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Abstract: The study of B chromosomes (Bs) started more than a century ago, while their presence
in mammals dates since 1965. As the past two decades have seen huge progress in application
of molecular techniques, we decided to throw a glance on new data on Bs in mammals and
to review them. We listed 85 mammals with Bs that make 1.94% of karyotypically studied
species. Contrary to general view, a typical B chromosome in mammals appears both as sub- or
metacentric that is the same size as small chromosomes of standard complement. Both karyotypically
stable and unstable species possess Bs. The presence of Bs in certain species influences the cell
division, the degree of recombination, the development, a number of quantitative characteristics, the
host-parasite interactions and their behaviour. There is at least some data on molecular structure
of Bs recorded in nearly a quarter of species. Nevertheless, a more detailed molecular composition
of Bs presently known for six mammalian species, confirms the presence of protein coding genes,
and the transcriptional activity for some of them. Therefore, the idea that Bs are inert is outdated,
but the role of Bs is yet to be determined. The maintenance of Bs is obviously not the same for all
species, so the current models must be adapted while bearing in mind that Bs are not inactive as it
was once thought.

Keywords: supernumerary chromosomes; additional chromosomes; chromosome polymorphism;
evolution

1. Introduction

The presence of supernumerary or B chromosomes (Bs) is the oldest known chromosome
polymorphism [1], and yet, after more than a century of research, the biological importance of Bs is
still to be better determined. The knowledge about Bs in mammals is more recent and dates since 1965
when they were found in the greater glider, Petauroides (Schoinobates) volans by Hayman and Martin [2]
and in the red fox, Vulpes vulpes by Moore and Elder [3].

A complex collection of diverse chromosomes, such as Bs, is difficult to describe. Yet, Bs are
defined as dispensable supernumerary chromosomes which do not recombine with members of
the basic A chromosome set (As), and do not follow the rules of Mendelian segregation law [4].
This definition assembles a pool of various chromosomes that do not share a complete set of features
but only the mentioned dispensability, which alludes that a regular growth and development take
place with or without Bs. A typical B chromosome is seen as a supernumerary, heterochromatic
chromosome, smaller and morphologically different from chromosomes of the standard set, that does
not evoke visible phenotypic effects. Nevertheless, the Bs that do not fit either partly or entirely into
this picture are far from being atypical. In reality, when it comes to Bs, being out of the ordinary is
considered to be a rule.
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The earlier Beukeboom’s estimate that 15% of all species carry Bs seems to be too high. The more
accurate calculation stating that only 3% of karyologically studied extant species, across the majority
of taxonomic groups carry Bs, was given by D’Ambrosio et al. [5]. Although it was thought that
species with Bs in mammals are many times less frequent than in plants, it seems that this is not well
grounded. According to the data that Jones [6] summarized, there are 1252 plant species with Bs that
make about 2.4% of karyotypically studied plant species [7]. In the first review of Bs in mammals
Volobujev [8] listed 14 species, but the next year he expanded list to 25 species [9]. Vujošević [10]
increased the list to 34 species, and in 2004 we recorded fifty-five species carrying Bs [11]. There are
nearly 70 species with Bs that were mentioned by Trifonov et al. [12], but the very list of species was
not presented. As it can be seen in Table 1, the number of mammalian species carrying Bs has increased
to 85. At the same time, the list of documented mammalian species has also increased from 4629 [13]
to 6399 extant ones [14]. It appears that ~1.9% of 4380 karyotypically studied mammalian species
(according to chromosome number database [15]) are featured by presence of Bs. We gave all species
proper names according to the list of Burgin et al. [14], but even in such a detailed list, some species
remain questionable. Besides adding new species to the list, we also removed some due to either being
listed multiple times under different names, or incorrectly mentioned as species with Bs, such as the
pocket gopher, Thomomys umbrinus [16].

Despite the vast body of knowledge on Bs within mammalian species, the question of what factors
determine the distribution of Bs across different species is yet to be answered. Why are Bs present in
some species and not in others? Is there some innate property of the genome, or karyotype, which
determines whether a species is likely to carry Bs or not? As passed two decades witnessed huge
progress in application of molecular techniques, we decided to re-examine the data on Bs in mammals,
and to suggest the future directions of the research.

2. Morphological Characteristics and Size of B Chromosomes

B chromosomes were sorted in three categories [8,10,11] based on their size in relation to
chromosomes from the standard set (Table 1). The most frequent Bs are of the same size (II) as the
chromosomes from A set (52 species, 65.0%), so they cannot be recognized using standard cytogenetic
techniques. In this category, the size of Bs often corresponds to the size of the smallest chromosome in
the genome. Furthermore, about less than half (39 species, 48.8%) of species have Bs that are smaller
than the smallest chromosomes of the standard set. They belong to category I. Ungulates and bats have
only Bs from this category (Table 1). There are two primate species that possess micro Bs, but there is
still a debate if human small supernumerary marker chromosomes (sSMC) could be considered as B
chromosomes [17].

The rarest (3.5%) of the species are the ones with Bs either larger or the same size as the
largest chromosomes from the standard complement (III): Uromys caudimaculatus [18], Holochilus
brasiliensis [19] and Apodemus peninsulae [20]. Additionally, the presence of different types of Bs in the
same genome contributes to a large variability of Bs. Eleven species from Table 1 show variation in size
and morphology of Bs, so there are different types that are recognised. This variation is well studied in
A. peninsulae where five classes with different morphological types of Bs are present.

Among Bs from type II, metacentrics and submetacentrics are more present (62.7%) than
acrocentrics. Hewitt [21] noted that large Bs tend to be mitotically stabile while the small ones
have an opposite tendency. It means that the intraindividual variability rises with the decrease in size
of Bs (see more details in Section 3).
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Table 1. List of species with B chromosomes.

ORDER
Species

Common Name (♦♦♦) 2n NFa X/Y No. Bs
Bs Morphology

References
Size * Cent. Position †

PERAMELEMORPHIA

Echymipera kalubu Common Echymipera 13–14
XX/X0 26 M/A 1–5 I M [22]

DIPROTODONTIA

Petauroides (Schoinobates) volans Greater glider 22 38 M/A 1–8 I mi [2,23]
INSECTIVORA

Crocidura leucodon Bicolored shrew 28 52 SM/SM, A 1 II A [24]
Crocidura malayana Malayan shrew 38 62 SM/M 1–2 II M [25]
Crocidura suaveolens Lesser shrew 40 46 M/A 1 II [26]

Sorex bedfordiae Lesser stripe-backed shrew 24 44 A/A 1–2 II M [27]
CHIROPTERA

Myotis macrodactylus Big-footed Myotis 44 56 M/A 1 I mi [28]
Nyctalus leisleri Lesser Noctule 44 54 M/A 1–3 I mi [29]

Pipistrellus tenuis (mimus) Least Pipistrelle 38 50 M/A 2–4 I mi [30]
PRIMATES

Alouatta seniculus
A.seniculus macconelli Red howler monkey 46

47–49 64 M/A 1–3
1–3

I A [31,32]
[33]

Homo sapiens Human 46 78 SM/A 2 I mi [34,35]
CARNIVORA

Atelocynus microtis Short-eared dog 74 72 SM/SM 2 I mi [36]
Chrysocyon brachyurus Maned wolf 76 72 SM/SM 1 II A [37]

Nyctereutes p. procyonoides Raccoon dog 54 62 M/M 1–4 II A, SM [38]
Nyctereutes p. viverinus 38 62 M/M 1–5 II A [39]
Vulpes (Alopex) lagopus Arctic fox 50 92 M/A 1 II M [40]

Vulpes bengalensis Bengal fox 60 68 M/A I mi [41]
Vulpes pallida Pale fox [42]

Vulpes vulpes (fulvus) Red fox 34 64 M/A 1–10 I A, M [3,43]
ARTIODACTYLA

Capreolus pygargus Siberian roe deer 70 72 SM/A 1–14 I mi [44,45]
Mazama americana Red brocket 42–53 42–52 SM/A 2–5 I mi, A [44,46]

Mazama bororo Small red brocket 34 46 M 4–6 I mi, A [47,48]

Mazama gouazoubira Gray brocket 69–70
70

68–69
68

M, A/A, mi
A/M

1–2
1–3

I
I mi, A [47,49,50]

Mazama nana Brazilian dwarf brocket 36 54 M/mi 1–6 I mi, A [47,51]
Mazama nemorivaga Amazonian brown brocket 67–69 69–72 SM/A,M 2–7 I mi [52]

Moschus moschiferus (sibiricus) Siberian musk deer 58 56 A/A 1–2 - - [53]
RODENTIA
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Table 1. Cont.

ORDER
Species

Common Name (♦♦♦) 2n NFa X/Y No. Bs
Bs Morphology

References
Size * Cent. Position †

Acomys ngurui 59–61 68 M/A,SM 1 II SM [54,55]
Acomys spinosissimus Spiny mouse 59–61 A/SM 1 II A [54]

Akodon mollis Soft grass mouse 22 42 M/A 1 II M [56]
Akodon montensis (arviculoides) Montane Akodont 24 42 A/A 1–3 II SM [57,58]

Apodemus agrarius Striped field mouse 48 54 A/A 1 I, II mi, A [59]
Apodemus argenteus Small Japanese field mouse 46 48 A/A 1 I, II mi, SM [60]
Apodemus flavicollis Yellow-necked field mouse 48 46 A/A 1–9 II A [61,62]

Apodemus mystacinus Eastern broad-toothed field mouse 48 50 A/A 2 - - [63]
Apodemus peninsulae (giliacus) Korean field mouse 48 46 A/A 1–30 I, II, III mi, A, SM, M [64,65]

Apodemus sylvaticus Long-tailed field mouse 48 46 A/A 1–3 II A [66]

Bandicota indica Greater bandicoot rat 44/45
XX/XO 84 SM/A 1–3 II SM [67]

Bandicota savilei Savile’s bandicoot rat 43 58 SM 1 I SM [68]
Berylmys berdmorei Berdmore’s Berylmys 40 62 A 1 II M [68]

Blarinomys breviceps Brazilian shrew mouse 29–50 50 A 2 II M [69]
Chaetodipus (Perognathus) baileyi Bailey’s pocket mouse 46 64 M/M 1–10 II M [70]

Dasymys rufulus West African shaggy rat 36, 38 39, 40 42–50 A,SM, M/A, SM,
M 1–3 II M [71]

Dasyprocta fuliginosa Black Agouti 64 118 M/SM 1 II SM [72]
Dasyprocta leporina Red-rumped Agouti 64 118 M/M 1 I M [72]

Dasyprocta prymnolopha
(nigriclunis) Black-rumped Agouti 64 118 M/SM 1 II M [72]

Dasyprocta sp. - 64 118 M/SM 1 II M [72]
Dicrostonyx groenlandicus (kilangmiutak) Northern collared lemming 48 M/SM 1–3 I, II A, M [73]

47–50 48 A, M/A,SM 1–8 II M [74]
Dicrostonyx torquatus Palearctic collared lemming 44 56 A, SM/A 1–42 II SM, M [74,75]

Golunda ellioti Indian bush rat 54 54 SM/A 1–4 II A [76]
Grammomys (Thamnomys) dolichurus Woodland thicket rat 54 68 SM/A 4-7 II A, M [77]

Grammomys macmillani (Thamnomys gazellae) Macmillan’s thicket rat 54 70 SM/A 2–17 I mi [78]
Holochilus brasiliensis Web-footed marsh rat 48 58 A/A 1–2 II, III SM, M [79]
Holochilus chacarius Chaco marsh rat 48–56 56–60 1–2 II [80]

Holochilus venezuelae - 44 56 A/A 1 II M [81]
Holochilus vulpinus - 36 58 A/A 1–3 II A [19]
Mastacomys fuscus Broad-toothed rat 48 56 SM/SM 1 II A [82]

Mastomys erythroleucus Guinea multimammate mouse 38 54 SM/SM 2 II A [83]
Mastomys natalensis Natal multimammate mouse 32 54 M/A 1 II SM [84]

Melomys burtoni Grassland Melomys 48 50 A/A 1–8 I, II mi, A, SM, M [85]
Melomys capensis Cape York Melomys 48 50 A/A 3–6 - [85]

Melomys cervinipes Fawn-footed Melomys 48 50 A/A 4–13 I, II SM, A [82]
Microtus gregalis Narrow-headed vole 36 50 M/A 1–4 II A [86]

Microtus longicaudus San bernardino long-tailed vole 56 84 M/A 1–14 I M [87]
Mus cookii Ryley’s spiny mouse 40 38 A/A 1 I, II A, M [68]
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Table 1. Cont.

ORDER
Species

Common Name (♦♦♦) 2n NFa X/Y No. Bs
Bs Morphology

References
Size * Cent. Position †

Mus shortridgei Shortridge’s mouse 46 46 A/A 1–3 I, II A, M [88]
Nannospalax (Spalax) leucodon Lesser blind mole rat 60 74 SM/M 1–3 I mi, A [89]

Nectomys rattus Common water rat 52 50 A, SM/A, SM 1–3 II A, SM, M [90]
Nectomys squamipes South American water rat 56 54 A, SM/A, SM, M 1–3 II A, SM [91]

Oecomys concolor Natterer’s Oecomys 60 62 1–2 I SM [92]
Oligoryzomys (Oryzomys) fornesi Fornes colilargo 62–66 64 SM/SM 1–2 I A [93]

Oligoryzomys flavescens Yellow pygmy rice rat 64 64 SM/SM 1–2 I mi [94]
Otomys irroratus Southern African vlei rat 28 44 M/SM 2–4 II SM, M [95]
Proechimys sp. 26 1 I mi [96]
Rattus fuscipes Bush rat 38 58 A/A 1–3 II M [82,97]

Rattus norvegicus Brown rat 42 60 A/A 1 II A [98]
Rattus rattus House rat 42 60–64 A/A 1–3 II M [99]

Rattus r. diardii 42 1–4 II M [100]
Rattus r. frugivorus 38 1–3 II M [101]
Rattus r. kandianus 40 1 II M [102]
Rattus r. tahnezumi 42 1 II M [102]

Rattus r. thai 42 1-6 [103]
Rattus tunneyi Pale field rat 42 60 A/A 1 II M [104]

Reithrodontomys megalotis Southern marsh harvest mouse 42 1–7 I mi [105]
Reithrodontomys montanus Plains harvest mouse 36 72 M/A, SM 1 I SM [106]

Sigmodon hispidus Hispid cotton rat 52 50 A/M 3–4 - [107]
Sooretamys angouya (Oryzomys angouya, O.

buccinatus, O. ratticeps) 58 60 A/A 2 I, II mi, SM [108–110]

Thallomys nigricauda Black-tailed tree rat 48 60 - [111]
Thomomys bottae Animas mountains pocket gopher 76 130 SM/mi 6–12 I mi [112]

Trinomys (Proechimys) iheringi Ihering’s spiny rat 60 116 SM/SM 1–6 I mi [113,114]
Tscherskia (Cricettilus) triton Greater long-tailed hamster 28 30 A/M 1–2 II A [112,113]

Uromys caudimaculatus White-tailed giant rat 46 50 A/A 2–12 II, III A, SM, M [18,115]

2n—diploid number, NFa—fundamental number of autosomes, X/Y—morphology of sex chromosomes; * Category: I—Bs smaller than chromosomes from A set, II—same as A, III—larger
than A; † mi—micro Bs, M—metacentric, SM—submetacentric, A—acrocentric chromosomes; (♦) Mammal Diversity Database [116].
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3. Frequency of B Chromosomes

A large variability of Bs in mammalian species is displayed on all levels: intra-individual,
intra- and inter-populational. The most common for mammals is frequent appearance of
intraindividual variability that can feature the same tissue or appear between different tissues.
Mosaicism for the number of Bs was scored in Echymipera kalubu [22], Rattus rattus [103], V. vulpes [117],
Myotis macrodactylus [28], A. peninsulae [118], Dicrostonix torquatus [119], Trinomys iheringi [113],
Nictereutes procionides viverinus, Capreolus pygargus [44], Alouatta seniculus [32], Dasyprocta fuliginosa,
Dasyprocta leporine, Dasyprocta prymnolopha [72], Apodemus flavicollis [11], Nictereutes procionides
procyonides [120], Mazama nana [51], Mazama americana [51], Grammomys macmillani [78], Acomys ngurui,
Tscherskia triton [121] and Mazama nemorivaga [52].

The mosaicism for the number of Bs is extensively studied in Korean field mouse, A. peninsulae,
first noticed in early studies [122] and then confirmed in different areas of species’ wide
distribution [123,124]. The frequency of mosaics extends from 0.05 in South Korea [125] to even
0.85 in populations from Primorskii region and Hokkaido [123]. Furthermore, it has been found that
the variability of B chromosome numbers is higher in the group of mosaics [8,124,126].

The great variability produced by intraindividual mosaicism is also characteristic for genus
Mazama. In this genus, Bs appear in five out of eight species [51]. For instance, in M. americana,
Abril et al. [127] found Bs in all 18 studied animals with intraindividual variability from 0–6 Bs.
The same occurrence happened in M. nana [51] and in M. nemorivaga [52] where all studied animals
had 0–7 Bs. Besides Bs, genus Mazama is featured with other kinds of chromosome polymorphisms,
involving autosomes and sex chromosomes. This is also the case with Acodon montensis [128]. On the
other hand, genus Apodemus with one third of species with Bs is karyotypically very stable.

A presence of one B chromosome is the most common situation, but the number of Bs per animal
can vary widely. The highest number of Bs, which counted 42, was found in D. torquatus [75]. Up to
30 Bs in a single animal have been detected in A. peninsulae [65], while there have been 17 Bs identified
in Thamnomys gazellae (now Grammomys macmillani) [78]. The average maximal number of Bs per
specimen found in 85 mammalian species is 4.88 (Table 1).

There are some species with Bs whose populations cover wide geographic areas. The yellow-necked
field mouse, A. flavicollis, common in the Western Palearctic region, has showed Bs presence almost
everywhere through its range with frequencies ranging from 0.07 to 0.94 [62,129–138]. The frequency
of animals with Bs in different geographic regions varies, but rules cannot be established easily.
The variation in frequency of Bs that is generally present in A. flavicollis is also characteristic for small
areas. For instance, we studied Bs presence in 40 populations from Serbia and the frequencies ranged
from 0.11 to 0.67 [66,133,139–142]. Generally, the frequency of animals with Bs increases with altitude
towards harsher climatological conditions [141,143]. However, this trend was not confirmed in the
samples from Poland [138].

Shellhammer [144] suggested that the most reasonable explanation of great B frequency variation
in southern marsh harvest mouse, Reithrodontomys megalotis, is a general increase in genetic variability
towards the periphery of species distribution. The same was proposed for Bailey’s pocket mouse,
Chaetodipus baileyi [70], while Boyeskorov et al. [145] found the highest B frequency in A. flavicollis
(0.81) in a peripheral area of its distribution. A north-to-south increase in frequency of Bs was found in
grassland Melomys, Melomys burtoni [85].

Besides being found in almost all studied populations, Bs in A. peninsulae are often present
in all individuals. For instance, in the populations in East Asia, the frequency of animals with Bs
vary from 0 to 1.0, while in the Siberian populations, from 0.99 to 1.0 [123,146]. So far, the only
exceptions are Sakhalin Island and Stenina Island, where Bs repeatedly have not been found [146,147].
The distribution of Bs varies significantly between populations [62,148–152], however, these differences
are still largely unexplained. The difference in the maximal number of Bs between regions is also
evident varying from 30 in Siberia [65], to 6 in South Korea [123]. Roslik and Kartavtseva [124]
established variability in modal number of Bs. Each population is characterized by a certain modal
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number of Bs. This number is also specific for regions. Roslik and Kartavtseva [153] documented
the presence of clinal decreasing in frequency of rare B morphotypes from East to Northwest in the
studied area.

Contrary to such high frequencies of Bs in A. peninsulae and A. flavicollis, Zima and Macholán [62]
found that the frequency of animals with Bs in populations of long-tailed field mouse, A. sylvaticus,
is very low (2.4%). Such sporadic occurrence of Bs is characteristic for another species from the same
genus, the striped field mouse, Apodemus agrarius [59]. While A. peninsulae and A. flavicollis are typical
forest-dwelling species, A. sylvaticus is limited to the edges of forests and A. agrarius is a typical
field mouse.

4. Structure and Composition of B Chromosomes

The newly discovered facts about Bs are mostly concerning their structure. Bs were for a long
time seen as chromosomes without genes or, at least without active ones, due to a prevailing absence
of their visible phenotypic effects. Although the counterevidence was repeatedly suggested, they
were generally ignored until recently when technological advances [154] in genome analysis and
sequencing armed investigators with a variety of new technical approaches to shake this dogmatic
view. Molecular studies represent Bs as assemblage of various repeated sequences originating from
one or more A chromosomes [155–157] or even from all [158]. Non-coding repetitive sequences or
mobile elements present in both A and B chromosomes prevail but some of them are more frequent
in Bs [159]. Some paralogs of genes located on A chromosomes could be found on Bs as intact or as
degenerate sequences [154]. Unique sequences specific for Bs are rarely found [23,160,161]. Yet, thanks
to the new technology, the list of genes identified on Bs is promisingly increasing.

The previous studies on mammalian Bs that were based mostly on differential staining revealed
that 60% of them are C positive [11]. Those studies showed that when different types of Bs are present
they could be C positive or C negative, such as in A. peninsulae and M. nana [51,162]. Furthermore, the
analyses of molecular DNA composition of Bs in A. peninsulae [163] showed a presence of two specific
forms of chromatin with presumed autonomous origin. Besides that, homology to the heterochromatic
region of sex chromosomes and pericentromeric DNA of autosomes was established [163–165].

Molecular composition of Bs for 19 mammalian species is presented in Table 2. A presence of
ribosomal genes (rDNA) was detected in 5 species by using silver staining and fluorescent in situ
hybridization (FISH). Telomeric repeats are most frequently found on Bs (12 species), but centromeric
were detected in only three cases. The presence of molecular markers specific for Bs was found in
P. volans [23] and A. flavicollis [160].
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Table 2. Current data on molecular composition of B chromosomes in mammalian species.

Species Found on B Chromosome Method References

Petauroides volans centromeric regions,
B specific regions

FISH,
PCR [23]

Nyctereutes procyonoides procyonoides interstitial telomeric sequences FISH [166]

rDNA (NOR) FISH, silver staining [167]

C-KIT FISH [168]

Kdr,
RPL23A pseudogene FISH, PCR [169]

rDNA PRINS (primed in situ DNA synthesis) [170]

Lrig1 FISH [171]

Ret

Lrig1
Ret FISH

C-KIT (no transcriptional activitiy) PCR, RT-PCR [172]

100 sequences located on B, homologous to genes
involved in cell proliferation, differentiation, neuron sinapse, cell junction sequencing of microdissected B [173]

Nyctereutes procyonoides viverrinus interstitial telomeric sequences FISH [166]

three types of B-specific heterochromatin FISH [173]

C-KIT FISH [168,169,171]

Kdr
RPL23A pseudogene FISH, PCR [169]

Vulpes vulpes C-KIT FISH [168,171]

RPL23A pseudogene PCR [169]

Mdn1,
Ctndd2 FISH [171]

49 sequences located on B, homologous to genes associated with cell
division machinery, cell cycle control functions, microtubule, centrosomes,

cell differentiation, proliferation
sequencing of microdissected B [173]

Capreolus pygargus
Tnni3k,

Fpgt,
Lrriq3

FISH,
flow-sorted DNA libraries derived from Bs

[174,175]

9 genes located on B re-analyzed data from [175] [173]
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Table 2. Cont.

Species Found on B Chromosome Method References

Mazama gouazoubira

55 sequences located on B, homologous to genes
associated with functional clusters associated with ATP-binding/kinase,

mitochondria, cell cycle, Zn-ion binding/Zn-finger, membrane, cell
proliferation/ differentiation, positive regulation of protein kinase activity

sequencing of microdissected B [175]

107 sequences located on B homologous to genes re-analyzed data from [175] [173]

Acomys sp. telomeric repeat FISH [54]

Akodon montensis (arviculoides) rDNA (NOR) silver staining [57,108]

telomeric repeat,
rDNA (NOR)

FISH,
silver staining [176]

Apodemus flavicollis rDNA (NOR) silver staining [177]

B specific regions AP-PCR
RT-PCR

[160]
[178]

rDNA RT-PCR [179]

Vrk1 ISSR-PCR,
sequencing [180]

38 sequences located on B, homologous to genes associated with
microtubule, cell cycle proteins, and less significant nucleotide-binding,
membrane and metal binding proteins. Satellite repeats, MurSatRep1,

ERVL (MaLR), ERVK LTRs and transposable elements.

sequencing of microdissected B [181]

101 sequences located on B homologous to genes re-analyzed data from [181] [173]

Apodemus peninsulae telomeric repeat,
two types of B arm-specific repeats FISH [164]

[163]

two types of B-specific chromatin FISH [181]

repetitive elements FISH [182]

centromeric repeats, 32 sequences located on B homologous to genes
associated with cell division machinery, cell cycle control,

nucleotide-binding, laminin and EGF-like domain-containing,
cytoskeleton and ion-bindings proteins, LINE L1 elements, centromeric

repeats, satelite repeats MurSatRep1, ERVK and ERVL (MaLR) LTRs.

sequencing of microdissected Bs [181]

152 sequencies located on Bs homologous to genes re-analyzed data from [181] [173]

Blarinomys breviceps telomeric repeats,
ITSs FISH [69]
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Table 2. Cont.

Species Found on B Chromosome Method References

Holochilus brasilensis OSHR, telomeric repeats FISH [183]

Nanospalax leucodon telomeric repeat FISH [89]

Nectomys sp. ITBs FISH [184]

Nectomys rattus OSHR FISH [183]

Nectomys squamipes OSHR, ITS FISH [183]

Rattus rattus rDNA FISH [185]

telomeric repeat FISH [186]

Reithrodontomys megalotis
telomeric repeat,
LINE elements,

centromeric repeats
FISH [187]

Sooretamys angouya rDNA (NOR) silver staining [108]

Trinomys iheringi telomeric repeats FISH [114]

FISH—fluorecent in situ hybridization; RT-PCR—real time-PCR; rDNA (NOR)—ribosomal DNA (nucleolus organizer region); AP-PCR—arbitrarily primed-PCR; ISSR-PCR—inter simple
sequence repeat-PCR; EGF—epidermal growth factor; LINE—long interspersed nuclear element; ERVK—endogenous retrovirus-K; ERVL—endogenous retroviruses-related; LTRs—long
terminal repeats; ITS—interstitial telomeric sequences; OSHR—Oryzomyini shared heterochromatin region; ITBs—interstitial telomeric bands.
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The first autosomal gene found on Bs of mammals was proto-oncogene receptor tyrosine kinase
(C-KIT). It was found in three unrelated species, the red fox, V. vulpes, the Chinese and Japanese
raccoon dog, N. procyonoides [168,169] and M. gouazoubira [175] but not in A. flavicollis [179]. Another
gene (Vrk1) was found in two Apodemus species. By using ISSR-PCR, Bugarski-Stanojević et al. [180]
found a part of Vrk1 gene on Bs of A. flavicollis. The presence of this gene was confirmed upon isolation
by microdissection [181] and additional 37 genes or parts of genes were found on Bs of this species.
The Bs in A. flavicollis have similar structure as pericentromeric region of sex chromosomes [188].
Through comparison of gene groups in Bs of six mammalian species from different families, Makunin
et al., [173] confirmed enrichment with genes related to cell-cycle, development and genes functioning
in the neuron synapse. They pointed that the presence of genes on Bs involved in cell-cycle regulation
and tissue differentiation could be important for the B chromosome formation.

There are also findings that propose the existence of regulatory interactions between coding
sequences of A and B-chromosomes. Bugno-Poniewierska et al. [189], from studies of Bs in Chinese
raccoon dogs and red fox determined that DNA methylation may maintain the transcriptional
inactivation of DNA sequences situated on Bs. This could be the way to avoid some negative effects
of Bs presence. Trifonov et al. [174] found, for the first time, the protein coding sequences on Bs
of the Siberian roe deer, C. pygargus, which are not fully inactivated. Earlier, the gene expression
in A. flavicollis showed elevated expression of three DNA fragments in the presence of Bs [178]. So,
B‘chromosome could be seen as a repository of various information which could be used depending
on the selection pressure that a B carrier faces.

5. Origin of Bs in Mammals

There are several hypotheses proposed to explain the route of B chromosomes appearance
[174,185,190]. In general, the source of Bs are chromosomes of the standard set, both autosomes and sex
chromosomes, yet their origin from interspecies hybrids has also been proven in certain cases [191,192],
but not in mammals. Whatever the source of their origin is, all proto-Bs must instantaneously
pass through inactivation to avoid synapsis with the source chromosome. At present, a series of
molecular processes are known as good candidates to achieve this condition, for instance mechanisms
of sex chromosomes inactivation and epigenetic mechanisms. Bs can follow the same process
operating in meiotic sex chromosome inactivation (MSCI) during the meiotic prophase I. Vujošević
and Blagojević [11] proposed that B chromosomes are absent in birds due to genome reduction.
Moreover, it appears that the sex chromosome specific silencing is absent in birds, although not yet
been completely elucidated [193,194]. The same situation is found in egg laying monotremes [195]
that also lack Bs. What is frequently overlooked in attempts to explain the initial steps of Bs origin
is the possibility of simultaneous origin of proto-Bs in a population [11] that is far more probable in
mammals due to their social organisation and population dynamics. This could promote spread of
proto-Bs in populations.

The origin of Bs in mammalian species was based rather on presumptions than on facts.
The circumstantial evidence come and is expected from molecular studies of Bs DNA contant. Sex
chromosomes are proposed as a source of Bs in E. kalubu [22], Dycrostonix groenlandicus [196] and
Apodemus argenteus [60]. In A. peninsulae a homology of heterochromatic region of Bs, sex chromosomes
and autosomes was established [163–165]. Upon generation of microdissected DNA probes followed
by FISH on metaphase chromosomes, another study found that Bs in A. flavicollis originate from
pericentromeric region of sex chromosomes [188]. While there are five different types of Bs [197] with
different origin (including sex chromosomes) in A. peninsulae, it was shown that all Bs in A. flavicollis
have the same DNA contant regardless of their number or geographical distance which indicates a
common origin from sex chromosomes [188]. Furthermore, whenever two or more types of Bs are
present in one species, it appears that they do not have the same origin. A multiple origin of Bs in
A. peninsulae was suggested by Matsubara et al., [198] based on the presence of 18S/28S rRNA genes
only on meta- or submetacentric Bs. Some recent findings offer evidences for single origin of Bs in
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this species also [181]. A different origin for two types of Bs was also found in the harvest mouse,
R. megalotis, by Peppers et al. [187].

Based on comparative cytogenetic studies [67,199] it was suggested that Bs in Bandicota indica,
R. rattus and Rattus fuscipes originated before the divergence of these species occurred. Different
origin was assumed for Bs in two species of Carnivora, N. procyonides and V. vulpes [163,173] based on
molecular data.

A two-step appearance of Bs was proposed for A. peninsulae [164]. The first step is the
destabilization of pericentromeric regions, produced by the invasion of DNA sequences from
euchromatic parts of A chromosomes, which leads to a formation of microchromosomes in high
frequency, and thus make proto-Bs. The second step is the insertion and amplification of new DNA
sequences. Similar steps were proposed by Rubtsov et al. [200] that assumed that the origin of Bs start
with a loss of a greater part of q arm of an ancestor autosome followed by subsequent evolution of Bs
that includes additional constitutional rearrangements. Makunin et al. [175], by using sequencing of
isolated Bs of two mammalian species, showed that Bs originate as segmental duplications of specific
genomic regions, and subsequently passes through pseudogenization and a repeat accumulation.

Presently, it seems that the new data describing the molecular composition of Bs incites more
questions than suggests answers to the old ones.

6. Behaviour of B Chromosomes during Meiosis and their Transmission

The number of species whose meiotic behaviour of Bs was studied increased just slightely in last
15 years but there are new details for some already studied species. Currently, the meiotic behaviour
is known for 25 species and univalent Bs are present in all of them. Besides univalents, bivalents
appear in 13 species, and multivalents in 7, while assimetrical bivalents are present in 6 species. There
are 5 species (A. peninsulae, D. groenlandicus, N. procyonides, C. baileyi and V. vulpes) where all four
mentioned types of configurations are found.

When a different type of Bs is characteristic for the same species, their meiotic behaviour is
often type dependent. So Hyata [64] found that both paring and non-paring among Bs occur in
A. peninsulae. He showed that small macro- and microchromosomes in most cases do not follow
Mendelian inheritance, yet other types of supernumeraries do follow it. Further meiotic studies
in this species [197] showed that Bs are able to form axial elements and synaptonemal complexes
in prophase of the first meiotic division. The same authors found that univalents of dot like Bs of
different morphology are obviously not homologous, while metacentric Bs showed a partial homology.
Univalent Bs are commonly associated with sex bivalent. Ishak et al. [201] noticed an absence of
transcriptional activity in Bs of this species during pachytene. Karamysheva et al. [202], through
the use of 2D analysis of pachytene in A. peninsulae, found three types of configurations: synapsed
bivalents, univalents, and univalents that contain the foldback structure. During meiosis, Bs in
A. flavicollis appear as univalents, bivalents or, depending on number, combinations of both, but never
as a pair with the members of A set [130,203]. In the same species, Banaszek and Jadwiszczak [204]
found that Bs behave in non-Mendelian fashion during meiosis I of males.

In N. squamipes analysis of the synaptonemal complex revealed auto-pairing of univalent Bs [184].
In the Northen collared lemming, D. groenlandicus, it was found that, besides univalents, bivalents and
trivalents Bs can make synaptic associations with the Y chromosome [196]. Studies of synaptonemal
complex in M. americana by Aquino el al. [46] revealed the presence of both univalents and bivalents.
Univalents appear in two forms: as autopaird or just univalents.

When Bs appear as univalents in the silver fox, they show a folding-back behaviour that
ends as intrachromosomal pairing [205], which indicates the presence of repeated DNA sequences.
Sosnowski et al. [206] conducted experiments with spermatocytes of the red fox and the Chinese
raccoon dog, and found that Bs that conjugate together form diverse structures, such as bivalents,
trivalents, and tetravalents. Sosnowski et al. [206] also concluded that the increase in the number
of Bs in spermatocytes of the Chinese raccoon dog corresponds with the lack of conjugation more
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frequent. Basheva et al. [43] studied A- and B-chromosome pairing and recombination in the silver fox
using electron and immunofluorescent microscopy. They found the same distribution of the foci along
B- and A-bivalents and proved, for the first time, that meiotic recombination occurs in mammalian
B chromosomes

The accumulation of B chromosomes in mammals appears to be a rarer event than expected.
One of the reasons for sure is the lack of studies. Furthermore, Bs in some cases could maintain
themselves without the apparent drive. In males, the evidences for accumulation of Bs were found
in C. baileyi [207], V. vulpes [208], A. peninsulae [162,197,209], and in the greater long tailed hamster,
T. triton [121]. In the latter, Bs were found in males only and the increase in number of Bs in germline
cells was observed.

In lemmings, univalent Bs were eliminated from the polar body and incorporated into secondary
oocytes [210,211]. The evidence of accumulation of Bs has been obtained in females of R. rattus [212,213]
and R. fuscipes [97] by means of controlled crosses. In the case of experimental crosses done by Stitou
et al. [213] in R. rattus, males showed Mendelian transmission rates, while only a slight accumulation
of Bs happened in females.

Palestis et al. [214], following the theory of centromeric drive, based on a different ability of the
two meiotic poles for capturing centromeres [215], showed that Bs in mammals are more common in
species with acrocentric chromosomes. Since then, the number of mammalian species with Bs increased,
therefore this theory is not valid anymore. The number of species with Bs with predominantly
acrocentric chromosomes in standard set is just slightly larger, so it seems that such explanation for
origin of Bs is reasonable only in proven cases.

Karamysheva et al. [202] studied nuclear organization of Bs in A. peninsulae. They showed that
additional volume of heterochromatic regions of chromosomes and extra centromeres modify 3D
architecture of interphase nuclei. The location of Bs in meiosis appeared not to be random, and
unpaired Bs had a tendency to form a common compartment with unpaired part of the sex bivalent,
and thus avoided pachytene check point.

7. The Effects of B-Chromosomes

Apart from few exceptions, Bs do not cause visible phenotypic manifestations at individual level.
This makes the search for observable effects in mammals rather difficult. But even such a small amount
of data, together with new findings of genes on Bs, raises objections to the idea of Bs genetic inertness.
It has been found that Bs presence influences cell division, degree of recombination, development,
some quantitative characteristics, host-parasite interactions and behaviour.

A new and interesting data came from three-dimensional studies of Bs behaviour during division
in both somatic and germ cells. Kociucka et al. [216] studied three-dimensional positioning of
B chromosomes in fibroblast nuclei of the red fox and the Chinese raccoon dog, and found that small
Bs of the red fox are dominantly positioned in the interior of the nucleus, while the medium-sized
Bs of the Chinese raccoon dog are in the peripheral area of the nucleus as well as in intermediate
and interior locations. The data was in agreement with the chromosome size dependent theory [216].
But in the nuclei of the Korean field mouse all Bs, irrespective of their size, were located on nuclear
periphery in common compartments with C-positive regions of A chromosomes [202]. They suppose
that, at least for the Bs of the Korean field mouse, the DNA content is more important parameter that
determines where Bs will be located inside the nucleus.

As we pointed earlier, Basheva et al. [43] proved that in the silver fox recombination occurs
between B chromosomes which increases variability in the specimens that carry them. In earlier
studies, the presence of B chromosomes was associated with increased chiasma frequency in Bailey’s
pocket mouse, C. baileyi [207] and R. fuscipes [199]. In both species this increase is not influenced by the
number of Bs yet only by their presence.

Gileva [211] recorded a reduction of body and skull sizes in D. torquatus that carry numerous Bs,
and proposed that this could be reflected as a negative selective value in extreme climate conditions.
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Positive correlations between number of Bs and body weight were established in males of two species:
N. p. viverinus [217] and A. flavicollis [62,218]. Effects of Bs presence are extensively studied in
A. flavicollis and, in general, it was found that they influence the development of some morphometric
characters, mostly cranial ones [140]. One of the two regions of the mandible shows almost a triple
increase in intensity of integration in B carriers [219]. Furthermore, the maintenance of Bs in the same
species was studied by examining their effects on 3 components of cranial variability: canalization,
developmental stability, and morphological integration. It was suggested that B carriers follow different
developmental pathway for generating covariations of cranial traits [220]. This specific developmental
pathway is more sensitive to modifications caused by natural selection, which could be beneficial to
B carriers under variable environmental conditions. It was previously established that reaction of
animals with Bs to environmental changes differ from those without them [221]. Nonmetric traits
analyses show that the population density influences, at the same time, both the variation in the
frequency of specimens with Bs and the developmental homeostasis.

Adnađević et al. [222], by analysing effect of recorded endoparasites and parasite life-cycle stages
in A. flavicollis on expression levels of genes MHC II-DRB, IL-10 and Tgf-β, found that the presence
of Bs is associated with lower expression level of Tgf-β gene. Although the influence of host genetic
background on parasite infection has already been well established, this is the first study in mammals
that correlates presence of Bs with immune response. Curiously enough, the presence of Bs in this
species plays an important role in infrapopulations of their certain endoparasites by shifting sex
balance to higher proportion of males [223].

Shellhammer [144] from studies on R. megalotis was the first to propose that Bs could have an
effect on behaviour. The behaviour and the presence of Bs were connected in foxes through a series of
experimental crosses [224–226]. It appeared that groups of foxes selected for specific behaviour differs
significantly in frequency of mosaics for Bs.

8. Maintenance of B Chromosomes

The mostly discussed question about Bs during a century of research was the way they are
maintained in populations through time. Two schools of thought grouped around two models giving
opposite explanations of the way Bs are retained in natural populations. Both models assume that
the frequency of specimens with Bs in population is at equilibrium but the explanations how this
equilibrium is reached and kept are different. The model firstly named parasitic and then selfish [227]
claims that Bs are maintained by balance of accumulation and elimination due to detrimental effects.
Contrary to this, the heterotic model [228] suggests that, in the absence of mechanism of accumulation,
a small number of Bs could offer an adaptive advantage to carriers, while a large number could
be harmful. Currently, the parasitic model is predominant, mostly because the search for adaptive
significance of Bs was mostly ineffective. Furthermore, the convergence of this paradigm partly comes
from the popular theory of selfish or parasitic DNA, irresistible to some scientists. The number of
cases with proved Bs accumulation, which is prerequisite for parasitic model, although larger than
the number of cases without accumulation, is still very small in comparison with the known number
of species with Bs. For instance, the accumulation of Bs was studied in about 70 plant species and
among them 42 (60%) manifested accumulation mechanism [4] which makes only 3.4% of plant species
with Bs. Furthermore, detailed studies are largely directed on commercially important species that
possess Bs, like maize and rye, and pests such as grasshoppers, so the number of extensively studied
species groups is rather small. In attempt to include species without mechanism of Bs accumulation
into parasitic model, Camacho et al. [229] proposed that all Bs are initially parasitic, and later on,
through arm race with A genome, may become neutral. From this stage they can disappear or become
parasitic again. One of their arguments against heterotic Bs is that it is unexpected that Bs could be
beneficial in the first step, so a drive is necessary to establish themselves in population. Yet, if Bs
appear simultaneously in population, these arguments are not plausible. Therefore, when models are
assessed it is not good to stay frozen within a particular paradigm.
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Temporal analyses of B frequency and transmission in mammals are scarce. The frequency of
animals with Bs was the same in two successive years in Rattus rattus diardi [100]. During 8 years of
study, equilibrium frequencies of Bs in populations of A. flavicollis at one locality were maintained in
spite of fluctuations in population density [11,230]. Zima and Macholan [62] and Wojcik et al. [138]
also found the equilibrium during a three-year study in the same species. Contrary to stable frequency
from year to year, seasonal changes in frequency of animals with Bs could escape from equilibrium
in stress situations [231] or could keep it when there is no tough competition present [232]. Thus,
though frequencies of Bs could significantly differ through a year, their values stay the same between
years [230].

B chromosome frequencies in A. peninsulae show temporal variation. Comparison of Bs from the
population from Altai Republic, trapped in the 1980 and 2002 showed that a mean number of Bs in this
population increased almost threefold in the period of 22 years [200]. This increase was mainly due to
the rise of numbers of small and large bi-armed Bs (by factors of 7.0 and 5.3, respectively) and a slight
increase in the number of medium-sized biarmed B chromosomes (by a factor of 1.6). Nonetheless,
Borisov et al. [233] found that the number of Bs and theirs morphotypes were stable over the period of
30 years in certain populations.

Direct or indirect evidences for B drive in mammals are provided for seven species only:
C. baileyi [208], V. vulpes [209], R. rattus [212,213], D. torquatus [211], R. fuscipes [97], A. peninsulae [197],
and T. triton [121]. In 3 of them, B drive is operating in females thus supporting the theory of
centromeric drive [214]. Thomson [97] showed that the maintenance of Bs in R. fuscipes supports the
parasitic model very well.

The maintenance of Bs in populations can be explained in terms of their contribution to overall
genetic diversity of the species possessing them, and it might be arguable under the heterotic
model [142]. The increased variability widens the probability that species will survive in changing
environmental situations. In A. flavicollis, an increased frequency of animals with Bs is found in more
extreme climatic conditions [141]. Frequency of B chromosomes and quality of habitat are negatively
correlated indicating that B chromosomes in this species are mentioned due to the effects that they
exert at the level of populations [143]. Possible adaptive effects of Bs were also postulated by Blagojević
et al. [234] upon comparison of head morphology in three populations of this species that have Bs
at different frequencies. Adnađević et al. [235], by using amplified fragment length polymorphism
(AFLP) markers, made a comparison of populations of A. flavicollis settled in ecologically distinct
habitats differing in frequency of Bs, and found that the greatest genetic diversity is in the population
settled in optimal conditions for this species featured by the lowest frequency of animals with Bs.
The majority of loci that are subject of directional selection, feature either population with lower or
with a higher frequency of Bs. They suggested that the different frequency of B carriers in populations
is related to adaptive differentiation to diverse habitats. Tokarskaia et al. [45] found that the presence of
Bs is positively correlated with heterozygosity for random amplification of polymorphic DNA (RAPD)
loci, in populations of the Siberian roe deer, C. pygargus, thus indicating influence of Bs on the genetic
variation of the species. All these findings support the heterotic model of Bs maintenance.

Theoretically, inbreeding is harmful to parasitic Bs but beneficial to mutualistic ones. Social
organization of rodent populations and some other mammalian groups supports inbreeding which
opens new possibilities for the existence of beneficial Bs.

Extensive population studies of two species of the same genus Apodemus best illustrate that the
present models do not exclude each other but rather call for further adjustments. If we try to fit the
maintenance of Bs in A. peninsulae and A. flavicollis into the current models, A. peninsulae will follow the
parasitic (or selfish) model, while Bs in A. flavicollis will better fit into heterotic model. But when we
go into details, it seems that neither A. peninsulae nor A. flavicollis fit quite well into proposed models.
A. peninsule do not have populations at equilibrium and tolerance for Bs is so great that it is not easy to
say when Bs become detrimental. Furthermore, five different types of Bs present in this species, have
different outcomes. Some types are inherited in almost a Mendelian fashion. On the other hand, Bs
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in A. flavicollis brings adaptive advantage in certain situations and in some environments. In other
situations (and environments) they could be neutral or deleterious. Therefore, it could be hypothesized
that the adaptive advantage of these Bs is not general, but it is dependent on events through which
the individual or population is passing. The existing models need to be very much adjusted, but the
adjustment must be based on detailed and intensive studies in natural populations.

9. Conclusions

After more than a century, it appears that B chromosomes research suffers from an unbalanced
approach. That is also true for research of Bs in mammals. Population studies are a very difficult
task and are still largely avoided. Even rarer attempts are made to resolve effects of Bs in different
species that carry them. While molecular breaks into DNA composition of Bs are rapidly increasing,
the number of species included in them is still scarce. Namely, a more detailed molecular composition
is known for only six mammalian species. Although the confirmed presence of genes on Bs, in all
cases, disproved the claims that Bs are inert, the gathered knowledge and data are not sufficient to
explain the significance of Bs to their carriers. Are the paths of evolution of As and Bs opposite, or
do the lanes of the same highway promise a greater success in adapting to environmental changes?
This is yet to be resolved, but the answer seems to be inclining towards the latter statement.
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yellow-necked mouse Apodemus flavicollis. Ital. J. Zool. 2007, 74, 313–316. [CrossRef]

144. Shellhammer, H.S. Supernumerary chromosomes of the harvest mouse, Reithrodontomys megalotis.
Chromosoma 1969, 27, 102–108. [CrossRef] [PubMed]

145. Boyeskorov, G.; Zagorodnyuk, I.; Belyanin, A.N.; Lyapunova, E.A. B-chromosomes in Apodemus flavicollis
from eastern Europe. Pol. Ecol. Stud. 1994, 20, 523–526.

146. Kartavtseva, I.V.; Roslik, G.V.; Pavlenko, M.V.; Amachaeva, E.Y.; Sawaguchi, S.; Obara, Y. The B-chromosome
system of the Korean field mouse Apodemus peninsulae in the Russian Far East. Chromosom. Sci. 2000, 4,
21–29.

147. Ostromyshenskii, D.I.; Kuznetsova, I.S.; Podgornaya, O.I.; Kartavtseva, I.V. Appearance of B chromosomes
like structures in Apodemus peninsulae primary cell culture. Res. J. Zool. 2018, 1, 1.

148. Volobuev, V.T. Karyological analysis of three Siberian populations of Apodemus peninsulae (Rodentia, Muridae).
Dokl. AN SSSR 1979, 248, 1452–1454.

http://dx.doi.org/10.1159/000298819
http://www.ncbi.nlm.nih.gov/pubmed/20407221
http://www.ncbi.nlm.nih.gov/pubmed/27186343
http://dx.doi.org/10.1007/BF03194248
http://dx.doi.org/10.1007/BF00058534
http://dx.doi.org/10.1515/mamm-2003-0418
http://dx.doi.org/10.1159/000079297
http://www.ncbi.nlm.nih.gov/pubmed/15292601
http://dx.doi.org/10.4098/AT.arch.00-14
http://dx.doi.org/10.2298/ABS0904653V
http://dx.doi.org/10.1080/11250000701508578
http://dx.doi.org/10.1007/BF00326114
http://www.ncbi.nlm.nih.gov/pubmed/5820706


Genes 2018, 9, 487 23 of 27

149. Borisov, Y.M. Variation of the cytogenetic structure of the population of Apodemus peninsulae (Rodentia,
Muridae) in western Sayan Mountains. Genetika 1990, 26, 1484–1491. [PubMed]

150. Borisov, Y.M. Cytogenetic differentiation of the population of Apodemus peninsulae (Rodentia, Muridae) in
eastern Siberia. Genetika 1990, 26, 1828–1839. [PubMed]

151. Borisov, Y.M. Cytogenetic Structure of the Population of Apodemus peninsulae (Rodentia, Muridae) on the
bank of lake Teletskoe (Altai). Genetika 1990, 26, 1212–1220.

152. Borisov, Y.M.; Malygin, M.V. Cline variability of B-chromosome system in Apodemus peninsulae (Rodentia,
Muridae) from the Buryatia and Mongolia. Citologija 1991, 33, 106–111.

153. Roslik, G.V.; Kartavtseva, I.V. Geographic differentiation of B chromosomes in Apodemus peninsulae (Rodentia)
from the east Asia. In Proceedings of the International Symposium: Modern Achievements in Population,
Evolutionary, and Ecological Genetics, Vladivostok, Russia, 3–9 September 2017.

154. Ruban, A.; Schmutzer, T.; Scholz, U.; Houben, A. How next-generation sequencing has aided our
understanding of the sequence composition and origin of B chromosomes. Genes 2017, 8, 294. [CrossRef]
[PubMed]

155. Page, B.T.; Wanous, M.K.; Birchler, J.; Ames, A. Characterization of a maize chromosome 4 centromeric
sequence: Evidence for an evolutionary relationship with the B chromosome centromere. Genetics 2001, 159,
291–302. [PubMed]

156. Cheng, Y.-M.; Lin, B.-Y. Cloning and characterization of maize B chromosome sequences derived from
microdissection. Genetics 2003, 164, 299–310. [PubMed]

157. Bugrov, A.G.; Karamysheva, T.V.; Perepelov, E.A.; Elisaphenko, E.A.; Rubtsov, D.N.; Warchałowska-Śliwa, E.;
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mice Apodemus flavicollis (Rodentia, Mammalia) with and without B. chromosomes. Chromosoma 2005, 113,
418–427. [CrossRef] [PubMed]
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