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The hypothalamic decapeptide gonadotropin-releasing hormone (GnRH), acting via 
its receptors (GnRHRs) expressed in pituitary gonadotrophs, represents a critical 
molecule in control of reproductive functions in all vertebrate species. GnRH-activated 
receptors regulate synthesis of gonadotropins in a frequency-dependent manner. 
The number of GnRHRs on the plasma membrane determines the responsiveness 
of gonadotrophs to GnRH and varies in relation to age, sex, and physiological status. 
This is achieved by a complex control that operates at transcriptional, translational, 
and posttranslational levels. This review aims to overview the mechanisms of GnRHR 
gene (Gnrhr) transcription in mammalian gonadotrophs. In general, Gnrhr exhibits 
basal and regulated transcription activities. Basal Gnrhr transcription appears to be an 
intrinsic property of native and immortalized gonadotrophs that secures the presence 
of a sufficient number GnRHRs to preserve their functionality independently of the 
status of regulated transcription. On the other hand, regulated transcription modu-
lates GnRHR expression during development, reproductive cycle, and aging. GnRH 
is crucial for regulated Gnrhr transcription in native gonadotrophs but is ineffective in 
immortalized gonadotrophs. In rat and mouse, both basal and GnRH-induced Gnrhr 
transcription rely primarily on the protein kinase C signaling pathway, with subsequent 
activation of mitogen-activated protein kinases. Continuous GnRH application, after a 
transient stimulation, shuts off regulated but not basal transcription, suggesting that 
different branches of this signaling pathway control transcription. Pituitary adenylate 
cyclase-activating polypeptide, but not activins, contributes to the regulated transcrip-
tion utilizing the protein kinase A signaling pathway, whereas a mechanisms by which 
steroid hormones modulate Gnrhr transcription has not been well characterized.

Keywords: basal transcription, regulated transcription, gonadotrophs, gonadotropin-releasing hormone, 
gonadotropin-releasing hormone receptor

inTRODUCTiOn

The gonadotropin-releasing hormone (GnRH) receptor (GnRHR) is a member of a G protein-
coupled receptor family (1). The receptor is expressed in pituitary gonadotrophs of all vertebrates, 
as well as in other tissues (2). The main signal transduction pathways of activated GnRHR in 
gonadotrophs is phospholipase C-β1-mediated phosphatidylinositol hydrolysis, thereby 
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FiGURe 1 | In vivo and in vitro expression patterns of rat pituitary Gnrhr. (A) Female and male developmental profiles of Gnrhr expression in vivo. Notice the 
differences in the peak of Gnrhr expression in females and males, as indicated by vertical dotted lines and a horizontal arrow. (B) Gonadotropin-releasing hormone 
(GnRH)-induced Gnrhr expression in 2-day-old static cultures of anterior pituitary cells from 7-week-old females. Cells were cultured in the absence or in continuous 
presence of 10 nM GnRH. Notice that desensitization of GnRH-induced Gnrhr expression does not affect basal expression. (C) The amplitude of GnRH-induced 
(10 nM continuously for 6 h) Gnrhr expression in female and male pituitary static cultures obtained from animals of different age is sex specific, in contrast to 
comparable levels of expression of this gene in both sexes in vivo (A). (D) GnRH-induced Gnrhr expression in perifused pituitary cells from rat females. Cells were 
stimulated with 1, 10, or 100 nM GnRH for 1 × 5 min/hour, 2 × 5 min/hour, and 3 × 5 min/hour during 6 h. Notice that 1 nM GnRH was sufficient to induce 
maximum in response. This figure is derived from data published in Ref. (11, 16, 20); no permission is required from the copyright holder.
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generating inositol-1,4,5-trisphosphate and diacylglycerol 
(3). Inositol-1,4,5-trisphosphate binds to its receptor at the 
endoplasmic reticulum membrane, leading to oscillatory 
Ca2+ release and Ca2+-dependent modulation of electrical 
activity (4). Diacylglycerol alone or together with Ca2+ acti-
vates protein kinase C (PKC) family of enzymes (5), whereas 
mitogen-activated protein kinases (MAPK) (6), phospholipase 
D (7), and phospholipase A2 (8) are PKC downstream sign-
aling proteins. The coupling of GnRHRs to the synthesis of 
follicle-stimulating hormone (FSH) and synthesis and release 
of luteinizing hormone (LH) is critical for the establishment 
of hypothalamic–pituitary–gonadal axis, as these hormones 
regulate steroidogenesis and gametogenesis. In turn, gonadal 
hormones exhibit feedback effects at hypothalamic GnRH 
neurons and pituitary gonadotrophs (6).

The pituitary GnRHR number depends on developmental 
and reproductive stage and determines their responsiveness 
to GnRH. The receptor number is regulated, at least in part, at 
the transcriptional level (9). Cloning of GnRHR cDNA from 
numerous species facilitated investigations of GnRHR gene 
(Gnrhr) transcription. In general, transcription of the Gnrhr 
in gonadotrophs in  vitro occurs in the absence (basal) and 
presence (regulated) of GnRH stimulation (2). The differences 
in the regulation of Gnrhr expression in mammalian species 
reflect differences in the promoter region of the gene (9, 10). 
The common aspect of regulated transcription of this gene is 

up- and downregulation by GnRH, depending on the pattern of 
application (11–13). Other hormones also contribute to regula-
tion of Gnrhr transcription.

Here, we will mainly discuss Gnrhr transcription in the most 
frequently used mammalian models: rats, mice, sheep, and 
immortalized αT3-1 and LβT-2 gonadotrophs. We will first 
review the literature about in vivo GnRHR mRNA levels during 
development, aging and reproductive stage, followed by a brief 
description of rat and mouse Gnrhr structure and promoter 
region, basal vs. regulated activities, homologous upregulation of 
gene expression, and effects of gonadal and adrenal steroid hor-
mones and other ligands on transcriptional activity of this gene.

IN VIVO vARiATiOnS in Gnrhr 
eXPReSSiOn

Developmental profile of Gnrhr expression in rats is depicted in 
Figure 1A. In females, Gnrhr expression increases rapidly over the 
first 2 weeks of development, followed by a transient decline and 
secondary rise in 7–8 weeks of age. In males, it increases gradually 
until 5 weeks of age (14–16), followed by a decline toward a steady 
expression at the adult age (11). The peak of Gnrhr expression 
during development correlates well with expression of gonado-
tropin subunit genes Lhb, Fshb, and Cga in both sexes (16) as well 
as with greater LH and FSH secretion in females, but not in males 
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(17). These data are in accordance with the reports on GnRHR 
concentration and binding capacity during rat ontogeny (18, 19).

Gnrhr expression is downregulated in aged male rats 
(21), probably reflecting impaired GnRH secretion from the 
hypothalamus, because pituitary response to GnRH remains 
operative (22). However, in middle aged ovariectomized female 
rats, Gnrhr expression levels were lower than in young ovariec-
tomized animals and the pituitary response to a steroid-induced 
gonadotropin surge was also impaired (23).

Gnrhr expression in the rat pituitary changes significantly 
during estrous cycle (24–26). Pituitary GnRHR mRNA content 
is relatively high on the mornings of diestrus I and diestrus 
II and declines sharply in the afternoons of diestrus days. 
However, higher Gnrhr expression can again be observed in the 
late evening of diestrus II (26). During proestrus, a sharp rise in 
Gnrhr expression occurs between morning and noon, followed 
by oscillation in expression until 17:00 h, when a second peak 
can be observed (25). It should also be noted that maximal 
binding of D-Ala6-GnRH, a synthetic GnRH analog, occurs 
at diestrus II as well, indicating that the maximal number of 
GnRHRs during the cycle is reached before proestrus (27). 
Estrous is characterized by low Gnrhr expression (24, 25). In 
general, the changes in pituitary Gnrhr levels correlate well 
with GnRH content and Gnrh expression in the hypothalamus  
(25, 26). In sheep, GnRHR mRNA expression and GnRH binding 
increase over the luteal phase and decline after the preovulatory 
LH surge, reaching the lowest levels 24 h after estrous (28–30).

Ovariectomy in rats and mice reduces the pituitary GnRHR 
numbers (31, 32), combined with marked upregulation of 
GnRHR mRNA (33). Interestingly, in ovariectomized rats, 
hypothalamic Gnrh and pituitary Gnrhr expression levels 
fluctuate during the day (26). In castrated male rats, there was 
a rise in mRNA, and receptor number, GnRHR affinity for 
GnRH, and gonadotropin secretion, which was, at least partly, 
prevented by a testosterone replacement therapy (33–38). 
Similarly, castration induces upregulation of Gnrhr expression 
in sheep (39). By contrast, castration was shown to induce a fall 
in mouse pituitary GnRHR numbers (40).

Rat pituitary responsiveness to GnRH remains low until 
12th day after conception and then rises to reach maximum on 
the first day postpartum (41). We also noticed lower aplitude 
of GnRH-induced expression of dentin matrix protein 1 in 
gonadotrophs from pregnant female rats (20). These data imply 
that GnRHR mRNA content changes during pregnancy in rat, 
although this was not investigated. By contrast, pregnancy does 
not induce changes in GnRHR numbers or mRNA levels in sheep, 
suggesting that other mechanisms account for a fall in maternal 
pituitary responsiveness (42). Number of GnRHRs (43–45) as 
well as Gnrhr expression levels (46) are low during lactation in 
rat (probably reflecting diminished GnRH secretion from the 
hypothalamus), but rise rapidly after pup removal (45, 46).

THe STRUCTURe OF Gnrhr PROMOTeR 
ReGiOn

The 5′-flanking sequences of rat and mouse Gnrhr promoter have 
been isolated and characterized (47–50). In these species, Gnrhr 

gene is present as a single copy, positioned on chromosome 14 
and 5, respectively, and contains three coding exons and two 
introns (10). Both promoters share strong homology over the 
region 1.2 kb upstream of the ATG codon (50). In this region, 
two identical response cis-elements of the mouse promoter are 
present in the rat Gnrhr promoter, a canonical activating protein 
1 and steroidogenic factor 1 (also present in the ovine promoter; 
SF1 or NR5A1) (9). The rat promoter contains two additional 
response elements that are held responsible for functional dif-
ferences between rat and mouse promoter: an imperfect cAMP 
response element, suspected to convey pituitary adenylate 
cyclase-activating peptide (PACAP) actions, and an element 
confined to −252/−245, that binds a protein yet unidentified, 
termed SF1 adjacent protein or SAP. All of these elements are 
required to mediate the gonadotroph-specific activity (51–53). 
An element termed the Gnrhr activating sequence, which could 
confer activin actions in mice, is also present in the rat promoter, 
but it is inactive (54). Comparing to the mouse promoter, where 
all known response elements fall in the proximal region, an 
additional regulatory region containing Gnrhr-specific bipartite 
enhancer (GnSE) is situated on a more distal part of the rat pro-
moter. Thus, for the full gonadotroph-specific activity of the rat 
promoter, additional distal elements within the −1,150/−750 bp 
region are required. Two major response elements located at 
positions −994/−960 and −871/−862 are responsible for GnSE 
action (51, 52). Maximal GnSE activity requires the presence 
of SF1 response element located in the proximal domain. Both 
GnSE elements bind LIM-homeodomain proteins LHX3 and 
ISL1 and this seems to be crucial for gonadotroph-specific 
expression of the gene (9, 52, 55). For the detailed structure of 
rat and mouse promoters, see Ref. (9). The functional proper-
ties of the ovine Gnrhr promoter region were not investigated 
in details; however, the analysis of the 5′-UTR indicates that 
different mechanisms evolved for pituitary specific expression 
of Gnrhr in sheep and rodents (56).

BASAL AnD GnRH-ReGULATeD Gnrhr 
eXPReSSiOn

Several lines of evidence indicate that Gnrhr expression is inher-
ent to gonadotrophs. Some functional receptors must be present 
in gonadotrophs in Kallmann syndrome patients to explain how 
GnRH administration restores pituitary and gonadal functions 
(57). In agreement with this, Gnrhr expression is detectable and 
functional GnRHRs are present in the rat gonadotrophs in vitro 
even after prolonged period of GnRH absence (58). Furthermore, 
prolonged continuous GnRH application does not completely 
stop Gnrhr transcription (Figure 1B) (11). Finally, naïve (never 
stimulated) αT3-1 and LβT-2 cells express functional Ca2+-
mobilizing GnRHRs (59, 60).

In rat, mouse, and sheep, the main positive regulator of Gnrhr 
transcription is GnRH itself (11–13, 61), depending on the pat-
tern of GnRH application. Figure 1B illustrates that continuous 
stimulation of rat pituitary cells induces a transient induction 
of Gnrhr transcription, with maximal response at 6 h (11, 13). 
Longer GnRH stimulation leads to downregulation in Gnrhr 
transcription (11, 62). Therefore, it is reasonable to postulate that 
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pulsatile GnRH stimulation is required not only for gonadotropin 
subunit expression, but also for the proper regulation of Gnrhr 
expression (63, 64). In the rat pituitary cells, 6 h application of 
GnRH in two pulses per hour, each lasting 5 min, provides the 
highest amplitude of response (Figure 1D). By contrast, immor-
talized gonadotrophs do not respond to GnRH application with 
upregulation in Gnrhr transcription (11, 65). This could reflect 
their embryonic origin or the side-effects of immortalization 
procedure. However, short GnRH stimulation increases GnRHR 
binding in αT3-1 membranes, without apparent effect on Gnrhr 
expression (66). Continuous GnRH application in αT3-1 also 
does not affect GnRHR mRNA levels, but downregulates GnRHR 
numbers (65). Thus, GnRHR signaling also engages translational 
regulation. Interestingly, GnRHR signaling induces remodeling 
of ribosome content in LβT-2 cells (67).

We also noticed that basal and GnRH-induced Gnrhr expres-
sion depends on the age and sex of rats used for pituitary cell 
preparation when cells are cultivated in the absence of steroid 
hormones. Although the relationship between basal and GnRH-
stimulated transcriptional activity is comparable in both sexes, 
the amplitude of response to GnRH increases in female from 
juvenile to adult stage, but this is not the case with male rat cells 
(Figure  1C) (11). It is interesting to speculate that epigenetic 
modifications may have a role in the observed differences, 
although Gnrhr promoter regions in mouse and rat are not rich 
in cytosine–phosphate–guanine islands (68).

Gonadotropin-releasing hormone-induced Gnrhr expression 
relies, at least partially, on PKC activation and subsequent MAPK 
phosphorylation. The localization of the GnRHR in the lipid 
rafts (69) is important for activation of these signaling pathways 
(70, 71). The roles of different PKC isoforms in activation of the 
“classical” MAPK signaling pathways, composed of extracellular 
signal-regulated kinase (ERK1/2 and ERK5), c-Jun N-terminal 
kinases (JNK1/2) and p38, were characterized in immortalized 
gonadotrophs (72–75), but not in native gonadotrophs. MAPKs 
activate Fos and Jun proteins, which form a complex that binds 
to the AP1 site. GnRH itself also induces Fos, Jun, and Junb 
transcription in the rat gonadotrophs (20, 76). GnRH-induced 
Gnrhr expression in dispersed rat pituitary cells seems to depend 
mostly on ERK1/2 pathway, with a small but significant involve-
ment of p38 and ERK5 (11). Intriguingly, although JNK1/2 was 
shown to play a critical role in GnRH induction of the Gnrhr 
expression in αT3-1 cells (77), inhibition of JNK1/2 had no effect 
on basal or GnRH-stimulated Gnrhr expression in the primary 
cultures (11). Whether this means that, in the rat gonadotrophs, 
Jun proteins are activated trough alternative pathways or that 
they are already active in a manner sufficient to induce transcrip-
tion, remains to be elucidated.

Basal Gnrhr transcription also depends on PKC–MAPK 
signaling pathway (11). However, the existence of basal Gnrhr 
expression during continuous GnRH application could be 
explained by the fact that the signaling pathways downstream 
of PKC may also be activated by other factors, whose signaling 
converges to MAPKs. Indeed, increased Ca2+ influx, which in 
gonadotrophs is also stimulated by PKC (78), is sufficient to 
induce Gnrhr transcription (11), which may imply the possible 
role of calmodulin in activation of MAPKs (79). Also, portions 

of ERK1/2 and p38 are phosphorylated and therefore active 
under basal conditions in immortalized gonadotrophs (74, 80). 
Although infertile, female ERK1/2 knockout mice also retain 
Gnrhr expression in the pituitary (81), indicating that basal 
Gnrhr expression only partially relies on this pathway, at least in 
the mouse. Accordingly, cFos-deficient mice show an aberrant, 
but not completely abolished Gnrhr expression (82). In addi-
tion, in the rat pituitary cells, ERK inhibition cannot eliminate 
GnRH-induced Gnrhr transcription completely (11).

DePenDenCe OF Gnrhr eXPReSSiOn  
On PACAP AnD ACTivinS

Pituitary adenylate cyclase-activating peptide from hypothala-
mus may reach the pituitary, but could also be synthetized in the 
pituitary by gonadotrophs and folliculostellate cells (83), i.e., it 
could act as an autocrine/paracrine regulator of gonadotrophs 
by activating its PAC1 receptor expressed in these cells (84). 
Like GnRH, PACAP activates Ca2+ release in inositol-1,4,5-
trisphosphate-depedent manner (85), but also increases cAMP 
production, leading to an activation of protein kinase A (86). 
A high pulse frequency PACAP administration to LβT-2 cells 
induced Gnrhr transcription (87) and in αT3-1 cells with a rat 
Gnrhr construct, dibutyryl-cAMP increased promoter activity 
(49). On the other hand, PKA stimulation by forskolin failed 
to induce Gnrhr transcription in LβT-2 cells (11). Although a 
bipartite element in the rat Gnrhr promoter was identified and 
termed as PACAP response elements I and II (53), the role of 
PACAP in regulation of Gnrhr expression in rat, mouse, and 
sheep gonadotrophs should be further investigated.

Activin-A stimulates GnRHR synthesis in pituitary cells from 
juvenile female rats. This effect could not be abolished by inhi-
bin (88) and probably is posttranscriptional; unlike mouse, rat 
promoter region does not contain a functional activin response 
element (10). Although activin A, alone or in synergy with GnRH 
was shown to influence Gnrhr transcription upregulation in 
αT3-1 cells (89, 90), activin receptor II is not required for Gnrhr 
expression in mice (91). For more details on in vitro and in vivo 
actions of activins, see Ref. (92).

Prolonged inhibin treatment of the rat pituitary cells cuts 
the number of GnRHR in half (93), while in ovine pituitary cell 
culture, 48 h inhibin treatment increases GnRHR binding (94). 
Continuous microinfusion of inhibin downregulates GnRHR 
mRNA levels in immature male rats, but this effect could not be 
observed in adult animals (15).

DePenDenCe OF Gnrhr TRAnSCRiPTiOn 
On STeROiD HORMOneS

In intact rats and sheep, serum estradiol correlates well with 
increased GnRHR numbers (27, 95), suggesting stimulatory 
effect of this steroid on transcriptional and/or posttranscrip-
tional events. In contrast to estradiol, progesterone suppresses 
Gnrhr transcription and downregulates pituitary responsiveness 
to GnRH in mammals (94, 96–98). Progesterone treatment also 
reduces GnRHR mRNA levels after LH surge in estradiol primed 
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TABLe 1 | Up- and downregulation of Gnrhr expression by hypothalamic, intrapituitary, gonadal, adrenal hormones, and factors.

Upregulation Downregulation no effect

Rats in vivo GnRH, E2 (122) P (96), Cetrorelix (123), Inhibin (15)
Rat pituitary cells GnRH (11, 20) E2, P (108)
Mouse pituitary cells GnRH (11)
Mouse LβT-2 cells Dexamethasone (111, 119), PACAP (87), Activin-A (119) GnRH (11), E2 (111)
Mouse αT3-1 cells GnRH (77), Triptorelin (110), Dibutyryl-cAMP (49), Activin-A (89) E2, P (110) GnRH (65)
Sheep in vivo GnRH (61), E2 (62, 116, 124) P (98) Cortisol (115, 116)
Ovine pituitary cells E2 (106)

Triptorelin, GnRHR agonist; Cetrorelix, GnRHR antagonist; E2, estradiol; P, progesterone; T, testosterone; PACAP, pituitary adenylate cyclase-activating polypeptide; GnRH, 
gonadotropin-releasing hormone.
Numbers in parentheses indicate the corresponding references.
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ovariectomized female rats (96). Furthermore, it was suggested 
that a decrease in progesterone, rather than an increase in 
estradiol, during luteolysis is responsible for the increase in 
GnRHR mRNA and GnRHR number in the ovine pituitary 
(99–101). In male rats, there was a negative correlation between 
GnRHR-binding capacity and testosterone levels in serum  
(18, 19), further suggesting that androgen treatment also inhib-
its Gnrhr transcription/posttranscriptional events. However, 
these in  vivo experiments could not dissociate between the 
direct effects of gonadal steroid hormones on Gnrhr transcrip-
tion from the indirect effects mediated by modulation of GnRH 
secretory pattern. Gonadotrophs from castrated rats showed 
fewer GnRH-induced spike–plateau Ca2+ responses than cells 
obtained from intact rats (102), which could be reversed by 
treatment with a testosterone analog, thus implying its direct 
effect (102, 103).

The estradiol regulation of the GnRHR numbers in 
sheep was extensively studied [for review, see Ref. (104)]. 
In vivo administration of estradiol in orchidectomized 
sheep increased GnRHR mRNA content (105). Similarly, 
in ovine pituitary cultures, prolonged estradiol treat-
ment increased the number of GnRHRs (106) and Gnrhr 
expression, which was greatly attenuated by progesterone  
(94, 107). Addition of progesterone alone also reduced GnRHR 
binding (94). By contrast, neither estradiol nor progesterone 
affect basal Gnrhr expression in the female rat pituitary cells, 
while progesterone inhibits GnRH-induced Gnrhr expression 
(108). In αT3-1 cells, estradiol reduced GnRHR numbers 
and mRNA (109, 110), but did not affect Gnrhr expression in  
LβT-2 cells (111).

However, an estradiol responsive element is not present within 
rat or mouse and ovine Gnrhr promoter (9, 10, 56) and rat Gnrhr 
promoter region does not contain the progesterone binding 
element (9, 10). It was suggested that estradiol effect on Gnrhr 
transcription occurs through membrane associated estrogen 
receptor-α (112), while mechanism(s) of progesterone action 
remain unclear.

It is well established that adrenal glucocorticoids affect repro-
duction (113), but the role of endogenous glucocorticoids in the 
regulation of Gnrhr expression in rats and mice has not been 
systematically investigated (114). However, continuous infusion 
of cortisol did not change Gnrhr expression in orchidectomized 

sheep, although it reduced the amplitude of estradiol-induced 
Gnrhr expression upregulation (115, 116). Studies in rats showed 
that corticosterone and cortisol do not have an effect on GnRHR 
numbers (117, 118). Dexametasone stimulated Gnrhr expression 
in LβT-2 cells (111, 119). In mouse Gnrhr promoter, an activating 
protein 1 containing site was identified as a mediator of dexa-
methasone induced transcription (120, 121).

COnCLUSiOn

Gnrhr transcription is a functional marker of differentiated 
gonadotrophs. It occurs in the absence of any stimuli and is 
regulated by several hormones (Table 1). The main regulator of 
transcription of this gene is hypothalamic GnRH and pulsatile 
GnRH exposure is needed to sustain this process. Transcription 
is also facilitated by PACAP in an autocrine/paracrine manner, 
while activins are unlikely to play a physiological role in Gnrhr 
transcription. Steroid hormones influence Gnrhr transcription 
through regulation of GnRH secretion and directly, through a 
largely uncharacterized mechanisms. The mouse immortalized 
αT3-1 and LβT-2 cells remain, to this day, the best characterized 
gonadotroph cell model, although data obtained using these 
cells do not always correlate with findings in primary mouse 
and rat pituitary cells. Further studies are needed to elucidate 
signaling pathways accounting for control of Gnrhr transcrip-
tion, especially in sheep. This includes the possible effects 
of gonadectomy or steroid hormone application on MAPK 
signaling.
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