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and Melita Vidaković1*
1Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142,

11060 Belgrade, Serbia
2Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bulevar

Cara Lazara 1, Novi Sad, Serbia
3Department of Transfusion Medicine, Clinical Hospital Center Rijeka, Tome Stižića 3, 51000 Rijeka, Croatia
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Abstract

Pancreatic b-cell death or dysfunction mediated by oxidative stress underlies the development and progression of diabetes mellitus. In the

present study, we tested extracts from the edible mushroom Lactarius deterrimus and the chestnut Castanea sativa, as well as their mixture

(MIX Ld/Cs), for potential beneficial effects on streptozotocin (STZ)-induced pancreatic b-cell death. Analysis of chelating effects, reducing

power and radical-scavenging assays revealed strong antioxidant effects of the C. sativa extract and MIX Ld/Cs, while the L. deterrimus

extract displayed a weak to moderate effect. The antioxidative effect of the chestnut extract corresponds with the high content of phenolics

and flavonoids identified by HPLC analysis. In contrast, the mushroom extract contains relatively small amounts of phenols and flavonoids.

However, both extracts, and especially their combination MIX Ld/Cs, increased cell viability after the STZ treatment as a result of a signifi-

cant reduction of DNA damage and improved redox status. The chestnut extract and MIX Ld/Cs significantly lowered the STZ-induced

increases in superoxide dismutase and catalase activities, while the mushroom extract had no impact on the activities of these antioxidant

enzymes. However, the L. deterrimus extract exhibited good NO-scavenging activity. Different mechanisms that underlie antioxidant effects

of the mushroom and chestnut extracts were discussed. When combined as in the MIX Ld/Cs, the extracts exhibited diverse but synergistic

actions that ultimately exerted beneficial and protective effects against STZ-induced pancreatic b-cell death.
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Reactive oxygen (ROS) and nitrogen (RNS) species are

products of normal aerobic metabolism and are continuously

produced under physiological conditions. However, when

they rise above their physiological concentrations, ROS and

RNS are extremely toxic due to their ability to induce protein

and DNA damage and lipid peroxidation. Consequently,

organisms have developed antioxidant defence systems,

i.e. antioxidative enzymes that work in synergy with non-

enzymatic antioxidant systems that are produced in cells

or ingested through the diet. In healthy individuals, there is

a balance between ROS and RNS production and antioxidant

defences. An imbalance provoked by either overproduction

of reactive species or attenuation of the antioxidative system

leads to a process called oxidative stress. Oxidative stress is

implicated in the development of many diseases such as

CVD, atherosclerosis, neurodegenerative diseases and dia-

betes mellitus(1).

Diabetes mellitus is a chronic metabolic disorder that con-

tinues to present a major health problem worldwide. It is

characterised by hyperglycaemia resulting from deficiencies

in insulin secretion, insulin action or both. Multiple biochemi-

cal pathways and mechanisms for glucose toxicity have been
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suggested(2). All of these pathways have in common the

formation of ROS that when in excess cause chronic oxidative

stress. It has been established that chronic hyperglycaemia

and associated oxidative stress are linked to long-term

damage, dysfunction and eventually the failure of organs,

especially the eyes, kidneys, nerves, heart and vascular

system that lead to diabetic complications(3). As the final tar-

gets for clinical intervention, diabetic complications attract

more attention than the insulin-secreting pancreatic b-cells

that assume central place in the onset and development of dia-

betes mellitus. Though different aetiologies underlie type 1

and type 2 diabetes, b-cell death and/or their dysfunction

are at the core of the pathophysiology of both types of dis-

ease(4). There is convincing evidence that reactive species

play an important role in the pathogenesis of pancreatic

b-cell loss or dysfunction(5). Namely, it has been documented

that ROS and RNS are generated intracellularly when b-cells

are under autoimmune attack mediated by pro-inflammatory

cytokines in type 1 diabetes, or when exposed to a hypergly-

caemic milieu which is b-cell toxic, as occurs in type 2 dia-

betes. Since b-cells are characterised by a constitutively low

enzymatic antioxidative defence system, they are particularly

susceptible to oxidative stress(6). Therefore, antioxidants

taken as a supplement or through the diet could be helpful

in reducing oxidative stress, and thus in preventing or slowing

down the process of b-cell loss. As recent studies have shown

that certain synthetic antioxidants have toxic and carcinogenic

effects, at present, there is considerable interest in finding

natural antioxidants with less frequent side effects, to replace

synthetic ones(7).

The antioxidative properties for a large number of natural

compounds that are synthesised by higher plants and fungi

as secondary metabolites have been demonstrated. Phyto-

chemicals with antioxidative effects include a variety of phy-

tosterols, terpenes and especially polyphenols, such as

flavonoids, tannins and phenylpropanoids. A direct corre-

lation between the total phenolic content and antioxidant

capacity has been established and explained through a

number of different mechanisms, such as free radical scaven-

ging, metal ion chelation and hydrogen donation(8,9). There-

fore, numerous scientific efforts are directed at discovering

plants rich in antioxidant compounds. As it has been

suggested that plant extracts possess higher antioxidant activi-

ties than pure molecules, there is a growing interest for the use

of plant extracts as an adjunct in the therapy of oxidative

stress-related diseases(10).

In the present study, two extracts and their combination

were tested for antioxidant properties and potential protective

effects against rat pancreatic b-cell (Rin-5F cells) death

induced by streptozotocin (STZ). One of the examined

extracts was obtained from spiny burrs, which are the less stu-

died part of the sweet chestnut (Castanea sativa), known for

its antioxidant properties. Considering the growing interest for

mushrooms, as a dietary source for human consumption and

as a source of physiologically beneficial components, we stu-

died the extract from the edible mushroom Lactarius deterri-

mus. Although we examined protective effects of both

chestnut and mushroom extracts on b-cell death induced by

oxidative stress, our main goal was to establish potential ben-

eficial effects of L. deterrimus and C. sativa extracts on b-cell

survival when used in combination (MIX Ld/Cs).

Experimental methods

Plant material and extraction procedure

The mushroom L. deterrimus was collected near the village

Mune, the Istra region in Croatia, in the summer of 2008. Fruit-

ing bodies were gently cleansed of any residual compost.

Fresh mushrooms were air-dried and stored in airtight plastic

bags at room temperature. Samples of spiny burrs of the sweet

chestnut (C. sativa Mill.) were collected in the Bihać region in

western Bosnia and Herzegovina. The chestnut samples were

harvested during the chestnut-ripening season, from the

middle of September to the end of October 2006. The

collected samples were kept at 220 8C and protected from

light before further use.

The dried mushroom samples and spiny-burrs chestnut

samples were milled in a blender before extraction with

50 % ethanol (the sample:solvent ratio was 1:5 for the chestnut

extract and 1:10 (w/v) for the mushroom extract). The extrac-

tion process was carried out using an ultrasonic bath (B-220;

Branson and SmithKline Company) at 45 8C for 40 min for

the mushroom extract, and at room temperature for 30 min

for the chestnut extract. After filtration, the extraction solvent

was removed by a rotary evaporator (Devarot; Elektromedi-

cina) under vacuum. The obtained extracts were then dried

at 60 8C to a constant mass and stored in glass bottles at

280 8C to prevent oxidative damage.

HPLC analysis

In brief, 50 mg of dry extracts were dissolved in 1·0 ml of

methanol using an ultrasonic bath. The samples were filtered

with a 0·45mm filter and injected in LC/MS or HPLC/diode

array detection (DAD) systems.

HPLC analysis of the extracts was performed using an Agi-

lent 1200 series HPLC with a RP Zorbax Eclipse Plus C18

column (1·8mm, 150 £ 4·6 mm). The mobile phase A was

0·2 % formic acid in water, and the mobile phase B was aceto-

nitrile. The injection volume was 3ml for the mushroom

sample and 1ml for the chestnut sample. The samples were

eluted at a rate of 0·95 ml/min, with the following gradient

programme: 0–20 min 5–16 % B; 20–28 min 16–40 % B; 28–

32 min 40–70 % B; 32–36 min 70–99 % B; 36–45 min 99 % B;

45–46 min 99–5 % B. Quantification was based on the

measured integration area of the peaks of interest compared

with the calibration value of the corresponding standards.

LC/MS analysis was performed on an Agilent MSD TOF

coupled to an Agilent 1200 series HPLC, using the same

column and gradient programme as those for HPLC/DAD

analysis. Mass spectra were acquired using an Agilent electro-

spray ionisation (ESI)/MSD TOF. Drying gas (N2) flow was

12 litres/min; nebuliser pressure was 45 psig; drying gas tem-

perature was 3508C. For ESI analysis, the parameters were as

follows: capillary voltage – 4000 V; fragmentor – 140 V;
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skimmer – 60 V; Oct RF V – 250 V, for positive and negative

modes. The mass range was from 100 to 2000 m/z.

Biochemical assays

All biochemical assays were performed with L. deterrimus and

C. sativa extracts as well as with their combination MIX Ld/Cs.

The concentrations of individual extracts used to define MIX

Ld/Cs are given in detail in the Cell culture and treatment

section.

2,2-Diphenyl-1-picrylhydrazyl free radical-scavenging
assay

The free radical-scavenging activity of the L. deterrimus

and C. sativa extracts were measured by the decrease in

the absorbance of ethanolic 2,2-diphenyl-1-picrylhydrazyl

(DPPH) solution at 517 nm in the presence of the extract,

following the standard method(11). The inhibitory percentage

of DPPH was calculated according to the formula: percentage

of inhibition ¼ ((Ablanc 2 Atest)/Ablanc) £ 100, where Ablanc is

the absorbance of the ethanolic DPPH solution and Atest is the

absorbance of DPPH in the solution with the extract or a standard

(ascorbic acid).

Total reducing power

The reducing power of the L. deterrimus and C. sativa extracts

was determined by using the potassium ferricyanide–ferric

chloride method according to Oyaizu(12). The absorbance

was measured at 700 nm. Ascorbic acid was used as a positive

control.

Hydrogen peroxide-scavenging activity

The H2O2-scavenging ability of the L. deterrimus and C. sativa

extracts was determined by the decrease in the absorbance (A)

of H2O2 solution at 230 nm in the presence of the extract,

according to the method of Ruch et al.(13). The percentage

of H2O2 scavenging of the extracts and standard compound

(ascorbic acid) was calculated as: H2O2-scavenging effect

(%) ¼ ((Acontrol 2 Asample)/Acontrol) £ 100.

Ferrous ion chelation

The ferrous ion-chelating activity of the L. deterrimus

and C. sativa extracts was measured by the decrease in

absorbance (A) at 562 nm of the Fe(II)-ferrozine complex in

the presence of different concentrations of the extracts,

according to Dinis et al.(14). The percentage of inhibition

of the ferrozine–Fe2þ complex formation was calculated

using the following formula: ferrous ion-chelating effect

(%) ¼ ((Acontrol 2 Asample)/Acontrol) £ 100. EDTA was used as

a positive control.

Nitric oxide radical scavenging

NO-scavenging potential of the examined extracts was esti-

mated by the Griess–Ilosvay reaction(15). At physiological

pH, NO generated from aqueous sodium nitroprusside sol-

ution interacts with oxygen to produce nitrite ions, which

may be quantified by the Griess–Ilosvay reaction. The

percentage of NO scavenging of the extracts and standard

compound (curcumin) was calculated from the following

formula: NO-scavenging effect (%) ¼ ((Acontrol 2 Asample)/

Acontrol) £ 100, where A is the absorbance at 540 nm.

Cell culture and treatment

Rin-5F cells (ATCC 11 605) were cultivated at 378C under 5 %

CO2 in a humidified atmosphere in Roswell Park Memorial

Institute (RPMI) medium, supplemented with 10 % fetal calf

serum, 100 U penicillin/ml and 100mg streptomycin/ml. The

medium was exchanged every 72 h. For the treatment, cells

were incubated for 6 h with 7·5 mM-STZ (MP Biomedicals,

100557), unless otherwise indicated, dissolved in citrate

buffer (pH 4·5). After the incubation with STZ, cells were pro-

cessed immediately. The mushroom and chestnut extracts

were dissolved in the RPMI medium for the Rin-5F cell treat-

ment, at concentrations corresponding to the calculated IC50

values obtained from the DPPH assay, but adjusted with

respect to the actual concentrations in the cuvette and

taking into consideration the factor of dilution(16). Therefore,

the C. sativa extract was used at a concentration of 0·02mg/ml,

whereas the concentration of the extract from L. deterrimus

was 0·4mg/ml. The same concentrations of individual extracts

were mixed and used in experiments as a combination, abbre-

viated as MIX Ld/Cs. Depending on the experimental design,

the extracts were combined with 7·5mM-STZ before applying

to the Rin-5F cells.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide viability test

Rin-5F cell viability was estimated by the 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyl tetrazolium bromide (MTT) viability assay.

Rin-5F cells were grown in ninety-six-well plates, treated

with 7·5 mM-STZ in combination with different extracts, and

after 6 h, 200ml MTT (Sigma, M5655) at a concentration of

0·5 mg/ml in the RPMI medium was added to each well.

After incubation for 2 h in the dark, the insoluble purple for-

mazan products formed in living cells were dissolved in

dimethyl sulfoxide. Formazan product formation was quanti-

fied by measuring the absorbance at 570 nm. Cell viability

was expressed in percentages after comparison with control

cells that were assumed to be 100 % viable.

Comet assay

The level of DNA damage produced by STZ was examined

using the alkaline Comet assay according to Singh et al.(17).

Control and Rin-5F cells incubated with 7·5 mM-STZ and

STZ/extracts were mixed with low-melting agarose and

Extract mixture prevents b-cell death 1165
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applied to a microscope slide. After lysis and electrophoresis,

the slides were stained with Sybr Green I (Sigma-Aldrich,

S9430). DNA damage was quantified by measuring the displa-

cement between the genetic material of the nucleus (comet

‘head’) and the resulting comet ‘tail’. The tail moment has

been suggested to be an appropriate index of induced DNA

damage, considering both the migration of the genetic

material and the relative amount of DNA in the tail. Images

were analysed with TriTekCometScoree Freeware version

1.5 (available at http://www.AutoComet.com).

Thiobarbituric acid-reactive substance assay

Lipid peroxidation was assessed using the thiobarbituric acid-

reactive substance assay. The following chemicals were used:

thiobarbituric acid (Sigma, T5500); tetramethoxypropane

(Sigma, 108383); pyridine (Sigma, 320498). Untreated, STZ-

and STZ/extract-treated Rin-5F cells (5 £ 106 cells) were hom-

ogenised using a Potter–Elvehjem Teflon-glass homogeniser

in ice-cold KCl buffer (1·15 M-KCl, pH 7·4) to produce a 1:2

(w/v) cell homogenate. An aliquot (0·1 ml) of the homogenate

was mixed with 0·2 ml of 8·1 % SDS, 1·5 ml of 20 % acetic acid

(pH 3·5), 1·5 ml of 0·8 % thiobarbituric acid and 0·7 ml of

water. The mixture was heated at 95 8C for 60 min and then

supplemented with 1 ml of water and 5 ml of n-butanol–

pyridine (15:1, v/v), mixed and centrifuged at 3000 g for

10 min. The absorbance of the supernatants was measured at

532 nm and the total amount of Malondialdehyde (MDA)

was calculated from the MDA standard curve (the concen-

trations of MDA were from 12·5 nM to 1mM).

Measurement of reduced glutathione, glutathione
disulfide and glutathionylated proteins

Untreated, STZ- and STZ/extract-treated Rin-5F cells (1 £ 106

cells) were resuspended in 2·5 % sulfosalicylic acid and hom-

ogenised using a Potter–Elvehjem Teflon-glass homogeniser.

After incubation for 5 min at room temperature, the homogen-

ate was centrifuged at 5000 g for 5 min at 48C. An aliquot of the

supernatant was analysed for the content of glutathione, while

acid-precipitated proteins were used for glutathionylated pro-

teins (GSSP) measurement. Before the estimation of gluta-

thione, triethanolamine was added in deproteinated samples

(0·2 M) to increase the pH of the samples. Thereafter, 50ml

of the sample and 150ml of the reaction mixture (0·1 M-

sodium phosphate buffer (pH 7·5) containing 1 mM-EDTA,

0·3 mM-5,50-dithiobis-(2-nitrobenzoic acid), 0·4 mM-NADPH

and 1 U/ml glutathione reductase I) were incubated for

30 min at room temperature. The reaction rate was monitored

by measuring the absorption at 412 nm. Reduced glutathione

(GSH) contents were evaluated using a calibration curve.

Glutathione disulfide (GSSG) was quantified after derivatisa-

tion of GSH with 10 mM-2-vinylpyridine. After a 1 h incubation

at room temperature, 2-vinylpyridine-treated samples and

standards were assayed as described above using a calibration

curve.

To measure GSSP, acid-precipitated proteins were resus-

pended and washed twice with 1·5 % TCA. After washing,

the proteins were resuspended in 0·5 ml of basic solution

(9:1, v/v, 0·1 mM-phosphate buffer (pH 7·4):0·25 mM-NaOH),

and stirred for 30 min at room temperature. Then, 40ml of

60 % TCA were added to precipitate the proteins; GSH was

determined in the supernatant, as described above.

Measurement of nitrite by the Griess reaction method

From the control and treated Rin-5F cells, 200ml of super-

natant medium were deproteinised in 5 % sulfosalicylic acid.

The deproteinised samples were neutralised with 17·4 mM-

NaOH and 100ml were transferred to ninety-six-well plates.

Then 100ml of Griess reagent were added to each well step-

wise: first 50ml of 1 % sulphanilamide (Griess A) and after

5 min of incubation, 50ml of 0·1 % naphthylethylenediamine

dihydrochloride, prepared in 5 % H3PO4 (Griess B), was

added to each well. The reagents were mixed for 1 min at

185 rpm on a shaker and the plates were incubated for

additional 5 min at room temperature in the dark. The absor-

bance was measured at 540 nm.

Superoxide dismutase and catalase activities

Rin-5F cells were rinsed with the RPMI medium and scraped

with a sterile rubber scraper. The cells were centrifuged for

10 min at 200 g, resuspended in 50 mM-potassium phosphate

buffer and centrifuged for 10 min at 200 g. After sonication

on ice by a 30 s burst, the homogenates were centrifuged for

1 min at 14 000 g at 48C, and the supernatant was collected

for the determination of catalase (CAT) and superoxide dismu-

tase (SOD) activities. Protein concentrations were determined

according to the method of Lowry et al.(18). Total SOD, based

on its capacity to inhibit the auto-oxidation of epinephrine to

adrenochrome, was measured by the epinephrine method(19).

SOD activity was expressed as U/mg protein. MnSOD activity

was assessed after preincubation with 8 mM-KCN, while CuZn-

SOD activity represented the calculated difference between

total SOD and MnSOD activities. CAT activity was measured

by the rate of H2O2 decomposition and expressed as mmol

H2O2/min per mg protein(20).

Immunoblot analysis

In brief, 20mg of the cell lysate isolated from the Rin-5F cells

or proteins precipitated from the cell-culture medium after

the cell treatment were separated by 12 % SDS-PAGE and

electroblotted onto a polyvinylidene difluoride membrane.

Immunoblot analysis was performed using rabbit polyclonal

anti-NF-kB p65 antibody (1:1000, C-20; Santa Cruz), rabbit

polyclonal anti-pNF-kB p65 antibody (1:1000, Ser-311; Santa

Cruz), anti-MnSOD antibody (1:1000, FL-222; Santa Cruz),

goat polyclonal anti-Cu/ZnSOD antibody (1:750, C-17; Santa

Cruz) and mouse polyclonal anti-tubulin-a antibody (P-16;

Santa Cruz). The blots were then probed with appropriate

horseradish peroxidase-conjugated IgG (all from Santa

Cruz). Staining was performed by the chemiluminescent tech-

nique according to the manufacturer’s instructions (Santa

Cruz Biotechnology).
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Statistical analysis

In every experiment, three different samples were used and all

the assays were carried out in triplicate. All results are

expressed as mean values, with their standard errors.

Differences between the corresponding means were verified

by the Mann–Whitney U test. A P value of less than 0·05

was considered to be statistically significant.

Results

Qualitative and quantitative determinations of the
extracts’ contents

It has been reported that the antioxidant activity of plant

material correlates with the content of their phenolic com-

pounds(21). The presence of aromatic ring structures and the

number and relative positions of hydroxyl groups provide

antioxidant potential to many phenolic compounds(22). The

qualitative and quantitative analysis of the compounds present

in the C. sativa and L. deterrimus extracts was carried out

using a HPLC/DAD method (Table 1). For the C. sativa extract,

UV/vis maximums, which are characteristic for various classes

of polyphenolic compound, were compared with the litera-

ture data(23,24). The identity of tryptophan and p-hydroxyben-

zoic acid from the L. deterrimus extract was confirmed by

comparison of retention times with those of standard

compounds. The identified compounds from the C. sativa

extract could be categorised as ellagic acid/ellagic acid deriva-

tives, gallic acid/gallic acid derivatives and flavonoid struc-

tures, with the highest content of ellagic acid structures

(100·4 mg/g), followed by gallic acid derivatives (59·6 mg/g)

and flavonoid structures (24·1 mg/g). In the L. deterrimus

extract, the only detected compounds with a phenolic struc-

ture were tryptophan and p-hydroxybenzoic acid, present in

quantities of 0·07 and 0·034 mg/g, respectively, while other

detected compounds were unsaturated and oxy(hydroxy- or

epoxy-) fatty acids.

Analysis of the antioxidative properties of the examined
extracts

In evaluating the possible antioxidant action of a compound

or extract on a biological system, it is a standard practice to

start with biochemical assays since a compound that exhibits

poor antioxidant activity in assays in vitro is unlikely to be

better in vivo. The antioxidant activities of the C. sativa and

L. deterrimus extracts were examined as a function of their

concentrations in several biochemical assays (Fig. 1). Each

assay was performed for two separate extracts and their com-

bination (MIX Ld/Cs), and the obtained results were compared

with standard substances at the same concentration. The con-

centration ranges differed for the two extracts and were

Table 1. Quantitative HPLC/diode array detection and LC/MS data of Lactarius deterrimus and Castanea sativa extracts

Extract RT (min) UV lmax (nm)
Molecular
mass (Da)

Molecular
formula Compound

Content
(mg/g)

C. sativa 8·61 254, 374 596·0414 C27H16O16 Ellagitannin 8·9
9·53 218, 276 498·1002 C21H22O14 Gallic acid derivative 11·9

10·00 218, 272 184·0367 C8H8O5 Methyl gallate 30·8
11·39 216, 276 498·1008 C21H22O14 Gallic acid derivative 8·8
12·00 224, 268sh 1130·1081 C50H34O31 Ellagitannin 2·9
13·02 224, 268sh 1116·0927 C49H32O31 Ellagitannin 4·5
15·16 218, 256, 298, 366 470·0127 C21H10O13 Flavogallonic acid 9·3
17·92 216, 276 498·1006 C21H22O14 Gallic acid derivative 1·8
18·21 218, 256, 298, 366 484·0275 C22H12O13 Flavogallonic acid methyl ester 3·5
18·53 278, 344 306·0376 C14H10O8 Protocatechuic acid derivative 2·7
21·16 224, 272 366·0585 C16H14O10 Dehydrodigallic acid, dimethyl ester 6·3
22·34 254, 368 302·0060 C14H6O8 Ellagic acid 84·1
24·91 220, 254, 302, 364 484·0271 C22H12O13 Valoneic acid dilactone, methyl ester 73·7
27·84 202, 256, 372 302·0423 C15H10O7 Quercetin 12·7
28·41 228, 298, 310 178·0626 C10H10O3 p-Methoxycinnamic acid 20·5
29·72 196, 222sh, 264, 368 286·0478 C15H10O6 Kaempferol 7·4
30·2 254, 266sh, 306sh, 326sh, 370 316·0575 C16H12O7 Isorhamnetin 4·0

L. deterrimus 7·6 220, 268sh, 278, 288sh 204·0889 C11H12N2O2 Tryptophan 0·0695
8·9 256 138·0336 C7H6O3 p- Hydroxybenzoic acid 0·0338

30·7 – 330·2575 C22H34O2 22 : 5 fatty acid –
30·8 – 330·2567 C22H34O2 22 : 5 fatty acid –
32·4 – 330·2571 C22H34O2 22 : 5 fatty acid –
32·6 – 330·2567 C22H34O2 22 : 5 fatty acid –
32·7 – 332·2719 C22H36O2 22 : 4 fatty acid –
33·3 – 332·2723 C22H36O2 22 : 4 fatty acid –
34·9 – 172·1458 C10H20O2 Decanoic acid –
35·3 – 296·2323 C18H32O3 18 : 2 oxy-fatty acid –
35·5 – 296·2331 C18H32O3 18 : 2 oxy-fatty acid –
36·2 – 294·2202 C18H30O3 18 : 3 oxy-fatty acid –
37·3 – 294·2214 C18H30O3 18 : 3 oxy-fatty acid –
37·7 – 298·2519 C18H34O3 18 : 1 oxy-fatty acid –

RT, retention time, sh, wavelength shift.
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Fig. 1. Antioxidant and scavenging properties of Lactarius deterrimus and Castanea sativa extracts and their combination (MIX Ld/Cs). (a) Radical-scavenging

activity on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical as a function of extract concentration (conc.). (b) Reducing power as a function of extract

concentration. (c) H2O2-scavenging activity as a function of extract concentration. (d) Chelating effect of the extracts as a function of their concentration.

(e) NO-scavenging activity as a function of extract concentration. (a–c) , L. deterrimus; , ascorbic acid; , C. sativa; , MIX Ld/Cs. (d) , L. deterrimus;

, EDTA; , C. sativa; , MIX Ld/Cs. (e) , L. deterrimus; , curcumin; , C. sativa; , MIX Ld/Cs. A, absorption.
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defined in preliminary assays. A strong correlation with the

phenolic/flavonoid content was observed and accordingly,

the L. deterrimus extract was used at a concentration range

that was 10-fold higher than that of the C. sativa extract.

The radical-scavenging activity of the extracts was assessed

by the DPPH assay (Fig. 1(a)). Although the scavenging

activity of both extracts increased with concentration, the

DPPH assay revealed that the L. deterrimus extract possessed

a relatively low scavenging activity. The C. sativa extract was

much more effective, and it almost reached the value of

ascorbic acid that was used as a reference compound. The

combination of the extracts, MIX Ld/Cs, did not exhibit a

stronger scavenging activity than the individual extracts,

since its scavenging potential was at the level of the chestnut

extract which was already at the level of the reference

compound.

The reducing power of the extracts increased in a

concentration-dependent manner (Fig. 1(b)). Both extracts

were capable of reducing Fe(III), suggesting the potential to

block free radical chain reactions. The mushroom extract

reached the ascorbic acid value (the reference substance) at a

concentration of 8 mg/ml, while the chestnut extract accom-

plished the same effect at 0·5 mg/ml. MIX Ld/Cs was effective

as ascorbic acid.

Since H2O2 can generate highly reactive hydroxyl radicals

through an interaction with transition metal ions, the gener-

ation of hydroxyl radicals can be prevented by scavenging

of H2O2 or by chelation of metal ions. The chestnut and mush-

room extracts were further tested for ability to block the

Fenton reaction. Both extracts exhibited a H2O2-scavenging

activity that depended on their concentration (Fig. 1(c)). The

mushroom extract reached 100 % of scavenging at a concen-

tration of 4 mg/ml, whereas the chestnut extract scavenged

H2O2 even more effectively than ascorbic acid, reaching com-

plete scavenging at 0·75 mg/ml. Conversely, the two extracts

exhibited very poor metal-chelating capability (Fig. 1(d)).

Detectable chelation was observed only above 4 mg/ml for

the mushroom extract, and at 0·75 mg/ml for the chestnut

extract. Surprisingly, the combination of the extracts MIX Ld/Cs

possessed a strong chelating activity, providing nearly 80%

chelation of the ferrous ion.

Besides ROS, RNS are also responsible for altering the struc-

tural and functional behaviour of many cellular components.

The two extracts and MIX Ld/Cs were therefore tested for

NO-scavenging activity (Fig. 1(e)). The scavenging of NO by

extracts increased in a concentration-dependent manner.

Complete scavenging was achieved at 8 mg/ml for the mush-

room extract and 1 mg/ml for the chestnut extract, which

exhibited a better scavenging activity than the referent com-

pound curcumin. MIX Ld/Cs scavenged 100 % of NO, as

expected.

In conclusion, the biochemical assays revealed that both

C. sativa and L. deterrimus extracts possess antioxidant activi-

ties, albeit to different extents. While the extract obtained from

the mushroom had moderate antioxidant activity, the chestnut

extract showed excellent antioxidant properties. The best

antioxidative activity was obtained when the extracts were

combined as in the MIX Ld/Cs.

The protective effects of the extracts on pancreatic b-cell
survival

Our next aim was to examine the ability of the extracts to

increase the survival of pancreatic b-cells after the STZ treat-

ment. Pancreatic Rin-5F cells were treated with STZ that is

taken up preferentially by pancreatic b-cells through the

GLUT2 transporter. The mechanism of STZ-induced b-cell

toxicity relies on its alkylating properties and the synergistic

actions of both ROS and RNS, which are generated as a

result of the STZ action on mitochondria and the increased

activity of xanthine oxidase(25). To estimate STZ toxicity,

Rin-5F cells were treated with increasing concentrations of

STZ for 6 h. Cell viability was assessed by the MTT viability

assay (Fig. 2(a)). The number of viable cells gradually

decreased with increasing STZ concentration. Treatment with
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Fig. 2. Lactarius deterrimus and Castanea sativa extracts and their combi-

nation (MIX Ld/Cs) increase the survival of pancreatic b-cells in vitro. (a) Via-

bility assay performed on Rin-5F cells after treatment with increasing

concentrations of streptozotocin (STZ). (b) Application of L. deterrimus,

C. sativa and MIX Ld/Cs on Rin-5F cell viability. (c) Viability assay after the

co-treatment of Rin-5F cells with STZ and L. deterrimus, C. sativa or MIX

Ld/Cs. Values are means of three experiments performed in triplicate, with

standard errors represented by vertical bars. * Mean value was significantly

different from that of untreated control cells (P,0·05). † Mean values were

significantly different from those of STZ-treated cells (P,0·05).
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7·5 mM-STZ induced cell death in more than 50 % of cells and

was used in all further experiments.

Initially, cytotoxicities of both extracts and MIX Ld/Cs were

tested. The two extracts and MIX Ld/Cs were applied to Rin-5F

cells without previous treatment with STZ. The viability assay

revealed that the extracts and MIX Ld/Cs did not exhibit cyto-

toxic activity on Rin-5F cells (Fig. 2(b)). In contrast, treatment

of Rin-5F cells simultaneously with 7·5 mM-STZ and either with

the mushroom extract, the chestnut extract or MIX Ld/Cs led to

a statistically significant improvement of Rin-5F cell survival

(Fig. 2(c)). Cell viability of 46·3 % obtained after the STZ treat-

ment increased to 55·1 % in the presence of the mushroom

extract, to 62·6 % with the chestnut extract and to 75·2 %

when the extracts were used in combination. Therefore, the

treatment with the extract MIX Ld/Cs provided the highest

degree of b-cell protection, influencing cell viability more

effectively than the sum of effects of the individual extracts.

The extracts’ effect on genome stability

We used the Comet assay to examine whether the extracts are

capable of protecting DNA from damage after the STZ treat-

ment. Rin-5F cells that were treated with 7·5 mM-STZ alone

or with STZ in combination with the mushroom extract, the

chestnut extract or MIX Ld/Cs were subjected to the alkaline

Comet assay (Fig. 3). Representative images of the cells are

shown in Fig. 3(a; i–v). In the control sample, the great

majority of the analysed cells did not exhibit DNA damage

(Fig. 3(a), i). The STZ treatment resulted in extensively

damaged DNA, since large amounts of DNA were present in

the comet tails (Fig. 3(a), ii). Simultaneous treatment of

Rin-5F cells with STZ and the mushroom extract (Fig. 3(a), iii),

the chestnut extract (Fig. 3(a), iv) and MIX Ld/Cs (Fig. 3(a),

v) provided increased protection, manifested as lower levels

of DNA damage, in comparison with the STZ-treated

cells. The extent of DNA damage was expressed as the tail

moment, the parameter that considers both the comet

tail length and tail intensity (Fig. 3(b)). Analysis of the tail

moments revealed that the combination of the extracts MIX

Ld/Cs provided the best protection against STZ-induced

DNA damage, although both the mushroom and chestnut

extracts also significantly reduced the tail moment when com-

pared with the STZ-treated cells. Taken together, the results of

the Comet assay showed that the mushroom and the chestnut

extracts possess a similar and very pronounced potential for

genome stabilisation, even though they differ in their respect-

ive radical-scavenging activities. Also, in the case of genome
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Fig. 3. DNA damage after the streptozotocin (STZ) treatment and co-treatment with Lactarius deterrimus, Castanea sativa or their combinations (MIX Ld/Cs) esti-

mated by the alkaline Comet assay. (a) Representative images of comets: (i) control Rin-5F cells; (ii) cells treated with STZ; (iii) cells co-treated with STZ and

L. deterrimus extract; (iv) cells co-treated with STZ and C. sativa extract; (v) cells co-treated with STZ and MIX Ld/Cs. (b) Assessment of DNA damage using tail

moment as a parameter of DNA damage. Values are means of three experiments performed in triplicate, with standard errors represented by vertical bars. * Mean

value was significantly different from that of untreated control cells (P,0·05). † Mean values were significantly different from those of STZ-treated cells (P,0·05).
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stabilisation, the optimal combination of the extracts provided

the most effective DNA protection.

The beneficial effects of the extracts on cellular biomarkers
of oxidative stress

The role of oxidative stress in b-cell death or dysfunction that

ultimately results in the development of diabetes is well

established. Lipid peroxidation reflects irreversible oxidative

changes of membranes which impair the functioning of cell

organelles and thus can be used as a biomarker of oxidative

stress(26). Therefore, our next aim was to evaluate the possible

antioxidant effects of the extracts in Rin-5F cells by measuring

the level of lipid peroxidation using the thiobarbituric acid-

reactive substance assay (Fig. 4(a)). The STZ treatment led

to an increase in the lipid peroxidation level in comparison

with the control sample. Comparison of MDA levels in the

STZ-treated cells with the cells simultaneously treated with

STZ and the extracts revealed that both extracts, as well as

MIX Ld/Cs, exhibited statistically significant inhibition of

50(a)

(b)

40

45

35

30

25

20

15

10

5

0
Control STZ STZ + L.

deterrimus
STZ + C.

sativa
STZ + MIX

Ld/Cs

Control STZ STZ + L.
deterrimus

STZ + C.
sativa

STZ + MIX
Ld/Cs

Control STZ STZ + L.
deterrimus

STZ + C.
sativa

STZ + MIX
Ld/Cs

Li
p

id
 p

er
ox

id
at

io
n

 
(n

m
o

l M
D

A
/m

g
 p

ro
te

in
s)

*

†

†
†

60

50

40

30

20

10

0

1·2

1·0

0·8

0·6

0·4

0·2

0

G
S

H
-G

S
S

P
 (

n
m

o
l/m

g
 p

ro
te

in
s)

G
S

S
G

 (
n

m
o

l/m
g

 p
ro

te
in

s)

20

18

16

14

12

10

8

6

4

2

0

*

* *

*

†
†

† †

††

†

††

†
†

†

N
O

2 
(µ

m
o

l)

(c)

Fig. 4. Evaluation of the redox status of Rin-5F cells after the streptozotocin (STZ) treatment and co-treatment with Lactarius deterrimus, Castanea sativa or their

combination (MIX Ld/Cs). (a) Lipid peroxidation level estimated by the thiobarbituric acid-reactive substance assay. MDA, malondialdehyde. (b) Concentration of

reduced glutathione (GSH; ), glutathione disulfide (GSSG; ) and content of glutathionylated proteins (GSSP; ). (c) Concentration of nitrite determined by the

Griess reaction. Values are means of three experiments performed in triplicate, with standard errors represented by vertical bars. * Mean values were significantly

different from those of untreated control cells (P,0·05). † Mean values were significantly different from those of STZ-treated cells (P,0·05).
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lipid peroxidation (Fig. 4(a)). The chestnut extract showed the

highest potential for the inhibition of lipid peroxidation, based

on the MDA level that was 2·4-fold lower than that in the STZ-

treated cells. A similar effect was obtained in cells that were

treated with MIX Ld/Cs, while treatment with the mushroom

extract led to a 1·5-fold decrease in the MDA level in compari-

son with the STZ-treated cells.

Another valuable marker of oxidative stress is the level of

the GSH. During oxidative stress, the concentration of GSH

decreases, accompanied by an increase in its oxidised form

(GSSG). The STZ treatment of Rin-5F cells induced a powerful

oxidative stress, based on the GSH and GSSG levels in this

sample (Fig. 4(b)). Treatments with the mushroom extract

and, in particular, with the chestnut extract together with

STZ preserved glutathione in its reduced state. The strongest

antioxidant effect was displayed by MIX Ld/Cs which induced

an almost 5-fold increase in GSH, together with a 5·1-fold

decrease in the level of GSSG in comparison with the STZ-

treated cells (Fig. 4(b)).

During prolonged states of oxidative perturbation, GSSG

accumulates within the cell and can contribute to protein–

glutathione adduct formation(27). Therefore, in addition to

the levels of reduced GSH and GSSG, the content of GSSP

can be used as an important marker of oxidative stress(28).

STZ, as an oxidative stress inducer, provoked an increase in

the GSSP content in the Rin-5F cells (Fig. 4(b)). However,

the presence of the mushroom and chestnut extracts, as well

as of the MIX Ld/Cs, diminished the amount of glutathiony-

lated proteins. Both extracts and their combination exhibited

statistically significant and prominent potential for pancreatic

b-cell protection against STZ-induced glutathionylation of

proteins.

Although NO participates in numerous physiological pro-

cesses, it is also the primary source of all RNS in biological sys-

tems(29). We used the Griess reaction to detect nitrite, which is

formed by the spontaneous oxidation of NO under physio-

logical conditions and which represents a reliable estimate

of the NO output in vivo (30). In the control sample, the pre-

sence of nitrites was negligible. The STZ treatment induced

a significant increase in the nitrite content (Fig. 4(c)). Treat-

ment with the mushroom extract induced a 3·1-fold decrease

in the nitrite content, the same effect as obtained for MIX

Ld/Cs (P,0·05). The chestnut extract was less effective, as it

induced a 1·7-fold decrease of nitrites compared with the

STZ treatment (P,0·05).

The extracts exhibit a valuable effect on the antioxidant
defence system in pancreatic b-cells

Since oxidative stress results from either increased production

of reactive species and/or from decreased activity of the anti-

oxidant defence system, our next aim was to determine

whether the observed improvement of the redox status after

the treatment with the extracts resulted from changes in activi-

ties of antioxidant enzymes. Total SOD, MnSOD and CuZn-

SOD activities were measured in the control Rin-5F cells,

STZ-treated cells and cells simultaneously treated with

STZ and the extracts (Fig. 5(a)). The STZ treatment led to a

significant increase in total SOD activity, which was for the

most part the result of an increase in MnSOD activity. Treat-

ment with the mushroom extract did not provoke a consider-

able effect on overall SOD activity, although some decrease in

MnSOD and an increase in CuZnSOD activity could be

observed (Fig. 5(a)). However, the chestnut extract almost

completely reduced SOD activity to the control level, with

only MnSOD remaining 16 % above the activity observed in

the control cells. The MIX Ld/Cs significantly reduced total

SOD and MnSOD activities (by 24 and 15 %, respectively) in

comparison with the STZ treatment, although the chestnut

extract alone was more effective in reducing SOD activity

than the MIX Ld/Cs (Fig. 5(a)).

In addition to increased SOD activity, the STZ treatment also

enhanced CAT activity (Fig. 5(b)). Simultaneous treatments

with the mushroom extract, the chestnut extract and with

the MIX Ld/Cs exerted different effects on the activity of this

enzyme. The most effective reduction of CAT activity was

observed with the chestnut extract (CAT activity reduction

for 28 % relative to the STZ treatment). The mushroom extract

reduced CAT activity to a statistically insignificant level, while

the MIX Ld/Cs led to a statistically relevant diminishment of

CAT activity for 17 % (Fig. 5(b)).

Next, we examined the effect of the different treatments on

the expression profiles of proteins involved in the mainten-

ance of a physiological redox status in the cell. The Rin-5F

cell lysates obtained from the control cells (Fig. 6(a),

lane 1), STZ-treated cells (lane 2) and cells treated with the
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Fig. 5. Activity of antioxidant enzymes in Rin-5F cells after the streptozotocin

(STZ) treatment and co-treatment with Lactarius deterrimus, Castanea

sativa) or their combinations (MIX Ld/Cs). (a) Total superoxide dismutase

(SOD; ), MnSOD ( ) and CuZnSOD ( ) activities. (b) Catalase (CAT)

activity. Values are means of three experiments performed in triplicate, with

standard errors represented by vertical bars. * Mean values were significantly

different from those of untreated control cells (P,0·05). † Mean values were

significantly different from those of STZ-treated cells (P,0·05).
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extracts (lane 3, mushroom; lane 4, chestnut; lane 5, MIX Ld/

Cs) were subjected to immunoblot analysis. Although altera-

tions in MnSOD activity were observed after the treatments,

changes at the protein level were not detected. Slight altera-

tions were observed at the protein level of CuZnSOD.

Namely, immunoblot analysis of CuZnSOD showed that the

STZ treatment of Rin-5F cells induced a small increase in its

protein level (Fig. 6(a), lane 2), while the simultaneous treat-

ment with STZ and the mushroom, chestnut and MIX Ld/Cs

(lanes 3, 4 and 5, respectively) brought about a reduction

of CuZnSOD to the level observed in the control sample

(lane 1).

Transcription factor NF-kB, sometimes referred to as a

redox-sensitive transcription factor, is central to the control

of the cellular response, which is triggered by many stimuli

including oxidative stress. Once released from the inhibitory

molecule IkB, NF-kB is translocated to the nucleus where its

phosphorylated form activates transcription of its target

genes. In the STZ-treated cell lysates, a higher level of NF-

kB p65 and its phosphorylated form pNF-kB p65 compared

with the control cell lysate were observed (Fig. 6(a), lane 1),

clearly indicating that the STZ treatment induced oxidative

stress in the cells (lane 2). A decrease in the level of NF-kB

p65 and a decrease in the presence of its phosphorylated

form in all samples treated with the extracts (lanes 3, 4

and 5) revealed that the extracts contributed towards an

improved redox status of Rin-5F cells.

Bearing in mind that reactive species and oxidative stress

often induce b-cell dysfunction, we next examined the protein

mix released into the cell-culture medium, with anti-insulin

antibody by immunoblot analysis (Fig. 6(b)). The control

cells were functional since they released the largest amount

of insulin in the medium (lane 1). The STZ treatment led to

a considerable reduction in insulin secretion (lane 2), while

the augmented presence of insulin in the medium obtained

from cells that were treated with STZ and the mushroom

extract, the chestnut extract and with MIX Ld/Cs points to a

preserved functioning of Rin-5F cells (lanes 3, 4 and 5,

respectively). This result provides additional support for the

conclusion that the examined extracts, and in particular the

MIX Ld/Cs, possess an important antioxidative potential

through which they maintain proper cell functioning and pro-

tect pancreatic b-cell from death.

Discussion

In the present paper, the antioxidant properties of extracts

obtained from the mushroom L. deterrimus, the chestnut C.

sativa and their combination MIX Ld/Cs were assessed by

different biochemical assays. The L. deterrimus ethanolic

extract exhibited relatively low radical-scavenging activity

(DPPH assay), reducing power and chelating effect (Fig. 1),

which is in agreement with Sarikurkcu et al.(31). In the concen-

tration range we used, the L. deterrimus extract exhibited

good H2O2
2 and NO-scavenging activities that, to our knowl-

edge, have not been previously reported. The ethanolic

extract from the spiny burrs of C. sativa showed remarkably

high antioxidant properties based on biochemical assays,

with the exception of a chelating effect on the ferrous ion

(Fig. 1). It is well known that chestnut extracts from leaves,

fruits, skins and flowers possess strong antioxidant properties

due to the significant content of total phenolic com-

pounds(7,10). It has previously been shown that the extract

from the spiny burrs of C. sativa exhibit a high antioxidative

activity against the superoxide anion(32) and can be used as

a source of natural antioxidants(33,34). A specific goal of the

present study was to examine the potential beneficial effects

of a combination of these two extracts with basically different

antioxidant activities. Aside from the observed very high anti-

oxidant capacity of the MIX Ld/Cs in those assays in which

individual extracts showed good antioxidant properties, MIX

Ld/Cs was also a very effective chelator of the ferrous ion,

despite the very low individual chelating activities of the

mushroom and chestnut extracts. It has been acknowledged

that no single antioxidant can replace the combination of

natural phytochemicals to achieve the health benefits, as a

result of their additive and synergistic effects(35). It is possible

that the improved chelation demonstrated by the combination

of two extracts was the result of synergism between the phy-

tochemical compounds contained in the chestnut and mush-

room extracts.

The antioxidant compounds could be toxic at higher con-

centrations, especially if they are rich in phenolics(36). There-

fore, it is important to evaluate the cytotoxicity of a

compound or plant extract in vitro and in vivo before its con-

sideration as a natural antioxidant for human use. We showed

that C. sativa, L. deterrimus and their combination MIX Ld/Cs

did not exhibit any cytotoxic effect on the Rin-5F pancreatic

25 kDa

(a)

(b)

17 kDa

65 kDa

65 kDa

55 kDa

34 kDa Insulin

α-Tubulin

1 2 3 4 5

1 2 3 4 5

pNF-κB p65

NF-κB p65

CuZnSOD

MnSOD

Fig. 6. Immunoblot analysis of Rin-5F lysates (a) and proteins released in

cell-culture medium (b) from control cells (lane 1), streptozotocin (STZ)-trea-

ted cells (lane 2), STZ þ Lactarius deterrimus-treated cells (lane 3), STZ þ

Castanea sativa-treated cells (lane 4) and cells treated with STZ and their

combinations (lane 5). SOD, superoxide dismutase.
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b-cell line (Fig. 2(b)). Also, both extracts and especially their

combination exhibited a protective effect against STZ-induced

b-cell death (Fig. 2(c)). The improved viability was, in part,

the result of a significant reduction of DNA damage, as estab-

lished by the Comet assay (Fig. 3). Using the Comet assay, a

positive effect on genome stability and antigenotoxic potential

was shown for another species from the genus Lactarius,

L. vellereus (37), and for the extract from the chestnut inner

shell(38). The observed reduction of DNA damage after the

application of STZ with the chestnut extract could result

from the high content of ellagic acid and its derivatives that

were present in the chestnut extract. It was shown earlier

that treatment with ellagic acid leads to a noticeable reduction

of H2O2
2 and bleomycin-induced DNA damage(39). Based on

the mechanism of STZ-induced DNA damage and b-cell

death, which include generation of both ROS and RNS(25),

the decreased amount of DNA breaks implies potent

antioxidant activities of both extracts, and in particular their

combination.

Oxidative stress can be alleviated either by increasing activi-

ties of antioxidant enzymes or by free radical scavenging by

different antioxidants. Experiments with transgenic mice

with b-cell-specific overexpression of the antioxidant proteins

MnSOD and CAT revealed that elevated expression of these

enzymes enhanced b-cell ROS scavenging, rendering b-cells

resistant to STZ-mediated damage(40). It was shown that

some antioxidants realise their antioxidant properties by indu-

cing antioxidant enzymes(41–44). Herein, the chestnut and

mushroom extracts decreased the level of MnSOD activity in

comparison with STZ-induced increase, without changing

MnSOD protein levels. The activity of CuZnSOD did not

alter significantly throughout the treatments, although a

slight increase in the CuZnSOD protein level was observed

in the STZ-treated cells. The observed increase in the CuZn-

SOD protein level could be the result of NF-kB activation, as

it was shown that NF-kB is involved in the transcriptional

regulation of the CuZnSOD gene(45). Since the treatment

with the extracts did not increase the protein expression

level neither for CuZnSOD nor for MnSOD, we assumed that

the extracts lowered oxidative stress via a mechanism other

than the induction of antioxidant enzyme gene expression.

Besides an overall improvement of the oxidative status

(Fig. 4), some differences in the individual effects of the mush-

room and chestnut extracts on b-cell survival were noted.

They were probably mediated by different mechanisms of

antioxidative action. In contrast to the mushroom extract,

the chestnut extract had a greater influence on the activity

of SOD and CAT. The diminishment of the STZ-induced

elevation of both MnSOD and CAT activities after C. sativa

extract administration is most probably due to the lowering

of ROS concentrations as a result of the pronounced scaven-

ging activity of the extract against ROS. Antioxidant properties

of the C. sativa extract directly correlates with the extremely

high content of phenolic compounds, especially hydrolysable

tannins (ellagic and galic acids and their derivatives). The ben-

eficial effects of these compounds have been extensively stu-

died and their in vivo biological effects are related to the high

free radical-scavenging activity they exhibit in vitro (46). The

proposed antioxidant mechanism of ellagic acid, the most pro-

nounced compound in the C. sativa extract, is scavenging of

superoxide, hydroxyl and peroxyl radicals(47). This is in the

strict correlation with our conclusion that the C. sativa extract

accomplishes its effects by ROS scavenging.

In contrast, the effect of the L. deterrimus extract on the

activity of antioxidant enzymes was negligible, pointing to

its considerably lower influence on ROS scavenging. In spite

of that, an overall improvement of the oxidative status after

the co-treatment of b-cells with the L. deterrimus extract

and STZ was detected. The antioxidant properties of the

L. deterrimus extract can be explained by a strong NO-

scavenging activity that was observed in the biochemical

assay (Fig. 1) and also on b-cells in vitro (Fig. 4(c)). Since

STZ is a potent NO donor(48,49), the improved viability of

the STZ-treated b-cells observed after administration of the

L. deterrimus extract could be the result of its NO-scavenging

activity. However, based on the phenolic content of the

L. deterrimus extract, we cannot identify a compound respon-

sible for its antioxidant effects. It would appear that some

other non-phenolic compounds or secondary metabolites(50)

were responsible for the beneficial effect of the mushroom

extract. One possibility is that the antioxidant properties of

the L. deterrimus extract are derived from essential trace

elements, Se and Zn. Se functions as a cofactor of some anti-

oxidant enzymes and thus is involved in the elimination of

free radicals(51), while Zn protects certain enzyme sulfhydryls

from oxidation and reduces the formation of hydroxyl radical

from H2O2 through the antagonism of redox-active transition

metals(52). The L. deterrimus extract is enriched in Se (0·946

(SD 0·002) mg/g of extract) and Zn (57·03 (SD 0·001) mg/g

of extract) (S Vidorić, unpublished results), the feature that

may underlie the antioxidant and beneficial effect of the L.

deterrimus extract.

Although both extracts possess an antioxidant potential and

exert a positive effect on cell viability after the STZ treatment,

their combination provided the highest viability and the

lowest level of DNA damage in b-cells after the STZ treatment.

We assume that MIX Ld/Cs exhibited the most beneficial result

on cell survival due to the additive and synergistic effects(53) of

different antioxidant mechanisms of the mushroom and chest-

nut extracts. Namely, based on the present results and HPLC

analysis, we assumed that the chestnut extract exerts an anti-

oxidative and protective effect by ROS scavenging. The mush-

room extract primarily appears to exert its effect as a NO

scavenger. It is known that NO rapidly reacts with other reac-

tive species, in particular with the superoxide ion to form per-

oxynitrite (ONOO2). Peroxynitrite is chemically unstable

under physiological conditions and reacts with all major

classes of biomolecules, mediating cytotoxicity(29). Thus, the

simultaneous presence of both C. sativa and L. deterrimus

extracts could prevent not only the cytotoxicity mediated by

NO and ROS, but also the cytotoxic effect mediated by

highly reactive species formed through their interaction. This

particular effect would be specific for a given combination

of extracts but not for a single extract. Also, we observed a

synergistic effect of MIX Ld/Cs in the Fe2þ-chelating assay.

Fe2þ chelation is an essential feature of antioxidants since
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‘free’ Fe can catalyse the formation of very injurious com-

pounds, such as the hydroxyl radical, from H2O2 through

the Fenton reaction. The mushroom and chestnut extracts

individually possess moderate chelating capability, while

their combination demonstrates a high potential for prevent-

ing the Fenton reaction, which could be particularly beneficial

in vivo. Therefore, mixtures of extracts acquire new qualities

with respect to individual extracts, which explains the

improved antioxidant and beneficial effects on b-cells. We

also believe that combined actions are especially manifest in

mixtures that contain phytochemicals from evolutionarily

distant groups, as in our case. Identification of the phenolic

compounds confirmed the diversity of the secondary metab-

olites present in the L. deterrimus and C. sativa extracts.

Underlining that antioxidant properties of the mushroom

and chestnut extracts need to be confirmed in vivo on a rat

model of STZ-induced diabetes (work in progress) and with

complete awareness of the limitations of the in vitro model

system, we suggest that the combination of the C. sativa and

L. deterrimus extracts may have beneficial effects on the

reduction of oxidative stress in b-cells and could potentially

attenuate the process that underlies the development and

progression of diabetes.
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