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ABSTRACT
Phytoestrogens are a diverse group of steroid–like compounds that occur naturally in many plants. There are various 

types of phytoestrogens, including the best-researched isoflavones which are commonly found in soy. The consumption of soy 
products has many health benefits, including protection against breast cancer, prostate cancer, menopausal symptoms, heart 
disease and osteoporosis. In contrast, use of hormonally active compounds-isoflavones may unfortunately interfere with 
the endocrine system and can have far-reaching consequences. Genistein, the most abundant soy-bean derived isoflavone, 
possesses a ring system similar to estrogens and acts through an estrogen receptor (ER)-mediated mechanism, by increasing 
or decreasing the transcription of ER-dependent target genes. Also, genistein can act on cells through ER non-dependent 
mechanisms, such as tyrosine kinase inhibitor. The neuroendocrine systems are responsible for the control of homeostatic 
processes in the body, including reproduction, growth, metabolism and energy balance, and stress responsiveness. It is 
well known, that estrogen is important for development of the neuroendocrine system in both sexes. At the pituitary level, 
estrogen is known to affect the regulation of all hormone producing (HP) cells, by direct and/or indirect mechanisms.  Due to 
structural and functional resemblance to estrogen, the question may arise of whether and how genistein affects the morpho-
functional features of pituitary HP cells. This review deals with the consequences of genistein’s effects on morphological, 
stereological and hormonal features of HP cells within the anterior pituitary gland.  Transparency on this issue is needed 
because isoflavones are presently highly consumed. Inter alia, genistein as well as other isoflavones, are present in various 
dietary supplements and generally promoted as an accepted alternative to estrogen replacement therapy. Potential isoflavone 
biomedical exploitation is not only limited to estrogen replacement therapy, so it should be treated in a wider context of 
different ageing symptoms remediation.
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INTRODUCTION

Phytoestrogens are considered to be plant-based 
compounds that elicit similar effects to estrogen, due 
to their structural and/or functional similarity. One 
major class of phytoestrogens are the lignans, which 
are components of plant cell walls. Other groups 
of phytoestrogens are phenolic compounds, of 
which the isoflavones and coumestans are the most 

researched groups (1). Even though phytoestrogens 
are abundant in huge number of plants, soybeans 
and soy based foods are the greatest source of 
isoflavones in human and animal diets. In diets, 
most of isoflavones are in a glycoside form that is 
biologically less active (genistin, daidzin) and these 
molecules are cleaved by intestinal bacteria to the 
aglycone forms (genistein, daidzein), which are 
then biologically active (2). 

Genistein (G; Fig.1.) is one of the best 
characterized isoflavones. It was first isolated from 
soybeans in 1931 (3), while its estrogenic activity 
wasn’t identified until the 1950s. (4, 5). 

Thus, it was found that G increased uterus 
weight in several animal species (5). G possesses 
two phenolic rings (B ring is linked to the 
heterocyclic ring at the C3) similar to estrogens, 
so it can act through an estrogen receptor (ER)-
mediated mechanism, by increasing or decreasing 
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the transcription of ER-dependent target genes 
(estrogenic, anti-estrogenic activity). It is able to 
bind to both type of ER (ERα and ERβ), however 
a higher potency toward ERβ is observed (6-8). 
Also, there is a difference in G bounding affinity 
for ER between in vivo and in vitro conditions. In 
vivo study showed the equal bounding affinity of 
isoflavones to ERα and ERβ, while in vitro exhibited 
a higher binding affinity for ERβ (9). The effect of 
G is dose dependent, and whether they will act as 
estrogen agonists or as antagonists depend on the 
quantity of isoflavones (10). Precisely, isoflavones 
are associated with the ERs who are available (at a 
low level of endogenous estrogen), and the estrogen 
effect is potentiated with an injection of lower doses 
of isoflavones (11). Furthermore, it is important to 
emphasize that the estrogenic potency of G is much 
weaker than that of physiological steroids, actually 
only ~1/10,000 to 1/50,000 than that of estradiol 
(12). Genistein is a potent inhibitor of tyrosine 
protein kinases (PTKs), too (13, 14). Considering 
that PTKs inter alia catalyze phosphorylation of 
growth factors involved in tumor cell proliferation, 
genistein can potentially slow tumerogenesis. 
Inhibiting DNA topoisomerases, it can affect DNA 
replication (15, 16). Also, there is the ability of soy 
isoflavones to regulate androgen biosynthesis in 
Leydig cells due in part to action on Leydig cell 3β- 
hydroxysteroid dehydrogenase activity (17). Plus, 
isoflavones indirectly exert their antioxidant effect 
by activating enzymes antioxidant protection: 
catalase, superoxide dismutase and glutathione 
peroxidase (18). Genistein is able to bind to 
androgen receptor (AR), as well. However, its AR-
binding affinity is significantly lower as compared 
with testosterone and estradiol (19).

Benefits and/or weaknesses of isoflavones use
Isoflavones are recommended to have cancer-

protective properties. Consequently, women whose 

diet is isoflavone-rich have a reduced risk and 
rates of breast cancer (20, 21). Also, the significant 
inverse association between breast cancer risk 
and urinary excretion of the isoflavone metabolite 
equol were observed (22). Shimizu et al. (23) study 
indicates the rate of breast cancer in immigrants 
from Japan after years of living in North America, 
as well as their daughters is almost the same as 
in the indigenous Americans, which highlights 
the importance of diet in the etiology of cancers. 
Besides the genistein-provoked inhibition of breast 
cancer cells proliferation, a similar effect was 
identified in prostate and colon cancer (24). Studies 
carried out on people of Japanese origin living in 
Hawaii, pointed the reduced risk of prostate cancer 
as a result of a diet rich in soy products (25). 

Numerous data support the hypothesis that 
genistein has an impact on reducing the risk of 
cardiovascular disease, as a cardio-protective 
compound (26). The reduced level of lipids 
(30%-40% lower level of low-density lipoprotein-
LDL) provoked by isoflavones, is at least in part 
responsible for the cardio-protective effect (27). 
As we have mentioned above, G is a powerful 
antioxidant too, and it is able to inhibit the 
oxidation of LDL, in vitro. Previous data showed 
that isoflavones prevent the formation of plaques in 
blood vessels of patients with atherosclerosis and 
inhibit the adhesion of cells, and in this way act as 
an antiatherogenic factor (28). The results of our 
research group indicated lower cholesterol levels 
and increased level of triglycerides in male rats 
after treatment with genistein and daidzein, which 
can reduce enthusiasm for their application (29). 

Some studies suggest a possible role of soy 
isoflavones in bone metabolism and osteoporosis 
prevention (30, 31). Namely, in postmenopausal 
women who have consumed the soy enriched 
food the increase in bone mineral content has 
been observed. (32). Also, by reducing the level of 
alkaline phosphatase in the serum, genistein exerts 
its osteoprotective effect (33).

Similarly, we should not ignore the beneficial 
effect of isoflavones on menopause symptoms, 
such as heat waves (“hot flushes”), loss of vaginal 
secretions, poor sleep and anxiety accompanied by 
increased secretion of stress hormones (34). Our 
research has detected a lower level of stress hormone 
in old rats treated with G, which increases the 
interest in genistein application in andropause (35). 
Also, soy isoflavone prevented the development 
of adenocarcinomas in the prostate and seminal 
vesicles in a rat carcinogenesis model. Plus, the 
soy diet reduced the growth of transplantable 

Figure 1. The chemical structure of genistein
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prostate adenocarcinomas and inhibited tumor cell 
proliferation and angiogenesis of transplantable 
prostate cancer (36). 

The estrogenic action of G has been examined 
and confirmed in two major estrogen responsive 
organs, the uterus and the ovaries (37, 38). More 
precisely, neonatal exposure to genistein caused 
a dramatic increase in ERα in granulosa cells in 
mice (37). The results from our study showed that 
ovaries exposed to genistein and daidzein have 
had healthier primordial and primary follicles and 
less atretic follicles, which means they increased 
the ovarian follicular reserve by stepping down 
transition from primordial to primary follicles and 
less atretic follicles in middle-aged rats (39). Also, 
we observed that genistein and daidzein exposure 
have decreased superoxide dismutase and catalase, 
indicating that soy phytoestrogens acted as free 
radical scavengers, which highlight their antioxidant 
potential (39). Increased serum progesterone level 
was observed following genistein and daidzein 
treatment, as well (39). 

In addition to the mentioned benefits of 
isoflavones use, it has been understood for a long 
time that consumption of hormonally active plant 
constituents can adversely affect reproduction in 
domestic animals, up to induction of permanent 
infertility (40). Considering that estrogen can 
stimulate breast cancer cells, there are concerns that 
isoflavones may not be safe for women who have 
or already had breast cancer. While isoflavones in 
general should have an anti-estrogenic effect by 
blocking real estrogen, some studies in animals have 
found evidence that, under certain circumstances, 
soy isoflavones might stimulate breast cancer cells 
(41, 42). Also, Unfer at al. (43) showed that long-
term treatment with soy phytoestrogens increased 
the occurrence of endometrial hyperplasia, 
which calls into question the long-term safety of 
phytoestrogens with regard to the endometrium. 
Human pre-natal exposure to isoflavones may 
affect human semen quality produce or contribute 
to male infertility, cause birth defects in male 
infants, breast and testicular cancers, obesity and 
other adverse health effects (44). Goldin et al., (45) 
presented that isoflavones might slightly decrease 
testosterone levels in man, as well. Further concerns 
relate to soy’s potential effects on the thyroid gland. 
Thus, in patients with impaired thyroid function soy 
products have been observed to reduce absorption 
of thyroid medication (46). Also, in people who are 
iodine deficient isoflavones may directly inhibit the 
function of the thyroid gland (47). Soy isoflavones’s 
consummation had no effect on thyroid hormone 

levels or actually increased levels in humans and 
animals, which make things more confusing (48). 
Considering that isoflavones are able to derail the 
normal endocrine signaling, they are classified into 
the category of an endocrine disruptor (49).

Pituitary hormone-producing cells
The central neuroendocrine systems are 

responsible for the control of homeostatic processes, 
including reproduction, growth, metabolism and 
energy balance, as well as stress responsiveness. 
The pituitary gland, as part of the neuroendocrine 
system, is often dubbed the “master gland” because 
its hormones control other parts of the endocrine 
system, namely the thyroid gland, adrenal glands, 
ovaries, and testes (50). 

Anatomically, the pituitary is divided into 
adenohypohysis and neurohypophysis. The 
adenohypohysis is represented by the anterior 
lobe, the intermediary lobe and the infundibulo-
tuberal lobe in mammals. Rat anterior pituitary lobe 
contains five types of hormone-producing (HP) 
cells: somatotrops (growth hormone - GH cells), 
lactotrophs (prolactin - PRL cells), corticotrops 
(adrenocorticotropin hormone - ACTH cells), 
thyrotrophs (thyroid stimulating hormone - TSH 
cells) and gonadotrophs (follicle-stimulating 
hormone - FSH and luteinizing hormone - LH cells, 
51). Pituitary hormone synthesis and secretion 
represent the integrated processes, controlled by 
hypothalamic, intrapituitary and peripheral signals. 
Thus, GH secretion from pituitary somatotrophs 
is controlled by the interplay of growth hormone 
releasing hormone (GHRH) and somatostatin (SS), 
secreted from the hypothalamus (52). Prolactin, 
the pituitary hormone whose principal control 
is inhibitory, is regulated by dopamine (causing 
inhibition of prolactin secretion) and TRH (stimulated 
prolactin secretion) (51). The corticotrophin-
releasing hormone (CRH) and arginin-vasopresin 
from hypothalamus stimulate the release of ACTH 
from the pituitary, which in turn acts on the adrenal 
cortex to trigger the release of glucocorticoids (53). 
Thyreotropin releasing hormone (TRH) from the 
hypothalamus stimulates TSH cells to secrete TSH, 
which in turn stimulates the thyroid gland to produce 
thyroxin. The hypothalamus through the secretion of 
gonadotrophin-releasing hormone (GnRH) governs 
the activity of the pituitary gland, an organ which 
serves as an amplifier, transmitting the brain signal 
via the secretion of LH and FSH, to act on the gonads 
(54) 

Morphology of rat HP cells: GH cells are 
ovoid, sphericalor polyhedral cells with an 
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eccentric nucleus and abundant, densely granulated 
cytoplasm. PRL cells are large, ovoid angular cells 
with an eccentric nucleus, more numerous in the 
female animals. ACTH cells are angular cells, 
sending cytoplasmic processes among neighboring 
cells, while nucleus follows the shape of the cell 
body. TSH cells are angular cells, too. Gonadotrophs 
are immunoreactive for both FSH and LH or only 
for one of these hormones. In females half of these 
cells are bihormonal, while in males almost all cells 
contain both hormones (55-59). 

Dada et al. (56) analyzed cell types in pars 
distalis of the normal young rat with respect to their 
percentages and the relative volumes they occupy. 
In rats the percentages of cell types were: PRL 
approximately 50 %, GH 20 %, LH 5%, FSH 4%, 
ACTH 3% and TSH 2%. However, this proportion is 
not represented in all studies dealing with percentage 
of hormone producing cells, due to different 
methods used for analyses, different sex, age, and 
species. The proportion of HP cells type changes 
dynamically, as a response to different endocrine 
demands (60, 61). Previously, it was thought that 
a particular type of HP cells synthesizes only one 
hormone and according to this principle cells are 
characterized as somatotrops, lactotrophs, etc. 
However, when the secretory granules of a certain 
HP cells revealed several hormones, the concept of 
the plurihormonalni HP cells was accepted. It was 
shown that 30% of all adenohypophysis HP cells in 
rats, mice and monkeys express mRNA for a variety 
of hormones (62). For example, subpopulation of 
gonadotropes and lactotropes also express GH (63).

Does genistein affect morphofunctional 
parameters of pituitary hormone-producing cells?

Most of pituitary HP cells are targeted by 
estrogens, through direct and/or indirect mechanisms. 

The direct action of estrogen is enabled due to the 
expression of ER in almost all type of pituitary 
cells (64). Thus, Yin et al. (65) and Milosevic et 
al. (66) observed that estradiol provoked: PRL cell 
proliferation by direct action and LH secretion by 
positive feedback action (indirect action) in female 
rats. Results from our study indicated the decreased 
relative intensity of fluorescence and smaller volume 
of middle-age female rat FSH and LH cells, while 
PRL cells were more numerous, following estradiol 
treatment (0.625 mg/kg b.w.; 39). Also, stereological 
analysis has shown higher values of total number 
of rat ACTH cells, which was accompanied with 
the higher ACTH level, indicating the elevated 
synthesis and secretion of rat ACTH after estradiol 
treatment (67). On the other hand, the volume 
density of rat GH cells was reduced; total number 
of cells was unchanged, while the relative intensity 
of fluorescence of GH cells and GH blood level 
increased after estradiol treatment (0.625 mg/kg b.w.; 
68). Previous work from our laboratory indicated 
inhibition of TSH cells in middle-aged female rats 
after chronic application of estradiol (0.625 mg/kg 
b.w; 69). From the all above it can be unambiguously 
concluded that estrogen impacts, directly or/and 
indirectly not only the function of HP cells, but also 
their stereological characteristics. 

Due to structural and functional resemblance 
to the estrogen, the question may raise of whether 
and how G affects the morpho-functional features 
of pituitary HP cells. Considering that cell counts 
(stereology approach) have been essential in the 
discovery of important concepts in a variety of 
cell biology investigation, these findings are 
irreplaceable for the complete explanation of the 
impact of genistein on pituitary HP cells (70). 

Using a stereological system (newCAST) 
Trifunovic et al. (68) showed the increase of 

Figure 2. Immunoreactive somatotropes in the pituitary gland in control and genistein treated  adult male rats. 
Scale bar 16 μm
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Figure 3. Volume density of somatotropes (GH cells; A); Total number of GH cells (B); Blood GH concentration 
(C) in control and genistein treated adult male rats. The values are means ± standard deviation, n = 6 animals per 
group; * p<0.05 vs. control

pituitary volume following chronic G treatment 
(30 mg/kg b.w.) in adult orchidectomized rats.  
Orchidectomized adult animals were used 
experimentally to minimize steroids influence and 
separate the effect of sex steroid and genistein. 
The same study has indicated the greater volume 
density and total number of pituitary GH cells, as 
well as GH blood level following G treatment. The 
increases of stereological parameters of GH cells 
are a result of G indirect action via GHRH and 
direct via ER, expressed in GH cells (71; Fig. 2 and 
Fig. 3).

More precisely, genistein action led to a higher 
volume density of GHRH in the Arc nucleus 
(72), probably operating through ER-dependent 
mechanisms, considering that 70% of those 
neurones express ER (73). If we compare the action 
of estradiol and genistein on morphfunctional 
parameters of GH cells, we can conclude that both 
treatments follow a similar course, the increase of 
GH cells action.

The similar conclusion, that genistein was an 
effective stimulator of GH secretion, was reached 

in the study on ewes (74). In orchidectomized 
middle-aged rats (animal model of andropause) 
genistein application provoked the increases of 
absolute and relative pituitary weight, which is 
explicable by their presumable estrogenic effect on 
the pituitary prolactin cells (75). Weaker immuno-
histochemical staining and immuno–fluorescent 
signal have been observed within GH cells in 
middle-age rats following G treatment, which is a 
different effect compared to adult rats (Fig. 4 and 
Fig. 5).

The Romanowicz et al. (76) data demonstrated 
that genistein may effectively modulate LH and 
PRL secretion in ovariectomized ewes, too. The 
data obtained in our experimental study indicated 
that genistein didn’t change relative intensity of 
the fluorescent signal, while alterations in cell 
morphology were observed in gonadotropic and 
lactotropic cells in middle aged female rats (Fig. 
6). In fact, gonadotropic and lactotropic pituitary 
cells were changed in shape, with unevenly stained 
cytoplasms which gave cells the appearance of 
vacuolization (39). 

Figure 4. Absolute pituitary weight (A); Relative pituitary weight (B) in control and genistein treated andropausal 
rats. The values are means ± standard deviation, n = 6 animals per group; * p<0.05 vs. control
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Considering the presence of various forms of 
ERs (with the serious potential of phytoestrogen 
sensitivity) in the pituitary gonadotropic and 
lactotropic cells, not only in the nucleus and 
cytoplasm but also in the membrane of rough 
endoplasmic reticulum and secretory vesicles, 
while keeping in mind that vesicular trafficking 
crucially defines cell mechanical status (77, 78), 
we can assume that the observed changes in cell 

morphology may be mediated by both genomic 
and non-genomic pathways. Short term exposure of 
immature female rats to genistein (50 mg/kg/ b. w.) 
induced significant increases in the number of FSH 
cells (by 21%) and LH cells (by 20%; 79). The study 
showed the increased volumes of FSH and LH cells 
by 19% and 20% and their volume densities by 20% 
and 20%, so in this experimental model genistein 
acted as an estrogen agonist (Fig. 7; Fig. 8 and Fig. 9). 

Figure 5. Immunoreactive somatotropes in the pituitary gland in control and genistein treated middle-aged rats. 
Scale bar 16 μm

Figure 7. Immunoreactive follicle-stimulating hormone producing cells in the pituitary gland in control and 
genistein treated immature female rats. Scale bar 20μm

Figure 6. Immunoreactive lactotrops in the pituitary gland in control and genistein treated middle aged female 
rats. Scale bar 50 μm
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Figure 8. Immunoreactive luteinizing hormone producing cells in the pituitary gland in control and genistein 
treated immature female rats. Scale bar 20μm

The serum concentration of FSH remained 
unchanged, while LH concentration increased 
after long-term administration of G to immature 
male rats (80). The previous study confirmed the 
enhanced LHβ mRNA expression and a greater 
proportion of LH cells after intracerebroventricular 
administration of G in ewes (81). However, in 
intact anestrus ewes LH cell percentage fell, 
but the associated increase of LHβ mRNA was 
presumed to be due to the stimulated rapid release 
of the hormone, following G exposure (82). In 
aromatase knockout mice, oral or subcutaneous, 
genistein exposure reduced serum FSH and LH 
concentrations i.e., back to the levels found in 
wild type mice (83). When it comes to ACTH 

cells of adult rats, the chronic G treatment caused 
an increase in the total number of ACTH cells 
(67). The plurihormonal cells concept is probably 
responsible for the increased ACTH cell number. 
Namely, plurihormonal cells which contain both 
ACTH and gonadotropic hormones were detected 
within the population of rat pituitary corticotrophs 
(84). The unchanged volume of particular ACTH 
cells after chronic genistein application, together 
with reduced immunostaining intensity and 
elevated circulating ACTH level, most probably 
represent the consequence of the continuous 
synthetic and secretory activity of these cells, due 
to constant hypothalamic stimulation (Fig. 10 and 
Fig. 11). 

Figure 9. The number of follicle-stimulating hormone producing (FSH; A) and luteinizing hormone producing 
(LH; D) cell per mm2 (A); The volume of FSH (B) and LH (E) cell; The volume density of FSH (C) and LH (F) cell 
in control and genistein treated immature female rats. The values are means ± standard deviation, n = 6 animals per 
group; * p<0.05 vs. Control.
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In contrast with the cited results, our work in 
middle-aged rats has shown the suppressive effects 
of genistein exposure on morphological parameters 
of ACTH cells, together with a lowering of blood 
ACTH levels (85; Fig. 12 and Fig. 13). Also, in 
vitro studies have shown the inhibitory action of 

genistein on rat pituitary cell proliferation (86). A 
likely explanation is the age-dependent decline in 
pituitary responsiveness to CRH, i.e. in middle-
aged rats pituitary responsiveness is about 60% of 
that observed in young populations (87).

Figure 10. Immunoreactive corticotropes in the pituitary gland in control (C) and genistein treated (G) adult male 
rats. Scale bar 16 μm

Figure 11. The total number of corticotropes (ACTH cells; A) and plasma concentration of ACTH (B) in control 
and genistein treated adult male rats. The values are means ± standard deviation, n = 6 animals per group; * p<0.05 
vs. Control

Figure 12. Immunoreactive corticotropes in the pituitary gland in control and genistein treated middle-aged rats. 
Scale bar 16 μm
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Figure 13. The volume density of corticotropes (ACTH cells; A), The volume of ACTH cells (B), plasma 
concentration of ACTH (C) in control and genistein treated middle-aged male rats. The values are means ± standard 
deviation, n = 6 animals per group; * p<0.05 vs. Control

Figure 15. The volume density of thyrotrophs (TSH cells;A), The volume of TSH cells (B), Serum concentration 
of TSH (C) in control and genistein treated middle-aged male rats. The values are means ± standard deviation, n = 6 
animals per group; * p<0.05 vs. Control

Following genistein treatment pituitary TSH 
cells were larger and more numerous in middle-
aged rats. Also, their relative cellular volumes, as 
well as the relative volume density per pituitary, 
unit volume and serum TSH level significantly 

increased (Fig. 14 and Fig. 15). These changes 
are probably due to the release from the negative 
feedback effect of thyroid hormones. (88). Also, 
Modaresi et al. (89) obtained increased TSH level 
in mice feeding on soybean.

Figure 14. Immunoreactive thyrotrophs in the pituitary gland in control and genistein treated middle-aged male 
rats. Scale bar 16 μm
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CONCLUSION
 
As with many other compounds, there are many 

benefits and weaknesses associated with genistein 
exposure. Unequivocally, genistein contributes to 
regulation of either morphological and/or functional 
features of all pituitary hormone producing cells. 
In which direction HP cells will undergo processes 
of remodeling following genistein exposure 
depends on gender, age, hormonal status and dose. 
Consumers should be aware that genistein is an 
endocrine disrupting compound and should make 
dietary choices accordingly.
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