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ABSTRACT 

Dexamethasone (Dx) is often used in obstetric practice to promote fetal lung maturation and 

to prevent respiratory distress syndrome when the risk of preterm delivery persists. This 

therapy enables survival of the newborn, but also is associated with deleterious effects on the 

offspring, such as reproductive disorders. The aim of this study was to determine specifically 

whether prenatal exposure to Dx disturbs the physiological balance between proliferation and 

apoptosis of germinative cells (GC) in the ovary of 19 and 21 day old fetuses and thus 

induces developmental programing of the female reproductive system. Pregnant Wistar rats 

(n = 10/group), separated into control (vehicle) and Dx-treated (0.5 mg/kg body mass) 

groups, received injections on gestational days 16, 17 and 18. Exposure to Dx lowered the 

volume of the fetal ovary by 30% (p<0.05) in 21 day old fetuses, as well as the total number 

of GC in the ovary by 21% (p<0.05). When compared to the controls, in Dx-exposed fetuses 

the total number of PCNA positive GC was 27% lower at 19 days and 71% lower at 21 day 

old (p<0.05), while total numbers of caspase-3 positive GC were 2.3 fold and 34% higher 

respectively, (p<0.05). Our results demonstrate that prenatal exposure to Dx diminished 

proliferation but increased the rate of germinative cell apoptosis, with consequently reduced 

total germinative cell number and ovary volume. Impairment of fetal oogenesis and fewer GC 

in the fetal ovary compromise the oogonial stock and thus may constitute a risk for female 

fertility. 

 

INTRODUCTION 

Ovary development begins early during fetal life in mammals. This process involves 

segregation of the primordial germ cells (PGC) from the somatic lineages, migration from the 

yolk sac and colonization of the genital ridges, where they continue extensive mitotic 

proliferation reaching a peak value at 18.5 days post conception in rats. Subsequently, mitotic 

activity declines, most oogonia enter meiosis to produce a pool of oocytes arrested at the 

diplotene stage of the first meiotic division, while apoptotic activity resumes [1]. Normal 

ovarian development provides a balance between proliferation and apoptosis of germinative 

cells, which is the major phenomenon in establishing the maximal reproductive potential of 

adult females [2]. 

 

Exposure to drugs during intrauterine life may have an influence on normal progression of 

development of the fetal ovary and the future of adult fertility [2]. Pathological conditions 

during pregnancy involve assessment of the benefits and risks of drug usage, which is 

frequently indispensable, as in the case of glucocorticoids. Glucocorticoids have a strong 

influence on growth and final maturation of fetal organ systems [3]. One of the most 

important events during intrauterine life, which represents a critical developmental trigger, is 

the increase of endogenous fetal glucocorticoids [4]. Endogenous glucocorticoids are 
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essential for normal maturation of the fetal brain and lung as well as developmental switching 

in the pituitary, thyroid gland and kidney [5, 6]. When the risk of preterm delivery persists, a 

pregnant woman needs to be treated with exogenous glucocorticoids to promote 

differentiation and maturation of fetal organ systems, to mimic normal intrauterine conditions 

[7, 8]. Moreover, glucocorticoid application is routine in the prevention and management of 

conditions that threaten maternal and fetal health, such as maternal asthma [9] and 

autoimmune diseases [10]. Dexamethasone (Dx) is considered to be the glucocorticoid of 

choice for antenatal therapy [2]. In addition to its beneficial effects on growth and 

differentiation, the risks of such therapy are well known. Prenatal exposure to Dx is 

associated with several systemic long-term deleterious effects on the offspring, such as 

cardiovascular, metabolic and neuroendocrine disorders [11, 12, 13]. This concept is known 

as developmental programming, and implies linkage between adverse environmental signals 

during prenatal development with a greater incidence of pathophysiological conditions in 

postnatal life [14]. Dx is used in numerous experimental protocols to induce developmental 

programming [11, 15, 16]. Latеly, interest in the field of developmental programming has 

been focused on reproductive dysfunction in adult females and males. 

 

 Our recent results, obtained by exploiting a rat model, indicate that prenatal 

exposure to Dx leads to novel developmental programming of the reproductive system at the 

level of the pituitary gland and ovary. Namely, exposure to Dx during the most vulnerable 

period in pituitary development markedly reduced gonadotropic cell number, which partly 

contributed to diminished volume of the entire gland in rat fetuses [17]. Changes established 

during fetal development are long lasting and persist postnatally throughout neonatal, infant 

and peripubertal periods [18]. Prenatal exposure to Dx also decreased the number of ovarian 

primordial, primary and secondary follicles in neonatal offspring [19], which indicates 

reduced reproductive potential for each female. The aim of the present study was to elucidate 

if this situation is the consequence of a disturbed balance between proliferation and loss by 

apoptosis of germinative cells in the fetal ovary after exposure to Dx. 

 

 Herein, we have investigated the expression of markers of cell proliferation 

(proliferating cell nuclear antigen - PCNA) and apoptosis (caspase-3) in the developing rat 

ovary following exposure to Dx. Estimation of the total number of proliferating germinative 
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cells and germinative cells with signs of apoptosis, using design-based stereology, may 

provide evidence about whether prenatal exposure to Dx impairs development of the rat 

ovary, and thus influences developmental programing of the female reproductive system. 

 

MATERIALS AND METHODS 

Animals and Experimental Groups 

Adult female Wistar rats (average body mass of 200–250 g; bred at the Institute for 

Biological Research “Siniša Stanković”, Belgrade, Serbia) were maintained under controlled 

conditions (12 h:12 h light-dark cycle at 22°C) with food and water available ad libitum. Two 

nulliparous females were mated per fertile male. Detection of sperm in a vaginal smear was 

considered as gestational day (GD) 1. The gravid females were randomized into a control and 

an experimental group, each consisting of 20 animals. During the key period of rat ovarian 

development on days 16, 17 and 18 of pregnancy, each experimental dam received 0.5 mg Dx 

(Dx phosphate dissolved in 0.9% saline (Krka FARMA d.o.o., Belgrade, Serbia)/kg body 

mass (BM) in 0.4 ml s.c.. This dosing regimen was designed to fall within the range of 

clinical exposure in women (0.1–0.5 mg/kg) [20]. The control gravid females received the 

same volume of saline. On days 19 or 21 of gestation pregnant dams were anaesthetized with 

diethylether (Merck, Kenilworth, USA) and the fetuses were removed from the uterus. Their 

sex was determined by external examination (anogenital distance) and the males were 

discarded. One female fetus was randomly chosen from each of the 10 control and 10 litters 

of Dx-treated dams, at 19 and 21 days old. Randomization obviated any potential litter bias. 

The ovaries were excised and fixed with 4% paraformaldehyde for 24 h. After embedding in 

Histowax (Histolab Product AB, Göteborg, Sweden), each tissue block was serially 

sectioned, at 2-μm thickness, on a rotary microtome (RM 2125RT Leica Microsystems, 

Wetzlar, Germany). All animal procedures complied with the European Communities 

Council Directive (86/609/EEC) and were approved by the Ethical Committee for the Use of 

Laboratory Animals of the Institute for Biological Research “Siniša Stanković”, University of 

Belgrade (No. 2-12/13). 

 

Immunohistochemical Analyses 

Expression of proliferating cell nuclear antigen (PCNA) and caspase-3 in the fetal ovaries 

was investigated using immunohistochemical methods [18]. After deparaffinization and 

rehydratation, two-micrometer-thick serial sections were pretreated with citrate buffer for 

antigen retrieval according to standard protocols. For inactivation of endogenous peroxidase, 

0.3% hydrogen peroxidase in methanol was used, followed by incubation with normal 

donkey serum (Abcam, Cambridge, UK, 1:10) for 45 min to reduce nonspecific background 

staining. The samples were then incubated overnight with the primary antibodies: anti-PCNA 

(mouse monoclonal, Abcam, Cambridge, UK, 1:10000) or anti-caspase-3 goat anti-human, 
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Santa Cruz Biotechnology, USA, 1:200). The HRP conjugated secondary antibodies were 

donkey anti-mouse and donkey anti-goat, (Abcam, Cambridge, UK; 1:100). Staining was 

visualized with DAB (3,3’-diaminobenzidine tetrahydrochloride; Dako A/S Glostrup, 

Denmark). As a control for nonspecific binding of the secondary antibody, parallel sections 

were incubated without the primary antibody. 

 

Stereological analysis 

All stereological analyses were performed using a workstation comprising a microscope 

(Olympus BX-51) equipped with a microcator (Heidenhain MT1201), a motorized stage 

(Prior) and a CCD video camera (PixeLink). The main objectives were a planachromatic 

4×dry lens (numerical aperture 0.13), a 40×dry lens (numerical aperture 0.17) and a 100×oil 

lens (numerical aperture 1.30). Control of stage movements and interactive test grids and 

unbiased dissector frames were provided by the newCAST software package. 

 

Volume of fetal ovary 

Fetal ovary volume was estimated using Cavalieri’s principle [21]. Sampling of sections (2 

μm thick) was systematically uniform from the random start. Every 10th section from the 

whole fetal ovary was analyzed (the same sections were used in the subsequent estimation of 

PCNA and caspase-3 positive GC numbers by the physical dissector method). Fetal ovary 

volume was determined by multiplying the sum of the areas by the interval between the 

sections according to the formula: 




 
n

i

PipaV BA

1

/  

where a/p is the area associated with each sampling point within the grid (1671.024μm
2
); BA 

(block advance) is the mean distance between two consecutively studied sections, i.e. real 

section thickness 2 μm × 10; n is the number of sections studied for each ovary, and ΣPi is 

the sum of points hitting a given target. 

 

Quantification of GC, PCNA and caspase-3 positive germinative cell numbers 

The total numbers of GC and immunostained GC in ovaries from control and Dx-treated 

dams were determined using a fractionator/physical disector design with two levels of 

sampling [19]. 
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Sampling was systematically uniform from a random start [21, 22]. Sections defined 

as section pairs were first captured into a super image. After defining and linking, the pairs 

were aligned by translation and rotation using the montage option in the new-CAST software. 

A ×100 oil immersion objective was used for cell counting. One section in the pair was 

labeled the reference section and the other the ‘look-up’ section. Subsequently, they were 

analyzed in both directions with the reference section also becoming the look-up section. This 

doubles the first sampling fraction from 1/10th to 1/5th (sampling fraction 1(f1) =1/5 = 0.2). 

For estimation of the total number of GC, PCNA and caspase-3 positive GC in fetal ovaries, 

an unbiased counting frame measuring 40 × 40 μm (1,600μm
2
) was used to ensure 150–200 

cells per animal. After defining tissue boundaries, meander sampling was set to analyze 70% 

of the tissue. Therefore, the sampling fraction 2 was f2 = 0.7. The fields of vision were 

randomly selected and the percentage of tissue analyzed was controlled by the software. 

Additionally, new-CAST software facilitated matching of fields between the reference and 

the look-up section. When the field of vision was selected at the reference section, the 

matching position at the consecutive look-up section was scanned and a matching field of 

vision was generated from four images. GC, PCNA and caspase-3 positive GC were counted 

if their nuclei appeared within the unbiased counting frame applied to the reference section; 

they were not intersected by exclusion boundaries [23] and did not appear in the look-up 

section. Raw counts (Q 
–
) of GC, PCNA and caspase-3 positive GC numbers were multiplied 

by the reciprocals of the sampling fractions to estimate the total numbers of GC, PCNA and 

caspase-3 positive GC per fetal ovary. 

 

GC/PCNA/caspase-3 positive GC (n) = Q 
–
 (GC/PCNA/caspase-3 positive GC) × (1/f1) × 

(1/f2). 

Cytological markers used for GC identification include typical diagnostic parameters 

such as cell size and shape (proportion of dimensions) and nucleus size, shape and position. 

 

Statistical Analysis 

 

All results are expressed as mean values for 10 animals per group (± SD). Data were 

evaluated for normality of distribution using the Kolmogorov-Smirnov test followed by 2-

way analysis of variance (ANOVA), with the age of female fetuses (19 and 21 days) and the 

applied treatment (C and Dx) as factors. The post hoc Bonferroni test was used to determine 

significant differences between groups. The minimum level of statistical significance was set 

at p<0.05. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

RESULTS 

Fetal body mass 

As shown by 2-way ANOVA, there were significant effects of treatment (C/Dx, F = 211.131; 

p<0.001), age (19/21, F = 1765.190; p<0.001) and treatment × age (C/Dx*19/21, F = 73.837; 

p<0.001) on fetal body mass. Subsequent post hoc analysis revealed that exposure to Dx 

during the last week of fetal development reduced BM of 19 and 21 day old female fetuses by 

20% (p<0.05) and 29% (p<0.05), respectively. From fetal day 19 to 21, BM of control female 

rat fetuses increased 2.7 fold (p<0.05), while in the same period that of Dx exposed fetuses 

increased 2.4 fold (p<0.05, Table 1). Exposure to Dx did not affect litter size or ratio of male 

to female pups (Table 1). 

 

Fetal ovary and germinative cells 

Histological and stereological analysis 

In 19 and 21 day old fetuses, definitive histological organization of the ovaries was not 

established. Germinative cells and somatic cells were arranged in clusters, separated from 

each other by connective tissue cells and blood vessels. The medulla of the ovary was filled 

with dense clusters of oocytes, while somatic cells were rare. In contrast, oocytes were scarce 

at the cortex, whereas epithelial cells were abundant. The germ cells were identified from 

their large size, round and lightly staining nucleus. The widespread distribution of PCNA 

indicated active GC proliferation in the fetal ovary. Apoptotic germ cells were identified as 

large cells that stained for caspase-3 (Figure 1 and 2). Exposure to Dx during this crucial 

period in ovary development did not affect the histological features of the fetal ovary. 

 

 Two way ANOVA showed that treatment, age, and treatment × age significantly 

influenced ovary volume, total number of GC and total number of PCNA and caspase-3 

positive GC in the ovaries of 19 and 21 day old fetuses (Table 2). Applying Cavalieri’s 

principle, we calculated that the fetal ovary volume in 19 day old control fetuses was 4 x 10
-2 

± 3 x 10
-4

 mm
3
. Post hoc analysis revealed that Dx exposure did not affect ovary volume in 

19 day old fetuses, while in 21 day old fetuses it was reduced by 30% (p<0.05) when 

compared to controls. As a result of near term physiological processes control fetal ovaries 

increased in volume by 49% between fetal days 19 and 21 (p<0.05, Fig. 3). 

 

 Using the fractionator/physical disector design we estimated that the total number 

of GC per ovary of 19 day old control fetuses was 3892 ± 63 cells, among which there were 

2530 ± 146 PCNA positive GC and 428 ± 12 casp-3 positive GC. The post hoc test showed 

that Dx exposure did not affect the total number of GC in 19 day old fetal ovaries, while the 

total number of PCNA positive GC per ovary was 27% lower (p<0.05), and the total number 
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of casp-3 positive GC had increased 2.3 fold (p<0.05) when compared to controls (Table 3). 

In 21 day old fetuses exposure to Dx had reduced the total number of GC by 21% (p<0.05), 

as well as the total number of PCNA positive GC by 71% (p<0.05). Administration of Dx 

raised the total number of casp-3 positive GC by 34% (p<0.05) in comparison to control 

values (Table 3). Thus, from fetal day 19 to 21 the total numbers of GC, PCNA and casp-3 

positive GC were significantly diminished by 57% (p<0.05), 84% (p<0.05) and 50% 

(p<0.05), respectively (Table 3). 

 

 In the ovaries of control 19 day old fetuses the relative numbers of PCNA and 

caspasa-3 positive/total GC (labeling index) were 65% and 11%, respectively. After Dx 

exposure the percentage of PCNA positive/total GC declined to 48%, while that of casp-3 

positive /total GC increased to 25% (Figure 4). Between fetal day 19 and 21 relative numbers 

of PCNA and casp-3 positive/total GC cells reach to 25% and 13%, respectively, in control 

fetuses. Dx exposure enhanced the drop in proportion of PCNA positive/total GC cells in 21 

day old fetuses to 9%, but increased that of casp-3 positive/total GC cells to 22% (Figure 4). 

 

DISCUSSION 

This work represents an experimental demonstration in vivo of the potential harmful effect of 

Dx exposure on the rat fetal ovary. Using a modern stereological approach, we demonstrated 

that Dx exposure decreased the volume of the fetal ovary and the proliferation rate of 

germinative cells, while it increased their apoptotic rate. Accordingly, Dx lowered the 

number of germinative cells in the rat fetal ovary, which can be linked with reduced 

reproductive potential in adulthood. 

 

The fetal period is critical for ovary development and future adult fertility, since the 

final number of oocytes accessible for reproduction of the next generation is mostly defined 

at that time [2]. An important target of developmental programming is the reproductive 

system. If adverse impacts are experienced at a critical timeframe during fetal life, normal 

dynamics of the developmental process in the ovary may be changed, with long-term effects 

on ovary structure and function. 

 

 Under our experimental conditions overexposure to glucocorticoids caused 

intrauterine growth retardation, followed by reduced body mass of 21 day old female fetuses. 

Body mass is a crucial determinant of fetal growth. Low birth mass, as a marker of adverse 

environmental signals during prenatal development, is associated with increased frequency of 

pathophysiological conditions in adulthood [14]. An excessive level of glucocorticoids during 
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fetal life disturbs development of body weight regulatory systems and such alterations 

continue until prepuberty [16]. Low birth mass and durable reduced body mass in female 

offspring prenatally exposed to glucocorticoids may be related to delayed onset of puberty 

[24, 25], indicating that body mass is an essential component of reproductive maturation. 

 

Ovarian development during fetal life is a complex phenomenon determined by 

successive changes in cell kinetics. Progressive growth of germinative cells, as differentiation 

proceeds, and enlarged proliferation of follicular cells [26] contribute to the increased ovarian 

volume in the same period. Periods of rapid GC proliferation are followed by stages of 

stability and greater rates of apoptosis. High mitotic activity of oogonia was detected in our 

experimental conditions using the PCNA immunomarker. The widespread distribution of 

PCNA indicated active cell proliferation in the ovary of 19 day old fetuses. However, the 

decline in percentage of PCNA positive/total GC between fetal days 19 and 21 correlated 

with transition from mitosis to meiosis, i.e. from oogonia to primary oocytes. 

 

 Besides GC proliferation, an essential component of ovarian development is 

apoptosis. Prenatal loss of oocytes reflects selection at the cellular level and provides 

regulation of the size and quality of the germinative cell pool that will define reproductive 

potential of the individual [27]. Apoptosis occurs at all stages of oogenesis, with three main 

waves of loss described until primordial follicle formation [28]. The first wave appears at the 

oogonial stage and affects up to 3.6% of GC. We documented the second wave of loss in 19 

day old fetuses, when oogonia cease mitosis and enter meiosis and the apoptotic rate of GC 

reaches 11%. Degeneration of germinative cells continues up to 48 hours after birth, when a 

third wave of degeneration occurs just before the formation of primordial follicles. In that 

period, the oocytes are in late pachiten [28]. The balance between apoptosis and proliferation 

during fetal ovarian development is the crucial phenomenon for establishing maximal 

reproductive potential in adulthood, since the overall number of oocytes is defined during the 

fetal period. 

 

 Dexamethasone is often used in obstetric practice to promote fetal lung maturation 

and to prevent respiratory distress syndrome, when the risk of preterm delivery persists [29]. 

Several epidemiological studies using Dx as prenatal treatment have shown that it does not 

have a teratogenic effect when applied according to the usual protocol [30, 31]. However, the 

effect of Dx on the fetal ovary and long-term fertility of women exposed in utero is unknown, 

as Dx treatment was initiated in the early 1980s. Therefore, animal studies can greatly 

illuminate this very important aspect of female reproduction. 
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 Exposure to Dx during the most vulnerable period in ovary development decreased 

the relative number of PCNA positive germinative cells, while increasing that of caspase-3 

positive germinative cells. Dx lowered the expression levels of v-kit Hardy-Zuckerman 4 

feline sarcoma viral oncogene homolog (KIT) [2]. KIT is crucial for germinative cell survival 

[32] and reduction in KIT expression contributes to Dx-induced germinative cell apoptosis in 

the human female fetal germline [2]. Accelerated apoptosis of germinative cells may lead to 

an imbalance of cell proliferation and death, resulting in impaired oogenesis. Impairment of 

fetal oogenesis through an apoptotic mechanism after Dx exposure reduces the total number 

of GC in the fetal ovary, compromises the oogonial stock and thus may constitute a risk for 

female fertility. 

 

 Our data indicate that prenatal exposure to Dx reduces rat ovary volume and 

number of germinative cells in the fetal ovary. In accordance with the central dogma of 

mammalian reproductive biology, the number of oocytes at birth represents almost the 

complete reproductive potential of an individual. Fewer oocytes in the fetal rat ovary due to 

Dx exposure leads to a significant decrease of the overall follicle number in neonatal rat 

ovaries, as we reported earlier [19]. These data document the programming effect of Dx at 

the level of the ovary. Clear programming effects of Dx were also detected in the 

hypothalamus and pituitary gland [33, 17, 18]. Dx induced changes at all three levels of the 

hypothalamo-pituitary-gonadal axis may contribute seriously to impaired reproductive 

function during adulthood. It is clear that treating pregnant women with drugs, especially 

with those of hormonal nature which cross the placental barrier and may affect fetal 

development, requires a cautious approach. The short medical history of Dx use and lack of 

wide-ranging epidemiological studies elaborating the potential harmful effects of Dx 

treatment during pregnancy on the reproductive system of female offspring indicate that our 

findings have important implications for humans. 
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Table 1.Litter size, female:male ratio, body mass in 19 and 21 day old control fetuses (C) and 

fetuses exposed to dexamethasone (Dx). 

                   Litter size  Female:male  Fetal body mass (g)      

                                         ratio           19 day       21 day 

C 12±3 1:1±0.5 1.5±0.1 4.1±0.5
b
 

Dx 12±2 1:1±0.3 1.2±0.2
a
 2.9±0.3

a,c
 

All results are given as mean ± SD, n=10, 
a
p<0.05, Dx vs. corresponding control; 

b
p<0.05, 

C21 vs. C19, 
c
p<0.05, Dx21 vs. Dx19 (Bonferroni test) 

 

 

 

 

Table 2. Results of the two way ANOVA 

 

 Df Ovary volume GC PCNA+GC Casp-3+GC 

treatment 1 

F=125.6 

p<0.001 

F=134.6 

p<0.001 

F=405.3 

p<0.001 

F=2640.8 

p<0.001 

age 1 

F=173.2 

p<0.001 

F=22409.8 

p<0.001 

F=6356.8 

P<0.001 

F=5547.4 

p<0.001 

treatment×age 1 

F=26.6 

p<0.001 

F=95.9 

p<0.001 

F=61.6 

P<0.001 

F=1510.8 

p<0.001 
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Table 3.Total number of germinative cells, PCNA positive and caspase-3 positive 

germinative cells in ovary of 19 and 21 day old control fetuses (C) and fetuses exposed to 

dexamethasone (Dx). 

 Σ GC Σ PCNA + Σ casp-3 + 

C19 3892±63 2530±146 428±12 

Dx19 3863±48 1854±35
a
 966±24

a
 

C21 1661±39
b
 415±24

b
 216±23

b
 

Dx21 1320±49
a
 119±13

a
 290±12

a
 

All results are given as mean ± SD, n=10, 
a
p<0.05, Dx vs. corresponding control; 

b
p<0.05, 

C21 vs. C19 (Bonferroni test) 
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Figure 1. 

 

Figure 1. Immunohistochemical localization of PCNA and caspase-3 positive germinative 

cells in ovary of 19 day old control fetuses (C) and fetuses exposed to dexamethasone (Dx); 

scale bar- 55μm (a, b) and 20 μm (c, d) 
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Figure 2. 

 

Figure 2. Immunohistochemical localization of PCNA and caspase-3 positive germinative 

cells in ovary of 21 day old control fetuses (C) and fetuses exposed to dexamethasone (Dx); 

scale bar-55μm (a, b) and 20 μm (c, d) 
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Figure 3. 

 

Figure 3. Volume of fetal ovary in 19 and 21day old control fetuses (C) and fetuses exposed 

to dexamethasone (Dx). All results are given as mean ± SD, n=10, 
a
p<0.05, Dx vs. 

corresponding control, 
b
p<0.05, C21 vs. C19 (Bonferroni test) 
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Figure 4. 

 

Figure 4: Graphical presentation of PCNA and caspase-3 labeling index in germ cells, and 

remaining germinative cells, in the developing ovary of 19 and 21 day old control fetuses (C) 

and fetuses exposed to dexamethasone (Dx) 

 

 

 

 

 

 

 

 

 

 

 

 


