological Research “Siniša Stanković”, Belgrade, Serbia (N = 601)

and from the collection of the Naturalis Biodiversity Center, Leiden, The Netherlands

(N = 835). Our material covers the geographic, taxonomic and molecular genetic diversity

of the genus. On the basis of well documented species distributions (Mikuĺıček et al., 2012;

Arntzen, Wielstra & Wallis, 2014) populations were assigned as “central” or “fringe” based

upon their geographical position away (≥50 km) or close to (<50 km) congeneric species.

For localities and sample size per population see Table S1.
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Figure 2 Calibrated phylogeny for the genus Triturus with the modal number of vertebrae indicated
by colour code. Calibrated phylogeny for the genus Triturus with the modal number of vertebrae
indicated by colour code (after Arntzen et al., 2015).

Figure 3 Distribution of Triturus species and geographic positions of populations. Distribution of
eight Triturus species across Europe and adjacent Asia. Studied populations are marked by solid dots
(central populations) and open dots (fringe populations). For detailed information see Table S1.

Scoring vertebral formulae and transitional thoraco-sacral
vertebrae
We determined the vertebral formula by counting the number of cervical (C), thoracic

(T) and sacral vertebrae (S). The caudosacral and caudal regions are excluded from our

formula as the detailed inspection of cleared and stained specimens showed that a variable
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number of caudosacral vertebrae frequently bear small, much reduced ribs which could be

fused with transverse processes and cannot always be distinguished on X-ray images. The

number of tail vertebrae was available only for a subset of specimens; in most specimens

tails had been removed for enzyme electrophoretic analyses or were broken or damaged.

Homeotic transformations of thoracic vertebra into sacral vertebra, or vice versa

(transitional sacral vertebra having half of the identity of thoracic vertebra and half of

the identity of sacral vertebra) were assigned 0.5 and this score was added to the number

of complete thoracic vertebrae. Only complete changes of identity on one side of the

vertebrae (on one side thoracic and on one side sacral) were declared transitional. Right

side asymmetry of a sacral vertebra is scored when the thoracic rib is present on the right

side and the sacral rib on the left side of transitional thoraco-sacral vertebra and vice

versa for left side asymmetry. For a 3D model of regular and transitional thoraco-sacral

vertebra obtained by CT-scanning see Data S1 and S2. We assumed that the frequency of

transitional vertebrae with a complete change of identity at one side of vertebra reflects the

frequency of all homeotic transformations, including more gradual ones, which could not

always be scored.

Statistical analyses
The Spearman correlation coefficient (rs) was used to quantify correlation between species

modal numbers of thoracic vertebrae (Tn) and (1) the percentage of individuals with

the number of complete thoracic vertebrae different from the modal number (Tvar)

and (2) the range of variation in the number of thoracic vertebrae (Trange) within

species. The same measure was used to quantify the relationship between percentages

of transitional sacral vertebrae (Str) and Tvar and Trange. To test for differences between

hybrids and parental species across fringe and central populations we used the G-test

of independence. To analyse interspecific variation in a phylogenetic context, we used a

well resolved time-calibrated phylogeny of genus Triturus (Arntzen et al., 2015) shown

in Fig. 2. Associations derived from common ancestry were evaluated by calculating the

strength of the phylogenetic signal for analysed variables (Tn, Tvar, Trange and Str). The

procedure involves the random permutation of the variables over the terminal units of

the phylogenetic tree (10,000 iterations), in which the test statistic is the total amount

of squared change summed over all branches of the tree. We applied the phylogenetic

independent contrasts approach (Felsenstein, 1985) to obtain a set of independent

contrasts. The regression of (1) Tvar independent contrasts on Tn independent contrasts

and (2) Trange independent contrasts on Tn independent contrasts were used to explore

the relationship between evolutionary change in the number of the thoracic vertebra

in vertebral formula and amount of variation in the number of thoracic vertebrae. The

regressions of Tvar and Trange independent contrasts on Str were used to explore changes

and frequencies of transitional vertebrae, taking the similarity due to shared ancestry into

account.
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Table 1 The number of thoracic vertebrae in Triturus species (central populations only).

Species Sample size Number of thoracic vertebrae Str (%) Tvar (%)

12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18

T. marmoratus 58 46 4 8 6.9 13.8

T. pygmaeus 55 52 1 2 1.8 3.6

T. ivanbureschi 175 1 3 150 4 17 4.0 10.3

T. karelinii 43 1 40 2 2.3 4.7

T. carnifex 66 4 5 53 3 1 7.6 12.1

T. macedonicus 67 9 5 51 1 1 9.0 14.9

T. cristatus 122 1 6 1 98 5 11 4.9 14.8

T. dobrogicus 57 2 11 1 42 1 1.8 24.6

Notes.
Modal numbers of thoracic vertebrae in vertebral formulae are shown in bold. Str, percentage of individuals with transitional vertebrae at thoraco-sacral boundary; Tvar,
percentage of individuals with the complete number of thoracic vertebrae different from the modal number.

Table 2 Overview of homeotic transformations observed in Triturus species. Number and percentage of individuals with transitional vertebrae
are given. Left and right asymmetries of transitional sacral vertebra are shown separately.

Cervical to thoracic Transitional sacral Thoracic to sacral

Species Sample size Transitional % Complete Incomplete % Left Right % Incomplete %

T. marmoratus 58 5 8.6 0 1 1.7 1 3 6.9 0

T. pygmaeus 55 1 1.8 0 0 1 0 1.8 0

T. ivanbureschi 361 25 6.9 1 3 1.1 6 12 5.0 3 0.8

T. karelinii 43 1 2.3 0 0 0 1 2.3 0

T. carnifex 123 8 6.5 0 0 6 2 6.5 0

T. macedonicus 226 14 6.2 0 1 0.4 8 4 5.3 1 0.4

T. cristatus 286 16 5.6 2 1 1.0 10 3 4.5 0

T. dobrogicus 216 13 6.0 0 0 7 6 6.0 0

Total 1,368 83 6.1 3 6 0.6 39 31 4 0.3

RESULTS
Vertebral formula and transitional sacral vertebra in Triturus newts
The most common vertebral formulae were 1C 12T 1S in T. marmoratus and T. pygmaeus,

1C 13T 1S in T. karelinii and T. ivanbureschi, 1C 14T 1S in T. macedonicus and T. carnifex,

1C 15T 1S in T. cristatus and 1C 17T 1S in T. dobrogicus (see Fig. 2 and Table 1). The

percentage of individuals with a number of complete thoracic vertebrae different from

the modal number (Tvar) varied among species, from 3.6% in T. pygmaeus to 24.6% in

T. dobrogicus. The range of variation in the number of thoracic vertebrae is 12–13 observed

in T. marmoratus and T. pygmaeus, 12–14 in T. ivanbureschi, 12–14 in T. karelinii, 13–15 in

T. macedonicus, 13–16 in T. carnifex, 13–16 in T. cristatus and 15–18 in T. dobrogicus (see

Table 1). The variation in the vertebrae number per population is shown in Table S2.

Frequencies of recorded homeotic transformations in Triturus newt species are listed

in Table 2. The least common is the homeotic transformation of cervical vertebra
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Figure 4 X-ray images of homeotic transformations recorded. (A) Complete vertebral column without
homeotic transformations and transitional vertebrae; (B) transitional cervical vertebra (cervical into tho-
racic) (1); (C) complete homeotic transformation of cervical into thoracic vertebra (2) and transitional
sacral vertebra with thoracic rib on the right side and sacral rib on the other side followed by sacral
vertebra (3); (D) Transitional sacral vertebra—first vertebra with thoracic rib on the right side and sacral
rib on the left side, followed by second transitional vertebra, with sacral rib on the right side and no rib
attached on the left side (transitional sacral vertebra with a left side asymmetry) (4); Transformations are
marked by arrows and numbered.

with the thoracic rib attached to one or both sides of the vertebra, recorded six times

(0.41%) and in four out of eight species. Two types of transitional vertebrae at the

thoraco-sacral boundary were recorded. The first type involves changes of two succeeding

vertebrae—transitional sacral vertebra with thoracic rib at one side and sacral rib at the

other side, followed by transitional vertebra having sacral rib at one side (opposite than

previous vertebra) and no rib attached on the other side (see Figs. 1 and 4). The second

type of transitional sacral vertebra involves transitional thoraco-sacral vertebra, with a

thoracic rib at one side and a sacral rib at the other, followed by regular sacral vertebra.

The transitional changes involving two adjacent vertebrae, thoracic and sacral (here

termed transitional sacral) are more frequent than transitional changes of thoracic to

sacral vertebra without changes of sacral vertebra. Excluding F1 hybrids, we recorded

a transitional sacrum in 70 out of 1,368 specimens (5.1%). Both, right side and left

side asymmetries were recorded (Table 2). We found that Tn and Tvar are significantly
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Table 3 The number of thoracic vertebrae in T. cristatus × T. marmoratus F1 hybrids and parental species.

Species Sample size Number of thoracic vertebrae Str (%) Tvar (%)

12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18

T. marmoratus 58 46 4 8 6.9 13.8

T. cristatus 122 1 6 1 98 5 11 4.9 14.8

Hybrids 68 2 1 39 4 16 6 7.4 35.3

Notes.
Modal numbers of thoracic vertebrae in vertebral formulae are shown in bold. Str, percentage of individuals with transitional vertebrae at thoraco-sacral boundary; Tvar,
percentage of individuals with the complete number of thoracic vertebrae different from the modal number.

positively correlated (rs = 0.75,p = 0.023), indicating that species with more vertebrae in

the thoracic region are more variable in the number of vertebrae. A significant correlation

was also found between Tn and Trange (rs = 0.90,p = 0.002), indicating that the range of

variation was significantly higher in species with more thoracic vertebrae. We did not find a

correlation between Str and Tvar (rs = 0.31, p = 0.46) or between Str and Trange (rs = 0.13,

p = 0.76).

Phylogenetic comparative analyses
We found a statistically significant phylogenetic signal in Tn (p = 0.013) and Trange (p =

0.033) and no significant phylogenetic signal in Tvar (p = 0.730) and Str (p = 0.970). The

regression of (1) Tvar independent contrasts on Tn independent contrasts (p = 0.018)

and (2) the regression of Trange independent contrasts on Tn independent contrasts

revealed a significant relationship between the increase in the number of thoracic

vertebrae and the amount of variation in the number of vertebrae (p = 0.006). We found

no significant relationship between Trange independent contrasts and Str independent

contrasts (p = 0.413).

Hybridization and variation in vertebral formula
There were statistically significant differences in changes in vertebral formulae between

central’ and fringe populations (G-test for independence, G = 18.61, p = 0.001). For fringe

populations, the observed range of variation in number of thoracic vertebrae is 12–15 in

T. ivanbureschi, 13–16 in T. macedonicus, 13–15 in T. carnifex, 13–17 in T. cristatus and

14–18 in T. dobrogicus. In T. dobrogicus and T. ivanbureschi fringe populations differed

significantly from central populations in the frequencies of individuals with non-modal

vertebrae formulae. For other species no significant differences between central and

fringe populations were found (Table 4). In T. cristatus × T. marmoratus, sixty F1 hybrids

(88.2%) have a vertebral formula with an intermediate number of thoracic vertebrae

(Table 3). Six hybrids (8.8%) possess an incomplete homeotic transformation. Among

these, one has an incomplete transformation of a cervical into a thoracic vertebra. The

most frequent incomplete homeotic transformation involves an asymmetrical sacrum.

The frequencies of transitional sacral vertebra in hybrids and parental species are similar

(G-test for independence, G = 1.07, p = 0.59).
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Table 4 The number of individuals with regular and changed vertebral formulae in “central” and
“fringe” populations of species with parapatric distributions.

Number with modal
vertebral formula

Number with non-modal
vertebral formula

Species Central Fringe Central Fringe G p

T. ivanbureschi 150 110 25 76 18.86 ***

T. carnifex 53 37 13 20 2.09 ns

T. macedonicus 51 122 16 37 0.006 ns

T. cristatus 98 130 24 34 0.032 ns

T. dobrogicus 42 67 15 92 6.65 **

Total 394 466 83 259

Notes.
ns, not significant.

** p < 0.01.
*** p < 0.001.

DISCUSSION
Our study shows a substantial variation in the number of thoracic vertebrae in Triturus

newts, suggesting the absence of strong selection against change in the number of thoracic

vertebrae. In agreement with the postulations of Geoffroy St. Hilaire, Darwin and Bateson,

the variation in the vertebral column is positively correlated with the number of vertebrae.

Using independent contrasts we observed a statistically significant, correlated evolutionary

change between an increase in the modal number of thoracic vertebrae and variation

in vertebrae number. The range of variation in the number of thoracic vertebrae is

also significantly higher in species with a larger modal number of thoracic vertebrae.

In T. marmoratus and T. pygmaeus the variation is limited to one extra thoracic vertebra,

while in crested newt species the variation range is up to four vertebrae. Although such a

pattern of intraspecific variation is in agreement with Geoffroy St. Hilaire’s and Darwin’s

rules, the observed pattern may also represent an association between variation in vertebral

number and differences in selection in different habitats that Triturus species occupy, in

particular the amount of time they spend in the terrestrial versus the aquatic environment.

During the terrestrial phase the limbs support the weight of the body and provide forward

propulsion by the synchronous use of diagonal limb pairs. In water where the body weight

does not need to be supported by the limbs the newts move by tail propulsion with the

limbs tightly held against the body to reduce hydrodynamic drag (Gvoždik & Van Damme,

2006). Therefore, the selection pressures related to specific biomechanical requirements

are probably different with respect to the duration of the terrestrial and aquatic phase. The

larger variation in the number of thoracic vertebrae may indicate relaxed selection in more

aquatic species, but more data on different selective pressures in terrestrial versus aquatic

environments are needed to find out whether this is the case.

Frequencies of transitional vertebrae
In Triturus newts, the frequency of transitional changes at the cervico-thoracic boundary

is more than ten times lower than changes at the thoraco-sacral boundary. This is also
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observed in other salamanders (Wake & Lawson, 1973) and mammals (Galis et al.,

2006). This pattern may be explained by stronger interactivity and low modularity of

developmental processes during the early organogenesis, or phylotypic stage, when

the cervical vertebra is determined (Galis et al., 2006). At later stages, development is

increasingly less interactive and more modular, such that changes are expected to be

associated with fewer pleiotropic effects. The hypothesis that mutations with an effect

during early organogenesis stage lead to more pleiotropic effects and as a consequence

to more vulnerability and mortality than earlier or later stages was tested and strongly

supported in rodents (Galis & Metz, 2001). In amphibians indirect support for this

hypothesis is discussed by Galis, Wagner & Jockusch (2003). We do not know the cause

of the constraint on the number of cervical and sacral vertebra in tailed amphibians, but

further studies in various amphibian groups that will consider survival rates of individuals

with changes in the cervical and sacral region across ontogenetic stages should provide

valuable data to solve this issue.

Although we hypothesized that frequencies of transitional vertebrae at the thoraco-

sacral boundary should be correlated to the range of variation in the number of thoracic

vertebrae as in mammals (Ten Broek et al., 2012), no correlation was found. Available

literature data indicate that incomplete homeotic transformation of sacral vertebrae

are relatively common, with up to 10% across the various salamander lineages: 4.5% in

Batrachoseps attenuatus (Jockusch, 1997), 5.7% in Rhyacotriton olympicus (Worthington,

1971), 6% in Plethodon cinereus (Highton, 1960), up to 9% for newt genera Lissotriton

and Ichthyosaura (Arntzen et al., 2015) and between 1.9% and 9.0% in Triturus newts

(this study). The lower than expected incidence of transitional vertebrae could result

from developmental mechanisms favoring complete numbers of thoracic vertebrae

and/or from selection against transitional sacral vertebrae due to associated problems

related to an asymmetric sacrum (c.f. Galis et al., 2014). Potential problems associated to

asymmetrical sacrum might arise due to asymmetrical muscle attachments, blood vessels

and innervation, or biomechanical problems during locomotion. In salamanders, the

selection pressures related to specific biomechanical requirements are probably different in

fully aquatic larvae and metamorphosed individuals that spend most of their time on land.

Furthermore, selection pressures may vary with respect to the duration of annual aquatic

and terrestrial phase. More detailed morphological and functional studies of locomotion

of larval and metamorphic stages could shed more light on the functional significance of

variation in the axial skeleton in Triturus newts. However, it is possible that our results are

biased as we have not included the full range of transitional vertebrae. We scored only easily

identifiable transitional vertebrae with complete morphological transformations of one

side of the vertebra under the assumption that the frequency of these transitional vertebrae

reflects the total amount of homeotic transformations. Nonetheless, initial mutations for

homeotic transformations can lead to a whole series of gradually transitional homeotic

transformations; in the case of thoraco-sacral vertebrae ranging from predominantly

thoracic and only slightly sacral to predominantly sacral and slightly thoracic. Inclusion

of all transitional vertebral morphologies might change the observed relationship between
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incomplete homeotic transformations and changes in the number of thoracic vertebrae in

newts.

Hybridization, marginality and homeotic transformations
Hybridization and marginality significantly increase variability in the number of thoracic

vertebrae but there is no change in the frequency of transitional vertebrae. Crosses between

T. cristatus (15 vertebrae, range 13–16) and T. marmoratus (12 vertebrae, range 12–13)

produced phenotypes with 13 thoracic vertebrae, an intermediate number. It is interesting

to note that 13 thoracic vertebrae is the only number that is shared by both parental

species. In T. cristatus × T. marmoratus offspring there is considerable mortality and

almost all of F1 hybrids (∼90%) had T. cristatus as mother. The marmoratus-mothered

specimens were all male, due to low survival of female embryos (Arntzen et al., 2009).

Developmental anomalies in T. cristatus × T. marmoratus crosses, including more digital

anomalies compared with parental species (hybrids 16.9%, parental species pooled 5.4%)

(Vallée, 1959; more data in Arntzen & Wallis, 1991) are observed, and therefore, the higher

number of changes in the axial skeleton may be related to a generally higher number of

anomalies. The high mortality may also influence the incidence of the variability and

transitional vertebrae.

Significantly higher frequency of changes in vertebral formula in fringe populations

of T. ivanbureschi and T. dobrogicus species may well have to do with the confirmed

presence of hybridization in the contact zones of T. cristatus and T. dobrogicus populations

(Mikuĺıček et al., 2012), of T. carnifex and T. dobrogicus populations (Wallis & Arntzen,

1989) and of T. ivanbureschi and T. macedonicus populations (Arntzen, Wielstra & Wallis,

2014). However, the effect of the various genotype combinations on the survival rate and

morphology of these species remains to be studied.

In conclusion, Triturus newts have a relatively large amount of variation in the number

of thoracic vertebrae, both with respect to the frequency of non-modal numbers and the

range of variation. In agreement with Geoffroy St. Hilaire’s rule, variation was larger in

species with a larger number of thoracic vertebrae. The absence of a correlation between

the frequency of homeotic change (transitional sacral vertebrae, Str) and variation in

the number of vertebrae (Tvar, Trange) could be a result of developmental mechanisms

that favour complete numbers of presacral vertebrae and/or selection against transitional

vertebrae in this group of tailed amphibians.

ACKNOWLEDGEMENTS
We thank Hans Metz and Joost Woltering for discussions, Ben Wielstra for providing a

distribution map and Marieke Vinkenoog for help with X-ray imaging.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Serbian Ministry of Education and Science (grant no.

173043), grants from SyntheSys (NL-TAF 1245, NL-TAF 3082) and a Naturalis Biodiversity
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number in vertebrate embryos. Nature 454(7202):335–339 DOI 10.1038/nature07020.
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