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Abstract: This review summarizes the effects of α-lipoic acid (LA) on liver damage and complications in diabetes and 
drug toxicity. LA is a naturally occurring dithiol compound that plays an essential role in mitochondrial metabolism in its 
protein-bound form. In contrast, free LA in supplements has diverse biological actions, and its antioxidant effect is its most 
studied and important activity. Due to its strong antioxidant potential, LA could have a promising role in the treatment of 
pathologies resulting from an imbalance in redox homeostasis. This includes diabetes, which produces deleterious effects 
on many organs, including the liver. In diabetes specifically, LA prevents β-cell destruction, enhances glucose uptake, and 
its antioxidant effects may be particularly useful in slowing down the development of diabetic complications. Diabetes-
related liver damage is a serious complication in which oxidative stress is the main contributor to tissue injury. Oxidative 
stress is regarded as one of the main pathological mechanisms underlying liver pathologies provoked by other insults, such 
as drug toxicity, where LA could also be a useful agent in therapeutic intervention. However, before wider application of 
LA in a clinical setting, experimental and clinical research needs to be extended..
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INTRODUCTION

LA is an eight-carbon disulfide moiety-containing 
molecule with a single chiral center, which was first 
isolated and chemically identified in 1951 [1]. This 
naturally occurring dithiol compound is an essential 
cofactor for several mitochondrial enzyme complexes, 
including pyruvate dehydrogenase, branched chain 
α-keto-acid dehydrogenase and α-ketoglutarate de-
hydrogenase that catalyze critical reactions related 
to energy production and catabolism of α-keto acids 
and amino acids. In humans, LA is synthesized in the 
liver and other tissues to a sufficient extent, meeting 

the requirements for its role as an enzyme cofactor 
in intermediary metabolism. Due to the decline of 
its synthesis with age [2], it is useful to supply LA 
exogenously from diet sources, including vegetables 
(spinach, broccoli, tomato) and meats (mainly viscera) 
or from dietary supplements [3] (Fig. 1). Naturally 
occurring LA in foods is covalently bound to lysine 
in proteins (lipoyllysine) [4]. LA is synthesized de 
novo from an 8-carbon fatty acid (octanoic acid) and 
cysteine (as a sulfur source) in a reaction catalyzed by 
lipoic acid synthase in the mitochondria, where LA 
functions as a cofactor for mitochondrial enzymes in 
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its protein-bound form. Unlike endogenously synthe-
sized protein-bound LA, supplemented LA is present 
in a free nonprotein-bound form. Orally supplied LA 
does not serve as a metabolic factor; instead it elicits 
biological activities, being a potent modulator of the 
cell’s redox status, which is its most prominent activity 
[5]. After oral intake, LA is rapidly absorbed by the 
gastrointestinal tract, transported to different organs 
and subjected to renal excretion. LA primarily accu-
mulates in the liver, heart and skeletal muscle, but it is 
also found in other tissues. Following its uptake into 
tissues, LA is subjected to extensive catabolism and is 
rapidly reduced to dihydrolipoic acid (DHLA), which 
is excreted from cells [5,6]. DHLA is a potent reduc-
ing agent with the capacity to reduce and regenerate 
intracellular antioxidants from their oxidized forms 
[6]. The chemical reactivity of LA/DHLA arises from 
the high reduction potential under physiological con-
ditions, making this redox couple highly reactive, just 
below the NAD(P)H/NAD(P)+ pair [7]. In spite of the 
rapid gastrointestinal uptake of LA and appearance in 
the plasma which is followed by its rapid clearance, a 
large amount of evidence has revealed an unexpected 
range of cellular actions (Fig. 1). Antioxidant activity 
is exhibited by both the oxidized and reduced forms of 
LA and it includes the scavenging of reactive oxygen 
species (ROS) [8,9]. However, the antioxidant activity 
of the LA/DHLA couple has been shown in in vitro 
conditions, and it is questionable whether LA can 
scavenge free radicals in vivo since LA rapidly accu-
mulates and is rapidly metabolized. There is growing 
evidence that LA can indirectly maintain the cellu-
lar antioxidant status by enhancing the synthesis of 
endogenous low molecular weight antioxidants, the 
regeneration of other antioxidants, chelation of metal 
ions and inhibition of redox sensitive transcription 
factor NF-κB [10]. The biological activity of both LA 
and DHLA is an advantage when compared to other 
antioxidants such as glutathione, whose reduced form 
only has an antioxidant potential. Another advantage 
of LA is attributed to its water and fat solubility, un-
like other antioxidants that are either lipophobic or 
lipophilic, which means that LA can elicit antioxidant 
actions in both cytosol and cell membrane compart-
ments. In view of its potent antioxidant activity, LA 
has been proposed as a potential therapeutic agent in 
the treatment of pathologies caused by an imbalance 
in redox homeostasis and ensuing oxidative stress, as 

occurs in diabetes and its complications that affect 
different organs, including the liver (Fig. 1). Oxidative 
stress is also a contributing factor in liver pathologies 
provoked by exogenous insults (drug-induced toxic-
ity), and LA could be viewed as a therapeutic agent 
in these conditions as well [11].

LA in diabetes

Diabetes is a metabolic disorder resulting from defec-
tive insulin synthesis due to β-cell destruction (diabetes 
type 1), and/or responses of target tissues to insulin 
or insulin resistance (diabetes type 2), which cause 
increased glucose concentration in the circulation or 
hyperglycemia, the clinical hallmark of diabetes. Dif-
ferent studies have provided evidence that LA stimu-
lates glucose uptake by cardiac tissue in control and 
diabetic rats [12]. LA has been found to increase glu-
cose uptake in cultured adipose and muscle cells by 
affecting elements of the insulin signaling pathway. LA 
augments tyrosine phosphorylation and the activities 
of the molecular components involved in insulin sig-
naling, including the insulin receptor (IR), insulin re-
ceptor substrate (IRS)-1, phosphatidylinositol 3-kinase 
(PI3K), Akt1 and p38 [13]. Specifically, stress-activated 
kinases such as c-Jun NH2-terminal kinase (JNK) and 
the inhibitor of B kinase-(IKK) interfere with normal 
insulin signaling by phosphorylation of the serine in 
IRS-1, reducing its interaction with the downstream 
effector PI3K. Thereby these kinases play an important 

Fig. 1. LA structure and effects. LA and its reduced form DHLA, 
with the most prominent functions related to insulin sensitivity, 
diabetic neuropathy, oxidative stress (LA increases intracellular 
GSH and regenerates ascorbic acid, vitamin E and coenzyme Q10), 
inflammation and mitochondrial metabolism.
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role in insulin resistance progression. It was revealed 
that LA inhibited the JNK pathway and IRS-1 serine 
phosphorylation, and improved insulin sensitivity [14]. 
The underlying mechanism by which LA improves in-
sulin signaling could be at least in part attributed to LA-
mediated induction of heat shock proteins (HSPs) that 
have the potential to inhibit JNK and IKK [15]. Clinical 
studies showed that LA increased insulin-stimulated 
whole-body glucose disposal in diabetic patients [16].

LA has potential applications in various aspects 
of diabetes pathophysiology, ranging from effects on 
insulin-producing pancreatic β-cells to long-term 
diabetic complications (Fig. 2). It is assumed that the 
effects of LA on β-cells are dose-dependent, meaning 
that at higher concentrations LA exerts detrimental 
effect, whereas at lower and clinically approved con-
centrations it produces beneficial and cytoprotective 
effects on β-cells in diabetes [10]. Another potential 
beneficial effect of LA in diabetes is based on its abil-
ity to inhibit protein glycation, which is assumed to 
be an important factor in the development of diabetic 
complications. This effect of LA is not based on its 
antioxidant potential but rather on the non-covalent 
hydrophobic interaction of LA with target proteins, 
which blocks the protein glycation site and prevents 
its glycation [10].

A direct link between oxidative stress in diabetes 
and pathogenic events that lead to diabetic complica-
tions has been established. Hyperglycemia promotes 
increased production of ROS via different pathways 

(nonenzymatic, enzymatic and mitochondrial), which 
together with impaired antioxidant defenses results 
in increased oxidative stress. The persisting imbal-
ance in redox homeostasis in diabetes activates the 
expression of inflammation related genes via stress 
signaling pathways, stimulating the establishment of 
an inflammatory state. The oxidative stress-activated 
proinflammatory pathways are a complex pathogenic 
mechanism that promotes a variety of diabetic com-
plications in different tissues and organs, including 
the liver. According to clinical evidence, the strong 
antioxidant effects of LA have been shown to be par-
ticularly useful in treating diabetic neuropathy [4]. 
A daily oral dose of 600 mg provides an optimum 
risk-to-benefit concentration in human diabetics 
[5]. Hence, the antioxidant potential of LA self-rec-
ommends the use of this compound in therapeutic 
approaches aimed at attenuating the development of 
diabetes associated complications.

LA and diabetes-related liver pathologies

Diabetes is one of the most common causes of liver 
disease, which is an important contributor to in-
creased mortality in diabetic patients [17]. Fatty 
liver, insulin resistance and obesity are endogenous 
factors that provoke liver dysfunction in diabetes [18]. 
Fatty liver belongs to nonalcoholic fatty liver disease 
(NAFLD), which represents a spectrum of hepatic 
disorders, starting from steatosis characterized by 
excess fat accumulation within hepatocytes that can 
progress to steatohepatitis when accompanied by in-
flammation (hepatic fibrosis), and further to cirrhosis 
and ultimately liver failure. The prevalence of NAFLD 
in obese patients with diabetes type 2 is greater than 
70%. Decreased insulin-dependent suppression of 
lipolysis in adipose tissue results in elevated levels of 
circulating free fatty acids (FFA), which accumulate 
in the liver where synthesis of triglycerides occurs. 
Impaired hepatic fatty acid oxidation and very low-
density lipoprotein secretion, as well as increased 
glucose concentrations in diabetes provide additional 
contributing factors to triglyceride synthesis that leads 
to hepatic fat accumulation. According to literature 
data, the use of supplements comprised of different 
antioxidant compounds including LA has been ap-
proved for treatment of patients suffering from fatty 
liver and nonalcoholic steatohepatitis in Mexico [19].

Fig. 2. Roles of LA in diabetes. LA protects pancreatic β-cells, 
improves glucose uptake, attenuates insulin resistance and amel-
iorates diabetic complications.
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Most of the pathological changes in liver mor-
phology and function observed in diabetes are the 
result of oxidative stress-mediated injury (Fig. 3). 
The prooxidant environment established by free 
radical formation in diabetes contributes to oxida-
tive stress development. The sources of free radicals 
in diabetes originate from nonenzymatic pathways 
(the production of hydroxyl radicals (OH•) via glu-
cose autooxidation, formation of advanced glycation 
end products (AGE), over stimulation of the polyol 
pathway), enzymatic pathways (involving nitric oxide 
synthase, NAD(P)H oxidase and xanthine oxidase), 
and mitochondrial pathways with the mitochondrial 
respiratory chain as the main nonenzymatic source of 
ROS [10]. It is assumed that mitochondrial produc-
tion of the superoxide anion radical (O•2−) provoked 
by hyperglycemia is the main trigger of events leading 
to oxidative stress in diabetes [20,21].

The most important enzymatic antioxidants that 
cope with free radicals involve superoxide dismutase 
(SOD) that catalyzes the dismutation of the super-
oxide radical to form hydrogen peroxide (H2O2) and 
oxygen, catalase (CAT) that converts H2O2 to water 
and oxygen, and glutathione peroxidase (GPx) that 
reduces H2O2 using reduced glutathione (GSH) to 
form oxidized glutathione (GSSG) and water. Of the 
nonenzymatic cellular antioxidants, the low molecu-
lar weight GSH molecule is very important. It plays a 
crucial role in maintaining protein thiols in a reduced 
form [22,23]. The impairment of the antioxidant de-
fense system has been demonstrated in diabetes. It is 
an additional risk factor that contributes to oxidative 

stress-related liver injury (Fig. 3). Therefore, aside from 
the search for protective antioxidant effects that inter-
fere with ROS overproduction, attempts at improving 
the intrinsic antioxidant defense system that preserves 
redox homeostasis is also an important approach to 
preventing oxidative stress-related pathologies. LA 
may indirectly affect the cellular antioxidant response 
through increased uptake or synthesis of endogenous 
low molecular weight antioxidants. LA increases intra-
cellular GSH through improved cystine uptake from 
the plasma, followed by its reduction by DHLA to 
cysteine, which is the substrate for GSH synthesis [5]. 
It was shown in different cultured cells that DHLA in-
creases GSH synthesis by reducing cystine to cysteine 
[24]. In addition, LA induces the de novo synthesis of 
GSH at the transcriptional level by directly modulating 
cellular signaling pathways [25]. It was shown that the 
administration of LA promoted the restoration of the 
GSH:GSSG ratio increased the protein thiol content 
in the liver of streptozotocin (STZ)-induced diabetic 
rats. The antioxidant and hepatoprotective effects of 
LA in STZ-induced diabetic rats also include improve-
ment of the activities of the antioxidant enzymes SOD 
and CAT [26,27]. LA affects CAT and CuZnSOD ex-
pression in the liver at the transcriptional level. The 
post-translational mechanism including decreased O-
GlcNAcylation of CAT and SOD, upstream kinases 
and transcriptional factors involved in the regulation of 
enzyme expression is also involved in the LA-mediated 
upregulation of antioxidant enzyme expression [26]. 
This antioxidant effect was followed by hypoglycemic 
activity of LA, resulting in a lower level of DNA dam-
age and improved activities of the indicators of hepa-
tocellular injury, alanine aminotransferase (ALT) and 
aspartate aminotransferase (AST), suggesting that LA 
exerted hepatoprotective effects in diabetes [26]. 

An important role in the transcriptional regulation 
of the antioxidant defense system is ascribed to tran-
scription factor-nuclear factor erythroid 2-related fac-
tor 2 (Nrf2). Nrf2 is located in the cytoplasm where it 
associates with cytoplasmic repressor Kelch-like ECH-
associated protein 1 (Keap1), which maintains Nrf2 
in its inactive form. Different activators and inducers 
of Nrf2 are capable of releasing Nrf2 into the nucleus, 
where it transactivates detoxifying and antioxidant 
enzymes. LA is one of the inducers of Nrf2-mediated 
antioxidant gene expression and as such it can increase 
GSH synthesis [28]. It has been reported that Nrf2 can 

Fig. 3. Antioxidant effects of LA against oxidative stress-related 
liver injury in diabetes. LA affects redox homeostasis towards 
decreased ROS production and increased antioxidant system 
potential.
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play a significant role in the attenuation of oxidative 
stress through the suppression of proinflammatory 
signaling pathways [29]. NF-κB is a central media-
tor of inflammatory processes whose activation in 
hyperglycemia contributes to diabetes pathology and 
its associated complications [30]. NF-κB is located in 
the cytoplasm in an inactive form in a complex with a 
family of NF-κB inhibitor (IκB) proteins. Upon stimu-
lation, IKK α and β are activated, which results in the 
phosphorylation of IκB and its proteasomal degrada-
tion that release NF-κB, allowing it to translocate into 
the nucleus where it induces gene expression [31]. The 
increased activation of NF-κB in hyperglycemia and 
resulting transactivation of key target genes involved 
in inflammatory processes result in systemic and local 
deleterious effects that contribute to the development 
and progression of diabetic complications. NF-κB and 
its target genes, such as proinflammatory cytokines, 
TNF, IL-1 and IL-6, are crucial factors in the develop-
ment of insulin resistance, which is an important com-
ponent in the etiology of type 2 diabetes. Activation of 
NF-κB and chronic inflammation in the liver mimics 
the insulin resistance induced by obesity. Consequent-
ly, inhibition of NF-κB activity in the liver decreases 
the expression of NF-κB target genes that attenuates 
type 2 diabetes. Inhibition of cytokine-induced NF-
κB activation was shown to protect pancreatic β-cells 
from cytokine-induced apoptosis in an experimental 
model of STZ-induced diabetes [30]. Thereby, inhibi-
tion of NF-κB activation could potentially be an effec-
tive strategy and important aspect in diabetes treat-
ment through β-cell protection and amelioration of 
the diabetes phenotype. It has been shown that LA is 
capable of inhibiting IKK α and β, and consequently 
IκB degradation, which results in the inhibition of 
NF-κB-mediated gene expression, suggesting that LA 
prevents NF-κB activation in a mechanism that does 
not involve its antioxidant potential [32].

In addition to the disturbance of the antioxidant 
system, impaired expression of HSPs also appears to 
play an important role in the pathophysiology of dia-
betes. It has been reported that formation of the LA 
disulfide can play a significant role in the activation of 
the heat-shock response in diabetes [9,33,34]. Under 
diabetic conditions, LA application increased the ex-
pression of HSP90 and HSP72 that have an important 
place in the cell’s machinery for protein folding and 

stabilization [35]. HSP60 functions as a mitochondrial 
chaperone responsible for the transport and refolding 
of proteins from the cytoplasm into the mitochondrial 
matrix. Under oxidative stress, among the reactive 
lipid peroxidation products, 4-hydroxy-2-nonenals 
(4-HNE) is a biomarker that modulates a number of 
signaling processes through its ability to form cova-
lent adducts in proteins, nucleic acids and membrane 
lipids. Increased oxidative stress in diabetes impairs 
hepatic HSP and induces 4-HNE production. It was 
observed that LA increased HSP60 and decreased 
4-HNE in the liver [33].

Protective effects of LA in drug-induced liver 
injuries

Drug-induced liver injury is the most common cause 
of acute liver failure in the USA and western Europe 
[36]. Drug-induced liver injuries are dose-dependent, 
as demonstrated by acetaminophen-induced liver toxic-
ity, which represents the most common cause of acute 
liver failure in the USA. More than 900 drugs (certain 
medicinal agents, chemical agents used in laboratories 
and industries, natural compounds and herbal prepa-
rations) have been implicated in liver injury [37]. The 
most common reason for the subsequent removal of a 
clinically accepted drug is drug-induced hepatic injury. 
The mechanism of drug-induced liver injury includes 
apoptotic and necrotic hepatocellular cell death, the 
production of ROS, mitochondria damage, specific im-
mune reactions and altered signaling pathways [38,39] 
(Fig. 4). Drugs or their reactive metabolites are detoxi-
fied through oxidation and reduction by polymorphic 
cytochrome P450 (CYP450) family enzymes. Covalent 
binding of drugs or their reactive metabolites to the 
P450 enzyme acts as trigger of the immune response. 
Hepatotoxic reactive metabolites directly and through 
secondary toxic damage bind to cell structures and in-
duce GSH depletion. Reactive metabolites can inhibit 
the bile salt efflux pump that is responsible for the ex-
clusion of endobiotic and xenobiotic substrates from 
hepatocytes into the bile [40,41]. Depletion of GSH 
induces the production of mitochondrial ROS and 
consequently mitochondrial dysfunction. On the other 
hand, increased production of ROS triggers protective 
antiinflammatory and antioxidant pathways, including 
upregulation of Nrf2 signaling, which increases GSH 
synthesis and ROS detoxification [42,43].
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Chloroquine is commonly used as an antimalarial 
and antirheumatoid agent. Compared to silymarin, a 
reference hepatoprotective drug, orally administered 
LA against chloroquine-induced hepatotoxicity in 
Wistar rats showed significantly improved levels of 
plasma antioxidants, GSH, vitamin C and vitamin E, 
as well as decreased serum levels of AST, ALT, alka-
line phosphatase, bilirubin, lipids and plasma thio-
barbituric acid-reactive substances and hydroperox-
ides [44]. Bromobenzene, which is primarily used as 
an additive to motor oil, is formed during pesticide 
manufacturing, chlorination of drinking water and 
in the rubber industry, and is resistant to biodegra-
dation after outflow to the environment. It has been 
documented that bromobenzene hepatotoxicity can 
lead to hepatic necrosis. Oral administration of LA in 
bromobenzene-induced toxicity to albino rats signifi-
cantly increased the hepatic GSH content, normalized 
hepatic lipid peroxidation and NO production, and 
preserved hepatocyte architecture [45]. Methotrexate 
is an effective cytotoxic drug and has been used in 
treatment of malignancies and inflammatory diseases, 
but long-term methotrexate use can cause hepatic st-
eatosis, fibrosis and cirrhosis. LA treatment of Wistar 
albino rats reversed liver GSH levels, malondialde-
hyde and (Na+/K+)-ATPase activities as well as the 
histopathological alterations induced by methotrex-
ate [46]. The beneficial effects of LA against CCl4 and 
thioacetamide-induced hepatotoxicity have also been 
documented [47-49].

A beneficial outcome of LA supplementation was 
also observed in other types of liver injury, such as 
increased alcohol intake or intake of environmental 
contaminants. Additional causes of acute liver failure 
are neoplastic infiltration, heatstroke, mushroom in-
gestion, mycotoxins, metabolic diseases such as Wil-
son’s disease and viral infections (hepatitis A, B and E) 
[50]. Alcoholic liver disease is related to changes in the 
liver, including steatosis, fibrosis and cirrhosis with 
increased risk for the development of hepatocellular 
carcinoma [51]. Through cellular reduction to DHLA 
and the ability to normalize the NADH/NAD+ ratio, 
and increase the concentration of GSH and (Na+/K+)-
ATPase activity, LA provides a valuable effect in alco-
hol intoxication. Aflatoxin B1 is the most biologically 
active form of aflatoxins, very dangerous mycotoxins 
produced mainly by Aspergillus flavus and Aspergil-
lus parasiticus with high toxicity in animals and hu-
mans. Administration of LA prevented liver damage 
in broilers induced by a chronic low dose of aflatoxin 
B1, improved liver histopathological parameters and 
liver glutamic oxaloacetic transaminase and glutamic 
pyruvic transaminase activities [52]. Administration 
of lipopolysaccharide from Gram-negative pathogens 
contributes to the development of liver dysfunction 
and septic hepatic failure. Administration of LA to 
Wistar rats subjected to sepsis prevented the increase 
in pro- and antiinflammatory cytokines (IL-1β, IL-6, 
TNF-α, IL-10). In addition, LA treatment decreased 
liver antioxidant enzymes (GPx, SOD, xanthine dehy-
drogenase and xanthine oxidase), lipid peroxidation 
and total serum NO levels [53,54].

CONCLUSION

Considering the strong antioxidant potential of LA, 
its use as a therapeutic agent in treatment of diseas-
es whose development and progression are closely 
linked with disturbed redox homeostasis is promis-
ing. The main hepatoprotective effects of LA cover 
the activities that result in decreased oxidative stress, 
inflammation, DNA damage and fibrotic processes. 
Despite efforts made in unraveling the importance of 
antioxidant action, including the effects of LA against 
oxidative-stress-related diseases such as diabetes and 
liver diseases, as well as promising results obtained in 
experimental studies and clinical trials, antioxidative 
therapy still has to be developed. Many antioxidants 

Fig. 4. Drug-induced liver injury. Drug or reactive drug metabolite 
induce the expression of cytochrome P450 enzymes which gener-
ate ROS and in turn covalently bind to cellular macromolecules, 
cause GSH depletion, impair mitochondrial function, inhibit bil-
iary efflux and the innate immune response. The result is hepato-
cyte cell death by apoptotic or necrotic pathways.
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are highly effective in animal models of hepatic disor-
ders, but in humans their beneficial influence in treat-
ing the same liver diseases is not effective. Therefore, 
detailed translational research is required for the es-
tablishment of antioxidant therapy in clinical practice 
for treating hepatic disorders triggered in diabetes as 
well as by drug inducers.
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