
Introduction

The chemical composition of host plants signifi-
cantly affects survival, development and reproduction
of phytophagous insects (1). Food consumption and
utilization link plant attributes with insect performance
(2), and are frequently used as indirect measure of
physiological resistance to nutritive stress (3).

Numerous studies in the field of nutritional phys-
iology have reviewed effects of nutritive compounds
(4, 5), and secondary metabolites (6) on insect
responses. Some of the responses are adaptive such
as preingestive increase in consumption of nutritional-
ly poor food (7’ 9) or postingestive increase in activity
of digestive enzymes (10’12). Efficient recognition
and avoidance of food which contains toxic allelo-
chemicals and induction of detoxification enzymes are
examples of adaptive responses to toxicants (13’15). 

Successful host plant use by phytophagous in-
sects depends on their ability to adequately match

spatial and temporal changes in chemical composi-
tion of host plants as well as changes in nutritional
needs of insects during their development. 

As a polyphagous phytophagous insect with out-
breaking population dynamics, gypsy moth (Lyman-
tria dispar) commonly encounters changes in food
availability and quality. Behavioral and physiological
plasticity enable survival under starvation and periodi-
cal exhaustion of suitable host plants. Food selection,
compensatory feeding and adjustments in the efficien-
cy of food utilization facilitate overcoming negative
effects of imbalanced food. Experiments with artificial
diets have demonstrated that the gypsy moth can self-
select diet cubes according to its nutritional needs
(16). Under field conditions it can benefit from switch-
ing between different host plant species (17’19), and
possibly between conspecific host plants. Another
form of phenotypic plasticity, important for survival in
unpredictable environment, is nutritionally-based
maternal effect which can be considered as mecha-
nism of »transgenerational phenotypic plasticity« (20).
This means that gypsy moth performance depends
not only on its own nutritional environment but also
the nutritional environment of the parental generation
(21, 22).

Our experimental system included polyphagous
insect, the gypsy moth, and two host plants, the oak
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(Quercus cerris) and the beech (Fagus silvatica) in
variable parental/variable offspring diet situation.
Quercus species are optimal hosts while gypsy moths
fed on beech leaves have prolonged development time
and lower pupal weight (23). This research was aimed
to 1) examine the effects of switching to beech leaves
on larval growth, food consumption and utilization
indices, 2) to determine physiological responses at the
level of activity of three digestive enzymes (a-amylase,
trypsin and leucine aminopeptidase), and 3) to ascer-
tain the presence of environmentally-based maternal
effects on these physiological traits.

Materials and methods

Insects and rearing conditions

Gypsy moth egg masses used in this experiment
were collected from oak trees in a mixed oak-beech
forest Despotovac locality. Larvae hatched from these
eggs (parental generation) were reared either on oak
(Quercus cerris) or beech leaves (Fagus silvatica) at
constant temperature (23 °C) and photoperiod (16:8
L:D). Larvae reared on beech leaves were exposed to
strong selective pressure as most larvae (70%) died
during the first instar.  Next year, in the offspring gen-
eration, larvae were reared on oak leaves until molting
into the fourth instar when they were either switch to
beech leaves or remained on oak leaves. Four experi-
mental groups were set depending on parental/off-
spring diet: OO-oak/oak; OB-oak/ beech; BO-
beech/oak and BB-beech/beech. 

Growth rates and nutritional indices

Eight to ten larvae were randomly assigned to
four switching regimes, and placed individually in plas-
tic cups (200 mL). Growth and nutritional indices were
measured on the dry weight basis. Larvae were we-
ighed at the beginning and end of the feeding trial, i.e.,
immediately after molting into the fourth instar and
following voiding of the gut at the end of the instar.
The duration of feeding trial was recorded (Tf) and
frass and uneaten leaves were collected. Initial dry lar-
val weight (W0) was determined from a sample of 100
individuals, and final dry larval weight (Wf) was meas-
ured after drying at 65 °C for 48h. Similarly, relation-
ship between wet and dry weight of the leaves was
determined on leaf samples and amount of eaten
leaves (Wi) was calculated as difference between initial
dry weight and dry weight of uneaten leaves. Collected
frass was also dried and weighed (Wf). The following
formulae were used according to Waldbauer (24) and
Farrar et al. (25) to calculate RGR (relative growth
rate), RCR (relative consumption rate), AD (assimila-
tion efficiency), ECI (efficiency of conversion of inges-
ted food) and ECD (efficiency of conversion of diges-
ted food):

RGR=(Wt’W0)/(Tf*W0)            

RCR=Wi/(Tf*W0)

AD=(Wi ’Wf)*100/Wi

ECI=(Wt’W0)*100/Wi

ECD=(Wt’W0)*100/(Wi’Wf)

Activity of digestive enzymes

Eight to thirteen larvae within each experimental
group were sacrificed on the third day of the fifth in-
star. Their midguts were dissected out in cold 154
mmol/L NaCl solution and homogenized individually
in a 10 mmol/L Tris-HCl buffer (pH 7.2, 1:10 wet wt/
vol) for 30 s. The homogenates were centrifuged at 10
000 rpm for 10min at 4 °C and supernatants, i.e., cru-
de extracts were used for measuring enzyme activities. 

a-amylase activity was determined by a modifica-
tion of dinitrosalicilic acid procedure (26, 27) at pH and
temperature optimal for gypsy moth amylase (28).
Trypsin and leucine aminopeptidase activity were de-
termined using the chromogenic substrates BApNA
(N-benzoyl-DL-arginine p-nitroanilide) and LpNA (L-le-
ucine p-nitroanilide), respectively (29). One unit of en-
zyme activity corresponds to the hydrolysis of 1 mmol of
substrate per minute. Protein concentration was esti-
mated according to Lowry et al. (30) using bovine se-
rum albumin as a standard. 

Statistical analysis

Nutritional indices and enzyme activities were
analyzed by two way ANCOVA with parental and off-
spring diet (fixed effects) as main model terms. Follo-
wing examination of homogeneity and normality of
variance assumption ANCOVA models were applied
on log transformed values. Larval weight was used as
a covariate for the activity of digestive enzymes. In the
analysis of nutritional indices numerator of the index
was the dependent variable and denominator was the
covariate (31).

Results

Larval growth and development

Switching to beech leaf diet significantly pro-
longed the duration of feeding period only in 4th instar
gypsy moths whose parents ate oak leaves (Scheffe's
multiple range test, P<0.0018). A two-way analysis of
variance showed a significant interaction between
parental and offspring diet (Tables I, II).

Relative growth rate (RGR) was lower in 4th instar
larvae switched to beech leaves (Table I). Effect of
switching on RGR was not dependent on nutritional
experience of the parents which can bee seen from
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non-significant interaction term in two-way ANCOVA
(Table II).

Both parental and offspring diet significantly
influenced larval wet weight measured on the 3rd day

of the 5th instar. Larvae were larger when parents were
fed with beech leaves, and a decrease in larval weight
in response to switching was not significant in this
group (Tables III, IV).
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OO
10

3.10 ± 0.18
0.78 ± 0.05
5.46 ± 0.43

34.06 ± 1.16
14.55 ± 0.66
42.84 ± 1.66

OB
8

4.38 ± 0.18
0.36 ± 0.02
5.78 ± 0.35

39.94 ± 3.09
6.30 ± 0.35

16.74 ± 2.03

BO
9

3.44 ± 0.18
0.81 ± 0.04
6.31 ± 0.41

31.15 ± 1.36
13.04 ± 0.60
42.73 ± 3.06

BB
10

3.80 ± 0.25
0.41 ± 0.03
6.16 ± 0.55

35.94 ± 2.92
6.78 ± 0.37

19.81 ± 1.60

N
Tf (days)
RGR (mg/mg/day)
RCR (mg/mg/day)
AD (%)
ECI (%)
ECD (%)

Table I   Means and standard errors for nutritional indices in 4th instar larvae of the gypsy moth 
depending on parental and offspring diet. N ’the number of larvae. 

OO
13

627.54 ± 42.08
1.71 ± 0.06

35.64 ± 2.39
279.97 ± 15.88

OB
8

442.88 ± 22.70
1.95 ± 0.09

67.17 ± 3.72
285.48 ± 21.55

BO
8

752.56 ± 102.77
1.36 ± 0.08

32.53 ± 2.35
222.09 ± 14.32

BB
10

669.70 ± 84.04
1.96 ± 0.06

68.32 ± 4.99
245.22 ± 16.17

N
WL (mg)
SAA (U/mg prot.)
STA (mU/mg prot.)
SLA (mU/mg prot.)

Table III   Means and standard errors for larval weight (WL), and specific activities of a-amylase (SAA), trypsin (STA) and leucine
aminopeptidase (SLA) in 5th instar larvae of the gypsy moth depending on parental and offspring diet. N- the number of larvae. 

df
1
1
1
1
32

MS
’

0.05
8.20
3.04
0.56

MS
2.55
0.14
5.25
0.03
0.07

MS
2.08
0.23
0.04
0.04
0.09

MS
6.43
0.21
0.33
0.001
0.07

MS
5.47
0.003
9.71
0.12
0.05

MS
3.63
0.16
15.69
0.04
0.11

P
0.0000
0.7980
0.0000
0.1231

P
0.0000
0.2279
0.0000
0.5500

P
0.0000
0.0912
0.0342
0.9072

P
0.0000
0.1569
0.0000
0.4975

P
0.0000
0.1210
0.5046
0.5112

Tf RGRa RCRa ADb ECIb ECDc

P
’

0.7071
0.0005
0.0265

Source of
variation

Covariate
Parental diet 
Offspring diet
Interaction
Error

Table II   Mean squares (×100) from two-way ANCOVA for nutritional indices where logarithms of initial weight (a), 
consumption (b) and consumption minus frass, i.e., assimilation (c) are used as covariates. Mean squares (×100) 

from two-way ANOVA are presented for Tf. Significant effects are highlighted using bold.

df
1
1
1
1
34

MS
’

1.26
1.10
0.21
0.18

MS
0.39
1.13
7.65
2.73
0.32

MS
0.004
0.26
68.78
0.25
0.98

MS
1.61
7.71
1.45
0.07
0.75

P
0.1535
0.0030
0.1747
0.7617

P
0.2800
0.0705
0.0000
0.0064

P
0.9502
0.6100
0.0000
0.6151

WL SAA STA SLA

P
’

0.0117
0.0181
0.2862

Source of
variation

Covariate
Parental diet 
Offspring diet
Interaction
Error

Table IV   Mean squares (× 100) from two-way ANCOVA for specific activities of a-amylase (SAA), 
trypsin (STA) and leucine aminopeptidase (SLA) where the logarithm of larval weight is used as a covariate. Mean squares 

(× 100) from two-way ANOVA are presented for fresh larval weight (WL). Significant effects are highlighted using bold.
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Food consumption and utilization

Neither parental nor offspring diet affected rela-
tive consumption rate in 4th instar gypsy moths when
consumption was calculated relative to the initial larval
weight (Tables I, II). If average larval weight over the
duration of feeding period (Wg= W0*Wf) was used,
ANOVA on log transformed values of RCR revealed a
significant effect of offspring diet (F=8.56, P<
0.0062). In this case, consumption was increased in
response to switching to beech leaves (12). However,
according to Farrar et al. (25) such measure of con-
sumption rate encompasses not only behavior but
also growth which depends on assimilation efficiency.
Assimilation efficiency was significantly increased in
larvae switched to beech leaves, while efficiency of
conversion of ingested and digested food were signifi-
cantly lower in this group (Tables I, II). On the whole,
parental diet had no effect on nutritional indices, and
offspring diet affected all indices except relative con-
sumption rate.

Amylase, trypsin and leucine aminopeptidase

Specific activities of a-amylase and trypsin were
significantly increased in 5th instar larvae switched to
beech leaves (Table III). The lowest activity of a-amy-
lase was recorded in BO group which was significant-
ly different from OO (Scheffe's test, P<0.0053), OB
(P<0.0001) and BB group (P<0.0000). The effect of
parental diet on amylase activity was marginally signif-
icant. The plasticity of response to beech leaves was
greater when parents were fed with beech leaves which
was revealed by significant interaction term in two-way
ANCOVA (Table IV). Specific activity of trypsin was not
affected by parental diet while activity of leucine
aminopeptidase was significantly lower in larvae whose
parents ate beech leaves (Tables III, IV).

Discussion

Host plant effects on gypsy moth performance
and its extremely polyphagous feeding habit have
been well described (17, 19, 23, 32, 33). Using com-
bine results of various tests (average defoliation, larval
growth and survival, larval foliage preference etc.)
Liebhold et al. (34) have ranked Fagus silvatica as
intermediary suitable host plant. Beech leaves contain
flavonoids and alkaloids (35), the synthesis of which
begins a week after bud break contributing to strong
antixenotic and antibiotic effects of beech leaves on 1st

instar larvae (36). Young larvae are sensitive to Fagus
silvatica, but older larvae can successfully metabolize
beech leaves, and beech forests can be defoliated dur-
ing outbreaks (37, 38). Decreased survival and pupal
weight, and increased development time have been
shown in gypsy moths reared on beech leaves through
entire development (23, 39) or switched to beech
leaves in older instars (12). Our results confirmed ne-
gative effects of beech leaves on larval growth and de-
velopment (Tables I, III).

We showed that relative growth rate (RGR) was
lower in 4th instar larvae switched to beech leaves
(Table I). Analysis of nutritional indices helps us
understand behavioral and physiological basis of such
response. Mathematically and biologically RGR is the
product of RCR and ECI which further depends on AD
and ECD. Decreased growth could be a consequence
of either decreased consumption (RCR) or utilization
(ECI) or both. Another cause may be increased instar
duration when increased amount of ingested food
must be allocated to maintenance metabolism. As can
be seen from Tables I and II switching to beech lea-
ves did not change RCR while the duration of feeding
period was prolonged only in larvae whose parents ate
oak leaves. Considering unchanged RCR and Tf,
concomitant decrease in RGR and ECD could be ex-
plained by a higher metabolic cost of processing of
food which contains allelochemicals. Processing costs
are associated with induction mechanisms at the level
of digestion and detoxification. 

Induction of superoxide dismutase, glutathione-
S-transferase and microsomal polysubstrate monoox-
igenase is mechanism of defense against flavonoids
and alkaloids (40, 41). Additionally, numerous papers
have reported that activity of digestive enzymes res-
ponds to food composition and volume (10, 42’50).
Induction of amylase and trypsin was shown in 5th in-
star gypsy moths switched to beech leaves (Table III). 

In 4th instar larvae, increased AD in response to
beech leaves (Table I) could also be a result of chan-
ges at the levels of digestive enzymes. Apparently, the
increase in AD could not compensate for the decrease
in ECD which consequently led to reduced growth
rate. Growth reduction is general response of phyto-
phagous insects to switching to a new host plant (32,
51, 52).

Parental effects were demonstrated for the dura-
tion of feeding period (Tf), weight of fifth instar larvae
(WL) and specific activity of leucine aminopeptidase
(SLA) while parental effects on assimilation efficiency
(AD) and specific amylase activity (SAA) were margin-
ally significant (P<0.1) (Tables II, IV). Parental nutri-
tion influenced sensitivity of Tf to beech leaves (Table
II). Significant interaction between parental and off-
spring diet has also been obtained for larval develop-
ment time in the gypsy moth (21). The question aris-
es what physiological mechanisms account for these
changes. It is known that instar duration depends on
relationship between juvenile hormone and ecdysone.
Genes which determine this relationship could be sub-
jected to selection (53). It is possible that strong selec-
tion during parental generation favourized individuals
with shorter 4th instar. 

Results on the weight of 5th instar larvae showed
the advantage of large body size in stressful environ-
ment (Tables III, IV). The weight of larvae was greater
if their parents ate beech leaves. Although beech leaf
diet in parental generation provoked a decrease in



body size (12), through negative maternal effect these
smaller individuals may produce larger offspring.
Larger body size is associated with higher fitness, i.e.,
higher fecundity, flying and mating ability, stress toler-
ance, etc. (54’56). 

In conclusion, plasticity of physiological respons-
es enables adjustment to variable nutritional environ-
ment in one generation while nutritionally-based mate-
rnal effects as »transgenerational phenotypic plasti-
city« enable time delay in responses of insect popula-

tion (22). Via changing quality of eggs, parental nutri-
tion may affect population dynamics (57) and trait evo-
lution (58). Researches on plastic responses to nutri-
tive stress are important for predicting insect out-
breaks and understanding mechanisms of host plant
specialization.
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EFEKAT NUTRITIVNOG STRESA NA RAST I FIZIOLOGIJU VARENJA 
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Kratak sadr`aj: Kod gubara (Lymantria dispar), izrazito polifagnog insekta, ispitivan je efekat ishrane u
roditeljskoj i potoma~koj generaciji na rast larvi, konzumaciju i utilizaciju hrane i aktivnost tri digestivna enzima (a-
amilaze, tripsina, leucin aminopeptidaze). Larve gubara su u roditeljskoj generaciji gajene na li{}u hrasta (Quercus
cerris) kao optimalnom doma}inu ili li{}u bukve (Fagus silvatica) koje sadr`i flavonoide i alkaloide. U potoma~koj
generaciji, posle ulaska u IV stupanj, larve su ili peba~ene sa hrastovog na bukovo li{}e ili su nastavile da se hrane
hrastovim li{}em. Kod larvi preba~enih na ishranu bukovim li{}em pokazan je smanjen rast i efikasnost utilizaci-
je hrane, pove}ana efikasnost asimilacije i aktivnost a-amilaze i tripsina. Zna~ajan parentalni efekat je dobijen za
trajanje IV stupnja, te`inu larvi u V stupnju i specifi~nu aktivnost leucin aminopeptidaze. U ovom radu je istaknut
fiziolo{ki, ekolo{ki i evolucioni kontekst dobijenih rezultata.

Klju~ne re~i: Lymantria dispar, nutritivni stres, materinski efekat, indeksi ishrane, digestivni enzimi.
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